
C vs C++ for Teaching May 2009 Page 1

Advantages of C++ over C
(for Teaching)

By
Dr. Ahmet B�NGÜL

May 2009

University of Gaziantep
Department of Engineering Physics

C vs C++ for Teaching May 2009 Page 2

Introduction

In these notes, it is attempted

� to introduce advantages of C++ over C
w.r.t teaching programming courses

� to show some features of
C++ Programming Language

Note:
C and C++ are quite different from each other,
even though they share some common syntax.

C vs C++ for Teaching May 2009 Page 3

Resources

Web resources

http://www.gantep.edu.tr/~bingul/c (Turkish)
http://www.cplusplus.com

Compilers

GCC (for Linux & Windows)
Dev-C++ (for Windows)
Borland C++ (for Windows)
Visual C++ (for Windows)

C vs C++ for Teaching May 2009 Page 4

General Observations

Object Oriented
Programming Language

Structured
Programming Language

Language
Type

Comment
Operator

File
Extensions

/* this is a comment */

// this is a comment

/* this is a comment */

.cc .cpp .cxx.c .C

C++C

C vs C++ for Teaching May 2009 Page 5

“Hello World” Examples

Compile/run with gcc

$ gcc hello.c –o hello

$./hello

Hello world

// hello.cc

#include <iostream>

using namespace std;

int main(){

cout << "Hello world" << endl;

return 0;

}

Compile/run with gcc

$ c++ hello.cc –o hello

$./hello

Hello world

/* hello.c */

#include <stdio.h>

int main(){

printf("Hello world\n");

return 0;

}

Note:
Any C program can be compiled by a C++ compiler.

C vs C++ for Teaching May 2009 Page 6

Header Files

In C
#include <stdio.h>
#include <math.h>

#include "mine.h"

In C++
obsolete usage !

#include <iostream> <iostream.h>

#include <cstdio> <cstdio.h> or <stdio.h>
#include <cmath> <cmath.h> or <math.h>
#include "mine.h"

C vs C++ for Teaching May 2009 Page 7

Basic Input/Output

Standard Output
cout << "Hello World";
cout << "i = " << i;
cout << (a+b)/2;

Like printf, cout does not add a line break.
This is done by inserting a '\n' or a using a endl
manipulator.

printf("Hello World");
printf("i = %d", i);
printf("%f",(a+b)/2);

printf("Hello World\n"); cout << "Hello World" << endl;

cout << "Hello World" << '\n';

C vs C++ for Teaching May 2009 Page 8

Basic Input/Output

Standard Input
Handling the standard input in C++ is done by applying the
overloaded operator of extraction (>>) on the cin stream.

cin >> c;

cin >> i >> r;

cin >> str;

scanf("%c", &c);

scanf("%d %f",&i, &r);

scanf("%s", str);

cout and cin are defined in <iostream> in namespace std

C vs C++ for Teaching May 2009 Page 9

Namespaces
Namespaces allow to group entities like
classes,objects and functions under a name.

Format:

namespace identifier
{

entities
}

#include <iostream>

using namespace std;

namespace myNamespace
{
double V = 12.0;
int R = 10;

}

main(){

using namesapce myNamespace;

double i = V/R;

cout << i << endl;

}

Note that:

All the files in the C++ standard
library declare all of its entities
within the std namespace defined
in <iostream> like cin and cout
streams.

C vs C++ for Teaching May 2009 Page 10

Reserved Keywords
� Reserved Keywords in C (you can’t use as an identifier)

auto, double, int, struct, break, else, long, switch,
case, enum, register typedef, char, extern, return,
union, const, float, short, unsigned, continue for,
signed, void, default, goto, sizeof, volatile, do, if,
static, while

� Reserved Keywords in C++
asm, auto, bool, break, case, catch, char, class, const,
const_cast, continue, default, delete, do, double,
dynamic_cast, else, enum, explicit, export, extern,
false, float, for, friend, goto, if, inline, int, long,
mutable, namespace, new, operator, private, protected,
public, register, reinterpret_cast, return, short,
signed, sizeof, static, static_cast, struct, switch,
template, this, throw, true, try, typedef, typeid,
typename, union, unsigned, using, virtual, void,
volatile, wchar_t, while

C vs C++ for Teaching May 2009 Page 11

Fundamental Data Types

float

double
long double

char

short int
int

long int

C / C++
bool

string

C++

C vs C++ for Teaching May 2009 Page 12

Fundamental Data Types

Size in byte of data types for different platforms:

161210long double
888double
444float
844long
444int
222short
111char

Linux
64 bit

Linux
32 bit

Windows
32 bit

Data type

C vs C++ for Teaching May 2009 Page 13

Scope of Variables

In C++, you can declare variables anywhere you want

// Globals
int x = 10;
float f = 1.0;

main()
{
int n = x;
for(int i=2; i<n; i++)
{

f *= i;
double y = log(f);

}
cout << f << " " << y << endl;

}

/* Globals */
int x = 10;
float f = 1.0;

main()
{

int i, n = x;
double y;

for(i=2; i<n; i++)
{
f *= i;
y = log(f);

}

printf("%f %lf\n",f, y);
}

C vs C++ for Teaching May 2009 Page 14

Scope of Variables

int x = 11; // this x is global

int main()
{

int x = 22;
cout << "In main: x = " << x << endl;

{
int x = 33;
cout << "In block inside main: x = " << x << endl;

}

// access to the global x
cout << "In main: ::x = " << ::x << endl;

return 0;
} In main: x = 22

In block inside main: x = 33
In main: ::x = 11

The scope of local variables is limited to the block
enclosed in braces ({}) where they are declared.

C vs C++ for Teaching May 2009 Page 15

Basic Strings

There are three ways to define a string:
char *str1 = "This is string1"; // in C
char str2[] = "This is string2"; // in C
string str3 = "This is string3"; // in C++

This is first
This is second

#include <iostream>
#include <string>
using namespace std;

main()
{

string s;
s = "This is first";
cout << s << endl;

s = "This is second";
cout << s << endl;

}

#include <stdio.h>
#include <string.h>

main()
{
char s[14];
strcpy(s,"This is first");
puts(s);

strcpy(s, "This is second");
puts(s);
}

C vs C++ for Teaching May 2009 Page 16

Initialization of Variables

There are two ways:

� using an equal sign:

� using a constructor initialization

int a = 0;
float f = 1.0;
string str = "a string content";

int a(0);
float f(1.0);
string str("a string content");

C vs C++ for Teaching May 2009 Page 17

Operators

Assignment (=)
Following assignments are valid in C++:

a = 5;
a = b;
a = 2 + (b = 5); // equivalent to: b = 5 and a = 7
x = y = z = 5; // equivalent to: x = 5, y = 5 and z = 5

C vs C++ for Teaching May 2009 Page 18

Operators

Explicit Type Casting Operator

This allows you to convert a data of a given type to another.

int i,j;
float f;

i = 3;

f = (float) i; // in C

f = float(i); // in C++

j = int(4.8); // in C++

C vs C++ for Teaching May 2009 Page 19

Functions

The use of functions in C and C++ is the same.

#include <iostream>

int add(int a,int b)
{
return (a+b);

}

main()
{
int x=2, y=4, z;
z = add(x,y);
cout << z << endl;

}

#include <iostream>

// prototype of add
int add(int, int);

main()
{
int x=2, y=4, z;
z = add(x,y);
cout << z << endl;

}

int add(int a,int b)
{
return (a+b);

}

C vs C++ for Teaching May 2009 Page 20

Functions
Overloading Functions: This is allowed by C++

#include <iostream>

int max(int x, int y){
return (x>y ? x:y);

}

int max(int x, int y, int z){
int m = (x>y ? x:y);
return (z>m ? z:m);

}

double max(double x, double y){
return (x>y ? x:y);
}

main(){
cout <<"max(9,7) = " << max(9,7) << endl;
cout <<"max(3,6,2) = " << max(3,6,2) << endl;
cout <<"max(3.1,4.7)= " << max(3.1,4.7) << endl;

}

max(9,7) = 9
max(3,6,2) = 6
max(3.1,4.7)= 4.7

C vs C++ for Teaching May 2009 Page 21

Functions

Variable number of arguments (Default arguments)
C/C++ allows a function to have a variable number of arguments.

Consider the implementation of the second order polynomial function:
P(x) = a + bx + cx2

double p(double x, ...){
double a, t = 0.0;
int i;
va_list ag;

va_start(ag, 2); /* allocate memory */

for(i=0; i<2; i++)
t += va_arg(ag, double)*pow(x,i);

va_end(ag); /* free the memory */

return t;
}

C vs C++ for Teaching May 2009 Page 22

Functions

The use of default arguments is more simple in C++

// -- optional parameters must all be listed last
double p(double, double=0, double =0, double =0);

main()
{
double x = 1.0;

cout << "p(x,7) = " << p(x,7) << endl;
cout << "p(x,7,6) = " << p(x,7,6) << endl;
cout << "p(x,7,6,3)= " << p(x,7,6,3) << endl;

}

double p(double x, double a, double b, double c){
return a + b*x + c*x*x;

}

p(x,7) = 7.
p(x,7,6) = 13.
p(x,7,6,3)= 16.

C vs C++ for Teaching May 2009 Page 23

Pointers and References

When a variable is declared and assigned to a value
four fundamental attributes associated with it:

� its name
� its type
� its value (content)
� its address

int n = 33;

33

0x3fffd14

n

int

Memory address

C vs C++ for Teaching May 2009 Page 24

Pointers and References
Address Operator
* The value of a variable is accessed via its name.
* The address of a variable is accessed via the address operator &.

#include <iostream>
// printing both the value and address
// valid for both C and C++

main()
{
int n = 33;
cout << " n = " << n << endl;
cout << "&n = " << &n << endl;

}

n = 33
&n = 0xbfdd8ad4

C vs C++ for Teaching May 2009 Page 25

Pointers and References
Pointer
The address operator returns the memory adress of a variable.
We can store the address in another variable, called pointer.

main()
{
int n = 33;
int* p = &n; // p holds the address of n

cout << " n = " << n << endl;
cout << "&n = " << &n << endl;

cout << " p = " << p << endl;
cout << "&p = " << &p << endl;

}

n = 33
&n = 0xbfdd8ad4
p = 0xbfdd8ad4
&p = 0xbffafad0

33

0xbfdd8ad4

n

int

0xbfdd8ad4

0xbfdd8ad0

p

int*

C vs C++ for Teaching May 2009 Page 26

Pointers and References
Reference
* The reference is an alias, a synonym for a variable.
* It is declerated by using the address operator &.

main(){
int n = 33;
int& r = n; // r is a reference for n

cout << n << r << endl;
--n;
cout << n << r << endl;
r *= 2;
cout << n << r << endl;

cout << &n << &r << endl;
}

33 33
32 32
64 64
0xbfdd8ad4 0xbfdd8ad4

33

0xbfdd8ad4

n,r

int

C vs C++ for Teaching May 2009 Page 27

Pointers and References
Arguments passed by value and by reference

// arg. Pass by address
void Decrease(int *a, int *b){

(*a)--;
(*b)--;

}

// arg. Pass by reference
void Decrease(int& a, int& b){

a--;
b--;

}

// arg. Pass by value
void Decrease(int a, int b){

a--;
b--;

}

C vs C++ for Teaching May 2009 Page 28

Pointers and References
A function may return more than ONE value using references:

#include <iostream>
using namespace std;

void Convert(float, int& , float&);

main(){
float rx, x = 3.2;
int ix;

Convert(x, ix, rx);
cout << " x = " << x << endl;
cout << " ix= " << ix << endl;
cout << " rx= " << rx << endl;

}

void Convert(float num, int& ip, float& rp)
{
ip = num;
rp = num - int(num);

}

x = 3.2
ix = 3
rx = 0.2

C vs C++ for Teaching May 2009 Page 29

Dynamic Memory
ANSI C uses following functions defined in <stdlib.h>

malloc(), calloc(), realloc() and free()

/* decleration */
int *a;

/* allocate the memory */
a = (int *) malloc(sizeof(int)*5);

/* ... use array here ... */

/* free the memory */
free(a);

C vs C++ for Teaching May 2009 Page 30

Dynamic Memory

In C++, it easier than C
� In order to request dynamic memory we use the operator new.
� delete operator reverses the action of the new operator,

that is it frees the allocated memory by the new operator.

// declearation
int *a;

// allocate the memory
a = new int [5];

// ... use the array here ...

// free the memory
delete [] a;

C vs C++ for Teaching May 2009 Page 31

Dynamic Memory
// mean of n numbers
main (){

float *x, mean, s;
int i,n;

cout << "How many elements: ";
cin >> n;

if(n>0)
x = new float[n];

cout << "Input elements: ";
for(i=0, s=0.0; i<n; i++){

cin >> x[i];
s += x[i];

}
mean = s/n;
cout << "Mean = " << mean;
if(n>0) delete [] x;

}

/* mean of n numbers */
main (){

float *x, mean, s;
int i, n;

printf("How many elements: ");
scanf("%d",&n);

if(n>0)
x = (float *)

malloc(sizeof(float)*n);

puts ("Input elements: ");
for(i=0, s=0.0; i<n; i++){

scanf("%f", &x[i]);
s += x[i];

}
mean = s/n;
printf("Mean = ",mean);
if(n>0) free(x);

}

C vs C++ for Teaching May 2009 Page 32

Vector (Linked lists)
// see: http://www.cplusplus.com/reference/stl/vector/
#include <iostream>
#include <vector>
using namespace std;

int main()
{

vector<short> v;
v.push_back(23);
v.push_back(-1);
v.push_back(9999);
v.push_back(0);
v.push_back(4);

cout << "Before sorting: ";
for(unsigned int i = 0; i < v.size(); i++) cout << v[i];
cout << endl;

sort(v.begin(), v.end());

cout << "After sorting: ";
for(unsigned int i = 0; i < v.size(); i++) cout << v[i];
cout << endl;

return 0;
}

C vs C++ for Teaching May 2009 Page 33

Data Structures

struct Student
{
int mt1, mt2, fin;

};

main()
{

Student s1, s2, *p;

p = &s2; // p points to s2

s1.fin // member fin of object s1

p->fin // member fin of object pointed by p

}

C vs C++ for Teaching May 2009 Page 34

Classes

� A class is an expanded concept of a data structure:
instead of holding only data, it can hold both data and
functions.

� Classes are declerated by using class keyword.

class class_name
{

access_specifier_1:
member1;

access_specifier_2:
member2;

...
} object_names;

C vs C++ for Teaching May 2009 Page 35

Classes

An access specifier is one of the followings:
� private

members of a class are accessible only from within
other members of the same class

� public
members are accessible from anywhere where the
object is visible

� protected
members are accessible from members of their same
class but also from members of their derived classes

By default, all members of a class declared with the class
keyword have private access for all its members.

C vs C++ for Teaching May 2009 Page 36

Classes

An example class:

� declares a class (i.e. a type) called RCCircuit and
an object (i.e. a variable) of this class called my_rc.

� The functions: set_values() and I() are called
member functions or methods.

class RCCircuit{
double R, C, V;

public:
double tau;
void set_values(double, double);
double I(double);

}my_rc;

C vs C++ for Teaching May 2009 Page 37

Classes
class RCCircuit{

double R, C, V;
public:

double tau;
void set_values(double, double);
double I(double);

};

main(){

RCCircuit x;
x.set_values(10., 32.);

for(double t=0.0; t<x.tau; t += 0.1)
cout << x.I(t) << endl;

}

// Member functions ------------------------------------
void RCCircuit::set_values(double res, double cap){

V = 24.0; // volt
R = res * 1.0e+3; // kiloOhm
C = cap * 1.0e-6; // microFarad
tau = R*C;

}
double RCCircuit::I(double t){

return V*exp(-t/tau)/R;
}

C vs C++ for Teaching May 2009 Page 38

Classes
Self Contained Implementation
class RCCircuit{

double R, C, V;
public:

double tau;
void set_values(double res, double cap){

V = 24.0; // volt
R = res * 1.0e+3; // kiloOhm
C = cap * 1.0e-6; // microFarad
tau = R*C;

}
double I(double t){ return V*exp(-t/tau)/R; };

};

main(){

RCCircuit x;
x.set_values(10., 32.);

for(double t=0.0; t<x.tau; t += 0.1)
cout << x.I(t) << endl;

}

C vs C++ for Teaching May 2009 Page 39

Classes
Constructors
class RCCircuit{

double R, C, V;
public:

double tau;
RCCircuit(double res, double cap){
V = 24.0; // volt
R = res * 1.0e+3; // kiloOhm
C = cap * 1.0e-6; // microFarad
tau = R*C;

}
double I(double t){ return V*exp(-t/tau)/R; };

};

main(){

RCCircuit x(10.0, 32.0);
for(double t=0.0; t<x.tau; t += 0.1)

cout << x.I(t) << endl;

}

C vs C++ for Teaching May 2009 Page 40

File Management

C++ provides the following classes to perform
output and input of characters to/from files:

� ofstream: Stream class to write on files
� ifstream: Stream class to read from files
� fstream: Stream class to both read and write from/to files.

You only need to include the standard header <fstream>
to your c++ code.

C vs C++ for Teaching May 2009 Page 41

Files Management

#include <stdio.h>
...
FILE *f;

f = fopen("data.txt", "w");

fprintf(f,"Line to the file");

fclose(f);
...

#include <fstream>
...
ofstream f;

f.open("data.txt", ios::out);

f << "Line to the file";

f.close();
...

mode (optional)

ios::out, ios::in

ios::binary, ios::app

const char *mode

"r", "w", "b", "a"

object.open(file,mode);FILE *fopen(*file, *mode);

C++C

Open modes

C vs C++ for Teaching May 2009 Page 42

Topics Not Covered

� Classes
– Overloading operators
– Friendship and Inheritance
– Polymorphism

� Exceptions

� Templates

� Advanced Type Casting

� Advanced String Operations

C vs C++ for Teaching May 2009 Page 43

Conclusions
Basic level C++ has following advantages over C

� Strings
Use of strings are very simple

� Function
– default argument functions are more clear
– argument can be passed by reference

� Dynamic Memory Management
It is done by two statements: new and delete.

� File Managament
C++ does not require a file pointer

� Namespaces
provide modular programming

� Classes & Object Oriented Programming
provide more flexible programming w.r.t. data structures

C vs C++ for Teaching May 2009 Page 44

END OF SEMINAR

C vs C++ for Teaching May 2009 Page 45

BACKUP SLIDES

C vs C++ for Teaching May 2009 Page 46

Classes
Overloading Operators
C++ incorporates the option to use standard operators to
perform operations with classes in addition to with fundamental
types. For example we can perform the simple operation:

However following operation is not valid:

We can design classes able to perform operations using
standard operators. Thanks to C++ �

int a, b=22, c=44;
a = b + c;

class Product{
int weight;
float price;

} a, b, c;
a = b + c;

C vs C++ for Teaching May 2009 Page 47

Classes
#include <iostream.h>

class Vector {
public:

int x,y;
Vector () {x=0; y=0;} // default constructor
Vector (int a,int b){x=a; y=b;}
Vector operator + (Vector);

};

Vector Vector::operator+ (Vector param) {
Vector temp;
temp.x = x + param.x;
temp.y = y + param.y;
return (temp);

}

main () {
Vector a (3,1);
Vector b (1,2);
Vector c;
c = a + b;
cout << "c= (" << c.x << "," << c.y << ")";

}

c = (4,3)

C vs C++ for Teaching May 2009 Page 48

Classes
Inheritance Between Classes
Inheritance allows to create classes which are derived from
other classes, so that they automatically include some of its
"parent's" members, plus its own.

Suppose that we want to declare a series of classes which
have certain common properties.

C vs C++ for Teaching May 2009 Page 49

Classes
#include <iostream.h>

class CPolygon {
protected:

int width, height;
public:

void set_values (int a, int b){
width=a;
height=b;

}
};

class CRectangle: public CPolygon {
public:

int area (){
return (width * height);

}
};

class CTriangle: public CPolygon{
public:
int area (){

return (width * height / 2);
}

};

20
10

main()
{

CRectangle rect;
CTriangle trgl;

rect.set_values (4,5);
trgl.set_values (4,5);

cout << rect.area() << endl;
cout << trgl.area() << endl;

}

C vs C++ for Teaching May 2009 Page 50

Classes
Polymorphism
C++ allows objects of different types to respond differently to
the same function call.

This is called polymorphism and
it is achived by means of virtual functions.

C vs C++ for Teaching May 2009 Page 51

Classes
#include <iostream.h>
class CPolygon {

protected:
int width, height;

public:
void set_values (int a, int b){

width=a; height=b;
}
virtual int area(){

return (0);
}

};

class CRectangle: public CPolygon {
public:

int area (){
return (width * height);

}
};
class CTriangle: public CPolygon{

public:
int area (){

return (width * height / 2);
}

};

20
10
0

main()
{
CRectangle rect;
CTriangle trgl;
CPolygon poly;
CPolygon * ppoly1 = ▭
CPolygon * ppoly2 = &trgl;
CPolygon * ppoly3 = &poly;

ppoly1->set_values(4,5);
ppoly2->set_values(4,5);
ppoly3->set_values(4,5);

cout << ppoly1->area() <<'\n';
cout << ppoly2->area() <<'\n';
cout << ppoly3->area() <<'\n';
}

C vs C++ for Teaching May 2009 Page 52

Linked Lists in Fortran and C/C++
Pointers in classes (derived data types) may even point to the class
(derived data type) being defined.

This feature is useful, since it permits construction of various types
of dynamic structures linked together by successive pointers during
the execution of a program.

The simplest such structure is a linked list, which is a list of values
linked together by pointers.

Following derived data type contains a real number and a pointer:

class Node{
public:
int data;
Node *next;

};

TYPE Node
INTEGER :: data
TYPE(Node),POINTER :: next
END TYPE Node

C vs C++ for Teaching May 2009 Page 53

Linked Lists in Fortran and C/C++

The following programs (given next page) allow the
user to create a linked list in reverse.It traverses the
list printing each data value.

An example output:
Enter a list of numbers:
22
66
77
99
-8
Reverse order list:
99
77
66
22

C vs C++ for Teaching May 2009 Page 54

Linked Lists
#include <iostream>

class Node{
public:
int data;
Node *next;

};

main(){
int n=0,num;
Node *q, *p = NULL;

cout << "Input a list of numbers"<<endl;

while(1){
cin >> num;
if(num<0) break;
n++;
q = new Node;
q->data = num;
q->next = p;
p = q;

}
q = p;
cout << "Reverse order list: ";
while(1){
if(q==NULL) break;
cout << q->data << ", ";
q = q->next;

}
}

PROGRAM Linked_List

TYPE Node
INTEGER :: Data
TYPE (Node), POINTER :: Next

END TYPE Node

INTEGER :: Num, N=0
TYPE (Node), POINTER :: P, Q
NULLIFY(P)

PRINT *,"Input a list of numbers:"

DO
READ *, Num
IF (Num < 0) EXIT
N=N+1
ALLOCATE(Q)
Q%Data = Num
Q%Next => P
P => Q

END DO
Q => P
PRINT *, "Reversee order list: "
DO
IF (.NOT.ASSOCIATED(Q)) EXIT
PRINT *, Q%Data
Q => Q%Next

END DO
END PROGRAM

