A COMPARISON WITH ABIYEV BALANCED SQUARE AND OTHER MAGIC SQUARE

A. A. Abiyev ${ }^{1}$ Ahmet Arslan ${ }^{2}$ Azer Abiyev ${ }^{3}$
${ }^{1,3}$ Azerbaijan National Academy of Sciences, Institute of Radiation, Baku, Azerbaijan askeraliabiyev @hotmail.com
${ }^{2}$ Gaziantep University, Faculty of Medicine, Department of Medical Biology and Genetics, 27310-Gaziantep, Turkey aarslan@gantep.edu.tr

Abstract

A magic square is an $n \times n$ matrix of the integers from the 1 to n^{2} such that the sum of every row, column, and diagonals is constant depending upon the the size of the matrix. The sum equals to $S=\frac{n^{2}+1}{2} n$ and called the magic number. The magic square, which is known as the recreation game for a long time, can be applicable to different branch of science and technology. In this study, we compared the abiyev balanced square with other perfect magic squares in the literature. Because, abiyev balanced square is written by a perfect algorithm in which static mass moment vectors according to the concentric frames are invariant with respect to the symmetric interchanges of numbers. This invariant property of abiyev balanced square allows to facilitate applications in cryptology, physics, mathematics, and genetics.

Key Words: Magic square, balanced square, cryptology, genetic, invariant.

1. Introduction

In this work, assigned numbers in the cells according to the algorithm described below and elsewhere [1] assume as the masses and concentric frames represent the mass system. The nature of the distribution of masses in the concentric frames is investigated and presented here. Certainly, different vectorial values can be assigned in the cells to obtain measurable relationships, such as electric field, magnetic field, etc.

Let us take the origin of the radius-vector $\vec{r}_{i}=m_{i} \vec{r}_{i}$ at the center of the magic square, and assume that the members of the magic square are mass point and located at the center of their respective cells. The calculation shows that for all magic square (except Franklin's magic squares) is equal to zero. That is:

$$
\sum_{i=1}^{n^{2}} m_{i} \vec{r}_{i}=0, \quad \text { 1] }
$$

Here, we present that the center of mass system of the magic square and its geometric center coincide. Because of this reason, the magic square named as the balanced square.

In this study, we are not going to focus on how different published magic squares were constructed. However, we present the comparisons of the other perfect squares with the abiyev balanced squares in order to delineate the basic properties of abiyev balanced squares. The importance of these properties which allow different applications will also be discussed [2].

2 Balanced Abiyev's Square

The abiyev balanced square algorithm that was founded in 1996 [3] enables to create balanced square in any desired numbers which could be rational, irrational, and complex numbers, etc [4].

The main idea of the algorithm is as: four arithmetical sequences are named as α, β, γ, and δ with arithmetical constants $+1,+n,-1$, and $-n$, respectively. The cells of constituent of each sequences were painted orange (set α), red (set β), blue (set γ), and violet (set δ). The numbers in the cells of concentric frames were assignedby means of closed graphs [5,6] The balanced abiyev's square can be created in a given order by visiting the http://www1.gantep.edu.tr/~abiyev web site [7]. The balanced square created by this algorithm according to transcendent numbers π and e shown in Table 1. Here the magic number equals to $\sqrt{19}$. In Table 1, the perfect distribution of irrational numbers is shown. Thus, the relationship between the transcendent numbers and irrational numbers can be established.

The properties of balanced squares were investigated previously [8]. These properties confirm that abiyev balanced squares are distinct comperatively from the other published perfect magic squares [8].

One of the properties which is absent in other magic squares presently is the distribution of static mass vectors of concentric frames. The mass vectors are invariant in respect to the symmetric interchanges of numbers. In balanced squares, the coloring of cells of numbers according to a determined algorithm allow to facilitate the comparison of different squares created by others as shown in Tables 3-6.

3. Comparison of Squares

In this study, we compared the Franklin's square [9], the Tien Tao Kuo's square [10], the Kwon Yong Shin's square [11], the Tamori's square [12], and the magic square created by MATLAB [13]. The comparison of the static mass moments on each concentric frames of magic squares [9-12] with balanced abiyev's square of 16th order is shown in Table 2. In Table 2 the perfect abiyev balanced square is distinct from other published magic squares. Except the Franklin's square all others including abiyev balanced square have the sum of $A(x)$ and $A(y)$
values are equal to zero (Table 2). That is, the mass centers and the geometric centers are congruent to each other in these magic squares (Table 2). As shown in Table 2, abiyev balanced square $A(y)$ component will be 18 in 18th order, 20 in the 20 th order etc [1], however, $A(x)$ and $A(y)$ components of vector \vec{A} are needed to be calculated for each order for other published magic squares (Table 2).

The striking difference between abiyev balanced squares and the other published magic squares can be realized by the visual and numerical comparisons, respectively (Tables 36,7 and 8). The symmetrical perfect color distribution of integers in 18th order of natural square is given in Table 6 and the symmetrical color distribution of abiyev balanced odd and even order and MATLAB perfect magic squares are given comperatively in Tables 3-5. The symmetry of color distribution of 16 th, 17 th and 18 th order show the perfect order of abiyev's balanced square compared to MATLAB (Tables 3-6). The numerical values of vector \vec{A} components of MATLAB and abiyev balanced squares are given in tables 7 and 8 . Even and odd order number distribution of MATLAB magic squares does not have the order displayed in the abiyev balanced squares (Tables 7 and 8). The components of the static mass moment of the odd orders as shown in table 8, the abiyev's balanced square versus to MATLAB has the multipliers which sum up to the given odd orders. The multipliers of $A(x)$ and $A(y)$ are calculated according to formula which is given below for abiyev's balanced odd order square does not hold true for MATLAB (Table 8). For example, the multipliers for $A(x)$ and $A(y)$ are 8 and 9 for 17th order and 9 and 10 for 19th order, respectively in abiyev balanced odd order square (Table 8). Such relationship can not be ascertained for MATLAB (Table 8).

$$
\begin{aligned}
& A(x)=\frac{n-1}{2} \cdot B ; \quad \text { where } B=\frac{k-1}{2}\left[-\frac{(k-3)(k-2)}{3}+(n-k)(k-1)\right] \\
& A(y)=\frac{n+1}{2} \cdot B ;
\end{aligned}
$$

where n-the order of square, k-the order concentric frames. The odd order balanced square concentric frames studies have been reported previously [14]. Also, the formation of vector $\sum m_{i} \vec{r}_{i}=\vec{A}$ in arbitrary odd or even order balanced squares were elaborated in details earlier [3].

This perfect algorithm of balanced squares is also named as Abiyev's theorem. All balanced squares written by this algorithm have same properties for a given order. The invariant property of vector \vec{A} in a balanced square offers many applications in diverse fields.

4. Conclusion

We have presented the invariant properties of abiyev balanced square and the existence of these properties were investigated in other published perfect magic squares. Finally, the magic squares brought into the applications in science by the abiyev balanced squares.

Acknowledgement

We thank to Abdulkadir Konukoglu, Board of Chairman, Sanko Holding, Gaziantep, Turkey for his unendless supports to Prof Dr Asker Ali Abiyev and Abdullah Kaplan for his contribution to this manuscript.

References

[1] Abiyev A., Baykasoglu A., Dereli T., Filiz I.H., Abiyev A., Investigation of center mass by magic squares and its possible engineering applications, Robotics and Autonomous Systems 49 (2004) 219-226.
[2] Peter D. Loly, Franklin squares: A chapter in the scientific studies of magical squares, Complex Systems, 17, 143-161, (2007).
[3] A.K. Abiyev, The Natural Code of Numbered Magic Squares, Enderun Publications, Ankara, (ISBN 975-95318-3-6), p.77, 1996.
[4] Sahin, M., Abiyev, A. A., Abiyev, A., The General Algorithm of Balanced Squares, Proceeding of Fourth International Conference on Soft Computing, Computing with Words and Perceptions in Systems. Analysis, Decision and Control, p. 155-162, Antalya, Turkey, August 27-28, 2007.b. Quadrat Verlag
[5] Asker Ali Abiyev, Natural Magic Squares and Its Possible Application Areas. Preceedings of ICRM-2002 2nd International Conference on Responsive Manufacturing, Gaziantep, Turkey, 26-28,June 2002.
[6] A.K.Abiyev, A.Arslan and A.A. Abiyev, A Construction of Spatial Sertainty Balanced Cubes, Journal Transactions of the National Academy of Sciences of Azerbaijan, 2004, No 2, pp. 152-158.
[7] http://www1.gantep.edu.tr/~abiyev
[8] Abiyev, A. K., Abiyev, A. A., Dağal sihirli karelerin özellikleri, Sakarya Üniversitesi fen Bilimleri Enstitüsü Dergisi, 6(1), 18-25, 2002
[9] Christopher J. H., Magic square and linear Algebra, American Mathematical Monthly, 98(6), 481-488 (1991).
[10] Tien Tao Kuo,The construction of double even magic square,JRM,15(2), 94-104,(1982-83).
[11] Kwon Yong Shin, http://user.chollian.net/~brainstm/magicsquare.htm
[12] Tamori's algorithm, http://www.pse.che.tohloku.ac.jp/~msuzuki/Magic square.alg.Tamori.
[13] The mathworks.com (MATLAB).
[14] A.K. Abiyev, A. Bingül, A.A. Abiyev, Tek Dereceden "Dengeli" Karelerin Algoritması, Bilim ve Eğitimde informasyon - Komunikasyon Teknolojilerinin Uygulanması, (Azerbaycan), Bakü, 16-17 Sentiyabr 2004, (konferans tezisleri, sayfa 129-130).

$\frac{2 \sqrt{19}-15 \pi+15 e}{12}$	$\frac{10 \sqrt{19}-21 \pi-27 e}{12}$	$\frac{2 \sqrt{19}-3 \pi-6 e}{3}$	$\frac{-\sqrt{19}+3 \pi+6 e}{3}$	$\frac{2 \sqrt{19}+3 \pi-9 e}{6}$	$\frac{-4 \sqrt{19}+15 \pi+15 e}{6}$
$\frac{3 \pi-e}{2}$	$\frac{2 \sqrt{19}-9 \pi+9 e}{12}$	$\frac{2 \sqrt{19}-3 \pi-5 e}{4}$	$\frac{\sqrt{19}-3 e}{3}$	$\frac{-2 \sqrt{19}+9 \pi+9 e}{6}$	$\frac{2 \sqrt{19}-9 \pi+3 e}{6}$
$\frac{2 \sqrt{19}-7 \pi-e}{4}$	π	$\frac{2 \sqrt{19}+3 \pi-3 e}{12}$	$\frac{2 \sqrt{19}-3 \pi-3 e}{6}$	$\frac{\sqrt{19}-3 \pi}{3}$	$\frac{-\sqrt{19}+6 \pi+3 e}{3}$
$\frac{-2 \sqrt{19}+21 \pi+3 e}{12}$	$\frac{-2 \sqrt{19}+15 \pi+9 e}{12}$	$\frac{\pi+e}{2}$	$\frac{2 \sqrt{19}-3 \pi+3 e}{12}$	$\frac{2 \sqrt{19}-5 \pi-3 e}{4}$	$\frac{2 \sqrt{19}-6 \pi-3 e}{3}$
$\frac{-2 \sqrt{19}+9 \pi+7 e}{4}$	$\frac{4 \sqrt{19}-9 \pi-9 e}{6}$	$\frac{-2 \sqrt{19}+9 \pi+15 e}{12}$	$\frac{e}{2}$	$\frac{2 \sqrt{19}+9 \pi-9 e}{12}$	$\frac{10 \sqrt{19}-27 \pi-21 e}{12}$
$\frac{2 \sqrt{19}-5 \pi-5 e}{2}$	$\frac{-2 \sqrt{19}+7 \pi+9 e}{4}$	$\frac{-2 \sqrt{19}+3 \pi+21 e}{12}$	$\frac{2 \sqrt{19}-\pi-7 e}{4}$	$\frac{-\pi \pi+3 e}{2}$	$\frac{2 \sqrt{19}+15 \pi-15 e}{12}$

$\mathrm{a}_{0}=\frac{2 \sqrt{19}-15 \pi+15 e}{12} ; \quad \mathrm{b}=\frac{-2 \sqrt{19}+9 \pi+3 e}{12} ; \quad \mathrm{c}=\frac{2 \sqrt{19}-3 \pi-9 e}{12} ; \quad S=\frac{2 a_{0}+5(b+c)}{2} 6=\sqrt{19}$
Table 1. Abiyev's balanced square of 6th order of irrational and transcendental numbers. The first term associated with the transcendental numbers is named as a_{0}, the constants of the arithmetical sequences are termed as b and c , and the magic number is shown as S.

16th Order										
	Franklin		Tien Tao Kuo		Kwon Yong Shin		Tamori		Abiyev	
K	A(x)	$A(y)$	A(x)	A(y)	A(x)	A(y)	$A(x)$	$A(y)$	A(x)	$A(y)$
2	1	8×16	15	0	1	- 1x16	-1	16	-1	16
4	3	- 40×16	- 19	0	19	- 19x16	1	-16	0	0
6	5	104x16	- 71	0	85	-85x16	-35	35x16	1	-16
8	7	- 200x16	75	0	231	- 231×16	35	- 35×16	0	0
10	-41	248x16	195	0	- 327	327x16	-165	165x16	1	-16
12	37	- 216×16	- 207	0	- 245	245×16	165	- 165x16	-1	16
14	-61	152x16	- 331	0	- 51	51x16	- 455	455×16	1	-16
16	49	- 88x16	343	0	287	- 287×16	455	-455x16	- 1	16
	0	- 32×16	0	0	0	0	0	0	0	0

Table2. The comparison of the static mass moments of the concentric frames of Franklin square [9], the Tien Tao Kuo's square [10], the Kwon Yong Shin's square [11], the Tamori's square [12] with the abiyev balanced square of 16th order. The $A(x)$ and $A(y)$ are the components of the vector \vec{A}. The last row shows the sum of the $A(x)$ and $A(y)$. K represents the order of frame.

Table 3. The comparison of the visual distribution of the numbers of abiyev's balanced square (left) and MATLAB's magic square (right) of 16th order. The color distribution of the integers in the cells are the same for both abiyev balanced square and the MATLAB magic square. The perfect symmetry of color distribution of integers in abiyev balanced square is noticable.

146	130	114	98	82	66	50	34	1	274	258	242	226	210	194	178	162
164	148	132	116	100	84	68	35	19	3	276	260	244	228	212	196	180
182	166	150	134	118	102	69	53	37	21	5	278	262	246	230	214	198
200	184	168	152	136	103	87	71	55	39	23	7	280	264	248	232	216
218	202	186	170	137	121	105	89	73	57	41	25	9	282	266	250	234
236	220	204	171	155	139	123	107	91	75	59	43	27	11	284	268	252
254	238	205	189	173	157	141	125	109	93	77	61	45	29	13	286	270
272	239	223	207	191	175	159	143	127	111	95	79	63	47	31	15	288
273	257	241	225	209	193	177	16	145	129	113	97	81	65	49	33	17
2	275	259	243	227	211	195	179	163	147	131	115	99	83	67	51	18
20	4	277	261	245	229	213	197	181	165	149	133	117	101	85	52	36
38	22	6	279	263	247	231	215	199	183	167	151	135	119	86	70	54
56	40	24	8	281	265	249	233	217	201	185	169	153	120	104	88	72
74	58	42	26	10	283	267	251	235	219	203	187	154	138	122	106	90
92	76	60	44	28	12	285	269	253	237	221	188	172	156	140	124	108
110	94	78	62	46	30	14	287	271	255	222	206	190	174	158	142	126
128	112	96	80	64	48	32	16	289	256	240	224	208	192	176	160	144

155	174	193	212	231	250	269	288	1	20	39	58	77	96	115	134	153
173	192	211	230	249	268	287	17	19	38	57	76	95	114	133	152	154
191	210	229	248	267	286	16	18	37	56	75	94	113	132	151	170	172
209	228	247	266	285	15	34	36	55	74	93	112	131	150	169	171	190
227	246	265	284	14	33	35	54	73	92	111	130	149	168	187	189	208
245	264	283	13	32	51	53	72	91	110	129	148	167	186	188	207	226
263	282	12	31	50	52	71	90	109	128	147	166	185	204	206	225	244
281	11	30	49	68	70	89	108	127	146	165	184	203	205	224	243	262
10	29	48	67	69	88	107	126	145	164	183	202	221	223	242	261	280
28	47	66	85	87	106	125	144	163	182	201	220	222	241	260	279	9
46	65	84	86	105	124	143	162	181	200	219	238	240	259	278	8	27
64	83	102	104	123	142	461	180	199	218	237	239	258	277	7	26	45
82	101	103	122	141	160	179	198	217	236	255	257	276	6	25	44	63
100	119	121	140	159	178	197	216	235	254	256	275	5	24	43	62	81
118	120	139	158	177	196	215	234	253	272	274	4	23	42	61	80	99
136	138	157	176	195	214	233	252	271	273	3	22	41	60	79	98	117
137	156	175	194	213	232	251	270	289	2	21	40	59	78	97	116	135

Table 4. The comparison of the visual distribution of the integers of abiyev's balanced square (left) and MATLAB's magic square (right) of 17 th order. The color distribution of the integers in the cells are the same for both abiyev balanced square and the MATLAB magic square. The perfect symmetry of color distribution of integers in odd order of abiyev balanced square is distinct from the MATLAB magic square.

Table 5. The comparison of the visual distribution of the integers of abiyev's balanced square (left) and MATLAB's magic square (right) of 18th order. The color distribution of the integers in the cells are the same for both abiyev balanced square and the MATLAB magic square. The perfect symmetry of color distribution of integers in even and odd order of abiyev balanced square is conspicuous from the MATLAB magic square.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126
127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162
163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198
199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216
217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234
235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252
253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270
271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288
289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306
307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324

Table 6. 18th order natural square. The symmetrical distribution of colors is based on the color assignment rule explained above. The color harmony in this natural square supports the perfectness of the abiyev balanced square algorithm.

	MATLAB		ABİYEV		K	MATLAB		ABİYEV	
K	A(x)	A(y)	A(x)	A(y)		A(x)	A(y)	A(x)	A(y)
2	- 1	16	-1	16	2	2	-91	-1	18
4	1	- 16	0	0	4	155	-730	0	0
6	-33	528	1	-16	6	368	-1939	-1	18
8	33	-528	0	0	8	-231	- 2724	1	-18
10	-97	1552	1	-16	10	- 588	-2154	-1	18
12	97	-1552	-1	16	12	-99	1530	1	-18
14	- 193	3088	1	-16	14	1192	- 362	- 1	18
16	193	-3088	-1	16	16	127	2659	1	- 18
	0	0	0	0	18	-926	3811	1	- 18
						0	0	0	0

Table 7. The comparison of 16th and 18th order static mass components of vector \vec{A} according to concentric frames in MATLAB and abiyev's balanced squares. The last row is the sum of the mass components. The irregularities of MATLAB are evident compared to abiyev balanced square.

	MATLAB		ABİYEV	
K	A(x)	A(y)	A(x)	A(y)
3	6	252	8x28 $=224$	$9 \times 28=252$
5	-636	590	$8 \times 92=736$	$9 \times 92=828$
7	- 1078	1236	$8 \times 160=1280$	$9 \times 160=1440$
9	- 1288	1630	$8 \times 200=1600$	$9 \times 200=1800$
11	- 1506	1348	$8 \times 180=1440$	$9 \times 180=1620$
13	-816	544	$8 \times 68=544$	$9 \times 68=612$
15	1154	- 1206	$8 x(-168)=-1344$	$9 x(-168)=-1512$
17	4164	-4394	$8 x(-560)=-4480$	$9 x(-560)=-5040$
	0	0	0	0

Table 8. The 17 th odd order mass components of vector \vec{A} in MATLAB's and abiyev's balanced square. The irregulation is also exist for odd order magic squares of MATLAB. The last row shows the sum of the mass components.

