
C++ for Fortran 95 Users June 2007 Page 1

A C++ tutorial for
Fortran 95 Users

By
Dr. Ahmet B�NGÜL

June 2007

University of Gaziantep
Department of Engineering Physics

C++ for Fortran 95 Users June 2007 Page 2

Introduction

In these notes, we will attempt to list and introduce some
programming features of C++ Programming Language
for Fortran 90/95 users.

Note:
C and C++ are quite different from each other,
even though they share some common syntax.

C++ for Fortran 95 Users June 2007 Page 3

Resources

Web resources:
http://www.fortran.gantep.edu.tr/
http://www.cplusplus.com/

Books:
An Introduction to Fortran 95
Kanber, Beddall (2006) Gazi Kitapevi
Programming with C++
Hubbard (1996) McGraw Hill – Shaum’s Outlines

C++ for Fortran 95 Users June 2007 Page 4

General Observations

g95 , ifc
Microsoft VF, Salford

gcc or g++
DevC++, Borland C++

Compilers

Comment
operators:

File
extensions:

Each line
of the code

Case
sensitivity

! this is a comment// this is a comment

/* this is a comment */

.f .f90 .f95.c .cpp .c++

may end with/without
a semicolon (;)

must end with
a semicolon (;)

Case insensitive
result and Result are
the same identifiers

Case sensitive
result and Result are
different identifiers

Fortran 90/95C/C++

C++ for Fortran 95 Users June 2007 Page 5

“Hello World” Examples

! hello.f95

PROGRAM MyFirstProgram

PRINT *, "Hello World."

END PROGRAM

Compile and run with g95

$ g95 hello.f95 –o hello

$./hello

Hello World.

$

// hello.c

#include <iostream.h>

main(){

cout << "Hello world."
}

Compile and run with gcc

$ g++ hello.c –o hello

$./hello

Hello World.

$

C++ for Fortran 95 Users June 2007 Page 6

Identifiers
� Both in Fortran and C++

a valid identifier is a sequence of one or more letters, digits or
underscore characters (_). Neither spaces nor punctuation
marks or symbols can be part of an identifier.

� Reserved Keywords in C++ that you can’t use as an identifier
asm, auto, bool, break, case, catch, char, class, const,
const_cast, continue, default, delete, do, double, dynamic_cast,
else, enum, explicit, export, extern, false, float, for, friend,
goto, if, inline, int, long, mutable, namespace, new, operator,
private, protected, public, register, reinterpret_cast, return,
short, signed, sizeof, static, static_cast, struct, switch,
template, this, throw, true, try, typedef, typeid, typename,
union, unsigned, using, virtual, void, volatile, wchar_t, while

� In Fortran you can use any of the keywords such as

INTEGER :: Integer

C++ for Fortran 95 Users June 2007 Page 7

Fundamental Data Types

-4-COMPLEX

--stringCHARACTER

true or false1boolLOGICAL

3.4x10±38 (7 digits)

1.7x10±308 (15 digits)
1.7x10±308 (15 digits)

4

8
8

float

double
long double

REAL K=4

REAL K=8
REAL K=16

-128,127
-32768,32767

-2147483648,2147483647
-2147483648,2147483647

1
2

4
4

char
short int

int
long int

INTEGER K=1
INTEGER K=2

INTEGER K=4
INTEGER K=4

Range
(signed)

Size
(byte)

C/C++Fortran

C++ for Fortran 95 Users June 2007 Page 8

Integer Ranges
#include <iostream.h>
#include <limits.h>
// Prints the constants strored in limits.h
void main(void)
{
cout << "minimum char = " << CHAR_MIN << endl;
cout << "maximum char = " << CHAR_MAX << endl;
cout << "minimum short = " << SHRT_MIN << endl;
cout << "maximum short = " << SHRT_MAX << endl;
cout << "minimum int = " << INT_MIN << endl;
cout << "maximum int = " << INT_MAX << endl;
cout << "minimum long = " << LONG_MIN << endl;
cout << "maximum long = " << LONG_MAX << endl;
cout << '\n';
cout << "minimum signed char = " << SCHAR_MIN << endl;
cout << "maximum signed char = " << SCHAR_MAX << endl;
cout << "maximum unsigned char = " << UCHAR_MAX << endl;
cout << "maximum unsigned short = " << USHRT_MAX << endl;
cout << "maximum unsigned int = " << UINT_MAX << endl;
cout << "maximum unsigned long = " << ULONG_MAX << endl;

}

C++ for Fortran 95 Users June 2007 Page 9

Decleration of Variables

In order to use a variable in Fortran and C++,
we must first declare it specifying its data type .

INTEGER :: K,L

REAL :: Speed

int k,l;

float speed;

C++ prefixes for the data types

signed int i; // i.e. int i;

unsigned int u; // change range 0 to 4294967295

unsigned u; // i.e. unsigned int u;
short s; // i.e. short int s;

long l; // long int l;

C++ for Fortran 95 Users June 2007 Page 10

Scope of Variables

A variable can be either of
global or local scope.

A global variable is a variable declared
in the main body of the source code,
outside all functions, while a local
variable is one declared within
the body of a function or a block.

The scope of local variables is limited
to the block enclosed in braces ({})
where they are declared.

C++ for Fortran 95 Users June 2007 Page 11

Scope of Variables – Example
#include <iostream.h>
// program to demonstrate the variable scopes

int x = 11; // this x is global

main()

{

int x = 22;

cout << "In main: x = " << x << endl;

{

int x = 33;

cout << "In block inside main: x = " << x << endl;

}

/* access to the gloabal x */

cout << "In main: ::x = " << ::x << endl;

}

In main: x = 22
In block inside main: x = 33
In main: ::x = 11

C++ for Fortran 95 Users June 2007 Page 12

Introduction to Strings

There are three ways to define a string:

char *str1 = "This is string1"; // in C/C++
char str2[] = "This is string2"; // in C/C++
string str3 = "This is string3"; // in C++

#include <iostream>
#include <string>
using namespace std;

int main (){
string mystring;

mystring = "This is a string";
cout << mystring << endl;

}

PROGRAM String_Example
CHARACTER (LEN=20) :: MyString

MyString = "This is a string"

PRINT *, MyString

END PROGRAM String_Example

This is a string This is a string

C++ for Fortran 95 Users June 2007 Page 13

Initialization of Variables

There are two ways to do this in C++:

� using an equal sign:

� using a constructor initialization

int a = 0;
float f = 1.0;
string str = "a string content";

int a (0);
float f (1.0);
string str ("a string content");

C++ for Fortran 95 Users June 2007 Page 14

Constants

Literals
Literals are used to express particular values within the source code.

j = 25; // here 25 is a literal constant

Valid integer literals

0
1299
-542

octal and hexadesimal notation:

By default each integer literals are of
type int. We can force them to
unsigned and/or long:

75 // int
75u // unsigned int
75l // long int
75ul // unsigned long75 // decimal

0113 // octal
0x4b // hexadecimal

Integer Numerals

C++ for Fortran 95 Users June 2007 Page 15

Constants

Valid floating point literals

3.14159 // 3.14159
6.02e23 // 6.02 x 10^23
1.6e-19 // 1.6 x 10^-19
-3. // -3.0

By default each real literals are of type double.

We can force them to float and/or long double:

3.14159f // float
3.14159l // long double

Floating Point (REAL) Numbers

Note that:

Any of the letters in a
numerical literals

u, l, e, f

can be replaced with its
uppercase letters

U, L, E, F

without any difference
in their meanings.

C++ for Fortran 95 Users June 2007 Page 16

Constants

There also exist non-numerical constants, like:

'a' // a character literal
"Hello World" // a string literal

Character and string literals

Character and string literals have certain
peculiarities, like the escape codes �

For example:

Backslash\\

Question mark\?

Double quote\"

Single quote\'

Alert (beep)\a

Form feed (page feed)\f

Backspace\b

Vertical tab\v

Tab\t

carriage return\r

Newline\n

'\n'
"Left \t Right"

String literals can extend to more than a single line

"string expressed in \
two lines"

C++ for Fortran 95 Users June 2007 Page 17

Constants

PROGRAM Boolean

LOGICAL :: B1 = .TRUE.

LOGICAL :: B2 = .FALSE.

PRINT *,"B1 = ",B1

PRINT *,"B2 = ",B2

END PROGRAM Boolean

#include <iostream.h>

main()

{

bool b1 = true;

bool b2 = false;

cout << "b1 = " << b1 << endl;

cout << "b2 = " << b2 << endl;

}

Boolean (LOGICAL) Literals

B1 = T
B2 = F

b1 = 1
b2 = 0

C++ for Fortran 95 Users June 2007 Page 18

Constants

Defined Constants
You can define your own names for
constants without having to resort to
memory-consuming variables, simply
by using the #define preprocessors
directive.

#include <iostream>

#define PI 3.14159
#define NEWLINE '\n'

main(){

double r=5.0; // radius
double circle;

circle = 2 * PI * r;
cout << circle;
cout << NEWLINE;

}

Declared Constants
REAL, PARAMETER :: c = 3.0E8
INTEGER, PARAMETER :: Max = 100

const float c = 3.0e8;
const int max = 100;

C++ for Fortran 95 Users June 2007 Page 19

Operators

Simple Arithmetic Operations

x = 12%5%X =MOD(12,5)MODmodulus

x = pow(12,5)powX = 12**5**power

x = 12/5/X = 12/5/division

x = 12*5*X = 12*5*multiplication

x = 12-5-X = 12-5-subtraction

x = 12+5+X = 12+5+addtion
ExampleC/C++ExampleFortranOperation

C++ for Fortran 95 Users June 2007 Page 20

Operators

Assignment (=)
Following assignments are valid in C++:

Compound Assignment (+=, -=, *=, /=, ...)

a = 5;
a = b;
a = 2 + (b = 5); // equivalent to: b=5 and a = 7
x = y = z = 5; // equivalent to: x=5, y=5 and z=5

a += 5; // equivalent to: a = a + 5;
f *= i; // equivalent to: f = f * i;
f *= i+1; // equivalent to: f = f * (i+1);
z /= 1 + x; // equivalent to: z = z / (1+x);

C++ for Fortran 95 Users June 2007 Page 21

Operators

Increase or decrease by 1 (++, --)
Following assignments are equivalent:

Be careful when using these operators:

i++;
++i;
i += 1;
i = i + 1;

a = 5; // a = 5
b = a++; // b = 5 and a = 6

a = 5; // a = 5
b = ++a; // b = 6 and a = 6

C++ for Fortran 95 Users June 2007 Page 22

Operators

Relational and Logical Operations

!(x==y)!.NOT.(X==Y).NOT.Logical not

x<y && y>=2&&X<Y .AND. Y>=2.AND.Logical and

x>1 || y<=9||X>1 .OR. Y<=9.OR.Logical or

x != y!=X /= Y/=Not equal to

x == y==X == Y==Equal to

x <= y<=X <= Y<=Less than or equal to

x < y<X < Y<Less than

x >= y>=X >= Y>=greater than or equal to

x > y>X > Y>Greater than

ExampleC/C++ExampleFortranOperation

C++ for Fortran 95 Users June 2007 Page 23

Operators

Bitwise Operations (modify variables considering bit patterns)

12 >> 3>>ISHIFT(12,-3)= 1ISHIFTright shift

12 << 3<<ISHIFT(12,3)= 96ISHIFTleft shift

~10~NOT(10) =245=-11NOT1’s complement

10 ^ 25^IEOR(10,25) = 19IEORexclusive or

10 & 25&IAND(10,25) = 8IANDand

10 | 25|IOR(10,25) = 27IORor
ExampleC/C++ExampleFortranOperation

10 & 25 = 8 ���� 00001010 & 00011001 = 00001000
10 | 25 = 27 ���� 00001010 & 00011001 = 00011011
12 >> 3 = 1 ���� 00001100 >> 3 = 00000001

C++ for Fortran 95 Users June 2007 Page 24

Operators

Conditional operator (?)
The conditional operator evaluates an expression returning
a value if that expression is true and
a different one if the expression is evaluated as false.
General form:

If condition is true the expression will return result1,
if it is not it will return result2.

condition ? result1 : result2

2==1 ? 5 : 9; // returns 9, since 2 is not equal to 1
5>3 ? a : b; // returns the value of a
a>b ? a : b; // returns whichever is greater, a or b

C++ for Fortran 95 Users June 2007 Page 25

Operators

Explicit Type Casting Operator
Type casting allow you to convert a data of a given type to another.

int i,j;
float f;

i = 3;
f = (float) i; // in C/C++
f = float(i); // in C++
j = int(4.8);

INTEGER I,J
REAL F

I = 3
F = REAL(I) ! F = 3.0
J = INT(4.8) ! J = 4

C++ for Fortran 95 Users June 2007 Page 26

Operators

sizeof() Operator
This operator accepts one parameter , which can be either a type or a
variable itself and returns the size in bytes of that type or object
#include <iostream.h>

main (){
int i;
float f;
double d;
cout << "sizeof(i) = " << sizeof(i) << endl;
cout << "sizeof(int) = " << sizeof(int) << endl;
cout << "sizeof(f) = " << sizeof(f) << endl;
cout << "sizeof(float) = " << sizeof(float) << endl;
cout << "sizeof(d) = " << sizeof(d) << endl;
cout << "sizeof(double)= " << sizeof(double)<< endl;

}
sizeof(i) = 4
sizeof(int) = 4
sizeof(f) = 4
sizeof(float) = 4
sizeof(d) = 8
sizeof(double) = 8

C++ for Fortran 95 Users June 2007 Page 27

Operators

Size in byte of data types for different platforms:

161210long double
888double
444float
844long
444int
222short
111char

Linux
64 bit

Linux
32 bit

Windows
32 bit

Data type

C++ for Fortran 95 Users June 2007 Page 28

Basic Input/Output

Standard Input

cout << "Hello World";
cout << "Hello " << "World"
cout << 123;
cout << "a =" << a;
cout << (a+b)/2;

PRINT *,"Hello World"
PRINT *,"Hello ","World"
PRINT *,123
PRINT *,"A =", A
PRINT *,(A+B)/2.0

Notice that (unlike the PRINT statement), cout does not add a line break
after its output unless we explicitly indicate it.
This is done by inserting a '\n' or a using a endl manipulator.

cout << "First sentence.";
cout << "Second sentence.";

First sentence.Second sentence.

cout << "First sentence.\n";
cout << "Second sentence.";

First sentence.
Second sentence.

C++ for Fortran 95 Users June 2007 Page 29

Basic Input/Output

Standard Output
Handling the standard input in C++ is done by applying the
overloaded operator of extraction (>>) on the cin stream.

int a,b,c;
string str;
cin >> a;
cin >> b >> c;
cin >> str;

INTEGER :: A,B,C
CHARACTER (20) :: Str
READ *,A
READ *,B,C
READ *,Str

C++ for Fortran 95 Users June 2007 Page 30

Some Mathematical Functions

In C++, you need to include the header: <math.h>

#include <iostream.h>
#include <math.h>

main ()
{
double x = 0.5;

cout << "sin(x) = " << sin(x) << endl;
cout << "cos(x) = " << cos(x) << endl;
cout << "tan(x) = " << tan(x) << endl;

cout << "log(x) = " << log(x) << endl;
cout << "log10(x) = " << log10(x) << endl;

}

C++ for Fortran 95 Users June 2007 Page 31

Control Stuctures

Conditional structures: if else

if(condition)
statement 1;

else
statement 2;

IF(condition) THEN
statement 1

ELSE
statement 2

END IF

if(condition){
statement 1;
statement 2;

}

IF(condition) THEN
statement squence 1
statement squence 2

END IF

if(condition) statement;IF(condition) statement

if(condition)
statement;

C++ for Fortran 95 Users June 2007 Page 32

Control Stuctures

#include <iostream>

main(){
float a,b,c,d;

cout << “input a,b,c: ”;
cin >> a >> b >> c;
d = b*b-4*a*c;

if(d<0)
cout << “No real root.”;
else{
x1 = -b + sqrt(d)/a/2.;
x2 = -b - sqrt(d)/a/2.;
cout << x1 << x2;

}
}

PROGRAM RootFinding
REAL :: A,B,C,D

PRINT *,”Input A,B,C”
READ *,A,B,C
D = B**2-4*A*C

IF(D<0) THEN
PRINT *,”No real root.”
ELSE
X1 = -B + SQRT(D)/A/2.
X2 = -B – SQRT(D)/A/2.
PRINT *,X1,X2

END IF

END PROGRAM

C++ for Fortran 95 Users June 2007 Page 33

Control Stuctures

The selective structure : switch
This is an alternative for the if else structure.
The aim is to check several possible constant values for an expression.

switch(expression)
{
case constant1:
statement squence 1;
break;

case constant2:
statement squence 2;
break;

...
default:
default squence;

}

SELECT CASE(expression)

CASE(label list 1)
statement squence 1

CASE(label list 2)
statement squence 2

...
CASE DEFAULT
default squence;

END SELECT

C++ for Fortran 95 Users June 2007 Page 34

Control Stuctures

switch(ClassCode)
{
case 1:
cout << "Freshman" << endl;
break;

case 2:
cout << "Sophmore" << endl;
break;

case 3:
cout << "Junior" << endl;
break;

case 4:
cout << "Graduate" << endl;
break;

default:
cout << "Illegal class\n“;

}

SELECT CASE(ClassCode)

CASE(1)
PRINT *,"Freshman"

CASE(2)
PRINT *,"Sophmore"

CASE(3)
PRINT *,"Junior"

CASE(4)
PRINT *,"Graduate"

CASE DEFAULT
PRINT *,"Illegal class"

END SELECT

C++ for Fortran 95 Users June 2007 Page 35

Control Stuctures

Iterative structures (loops)
Loops have as purpose to repeat a statement a certain number of times.
In C++ there are three basic loop types:

You can also use the following jump statements:

• counter controlled loops (for loops)

• while

• do-while

• break

• continue

• goto

C++ for Fortran 95 Users June 2007 Page 36

Control Stuctures

for(initialization; condition; step size)
statement sequence;

DO counter = initial value, limit, step size
.
. statement sequence
.

END DO

I – counter controlled loops

DO I=1,5,1
PRINT *,I,I*I

END DO

1 1
2 4
3 9
4 16
5 25

for (i=1; i<=5; i++)
cout << i << i*i << endl;

1 1
2 4
3 9
4 16
5 25

C++ for Fortran 95 Users June 2007 Page 37

Control Stuctures

#include <iostream>
// evaluates the factorial

main()
{
int k,n,f;

cout << "Input n: ";
cin >> n;

for(f=1, k=1; k<=n; k++)
f *= k;

cout << n << "! = " << f << endl;
}

Input n: 5
5! = 120

C++ for Fortran 95 Users June 2007 Page 38

Control Stuctures

The statement squence is executed as long as the condition is
true, otherwise the loop is skipped.

while(condition)
statement sequence;

DO WHILE(condition)
statement sequence

END DO

while loops

J = 0
H = 4.0
DO WHILE(J<5)
J = J + 1
H = H/2.0
PRINT *,J,H

END DO

j = 0;
h = 4.0;
while(j<5){
j++;
h /= 2.0;
cout << j << h << endl;
}

C++ for Fortran 95 Users June 2007 Page 39

Control Stuctures

Its functionality is exactly the same as the while loop, except that
condition in the do-while loop is evaluated after the execution of
statement instead of before.

do
statement squence;

while(condition);

do-while loops

n = 5;

do
cout << n << ", ";

while(--n>0);

cout << "FIRE!" << endl;

5, 4, 3, 2, 1, FIRE!

C++ for Fortran 95 Users June 2007 Page 40

Control Stuctures

for(...){
...
if(condition) break;
...

}

DO
...
IF(condition) EXIT
...

END DO

Jump Statements

DO
...
IF(condition) CYCLE
...

END DO

for(...){
...
if(condition) continue;
...

}

10 CONTINUE
...
IF(condition) GOTO 10

loop: // a label
...

if(condition) goto loop;

C++ for Fortran 95 Users June 2007 Page 41

Functions (subprograms)

type name(p1,p2,...)
{
...

}

type FUNCTION name(p1,p2,...)
...
name = an expression
...

END FUNCTION

General Form:

INTEGER Add(A,B)
INTEGER, INTENT(IN) :: A,B
Add = A+B

END FUNCTION Add

int add(a,b)
int a,b;{ // obsolete !
int c;
c = a+b;
return c;

}

int add(int a,int b)
{
return (a+b);

}

more compact form �

C++ for Fortran 95 Users June 2007 Page 42

Functions

Example Usage of a function:

PROGRAM Main
INTEGER :: X=2, Y=4, Z, Add
Z = Add(X,Y)
PRINT *,Z
END PROGRAM Main

! External function
INTEGER Add(A,B)
INTEGER, INTENT(IN) :: A,B
Add = A+B

END FUNCTION Add

#include <iostream>

int add(int a,int b)
{
return (a+b);

}

main()
{
int x=2, y=4, z;
z = add(x,y);
cout << z << endl;

}

C++ for Fortran 95 Users June 2007 Page 43

Functions

Function prototype:
#include <iostream.h>

int add(int a,int b)
{
return (a+b);

}

main()
{
int x=2, y=4, z;
z = add(x,y);
cout << z << endl;

}

#include <iostream.h>

// prototype of add
int add(int,int);

main()
{
int x=2, y=4, z;
z = add(x,y);
cout << z << endl;

}

int add(int a,int b)
{
return (a+b);

}

C++ for Fortran 95 Users June 2007 Page 44

Functions

Functions with no type
#include <iostream.h>

// no value is returned
void printDouble(int a)
{
cout << "Double of a:" << 2*a;

}

main()
{
printDouble(5);

}

#include <iostream.h>

// no value is returned
void Message(void)
{
cout << "I am a function";
}

main()
{
Message();

}

Double of a: 10 I am a function

C++ for Fortran 95 Users June 2007 Page 45

Functions

Arguments passed by value and by reference
#include <iostream.h>

// arg. Pass by value
void Decrease(int a, int b){

a--;
b--;

}

main(){
int x=3, y=8;

cout << " x= " << x ;
cout << " y= " << y << endl;
Decrease(x,y);
cout << "x= " << x ;
cout << "y= " << y << endl;

}

#include <iostream.h>

// arg. Pass by reference
void Decrease(int& a, int& b){

a--;
b--;

}

main(){
int x=3, y=8;

cout << " x= " << x ;
cout << " y= " << y << endl;
Decrease(x,y);
cout << "x= " << x ;
cout << "y= " << y << endl;

}

x=3 y=8
x=3 y=8

x=3 y=8
x=2 y=7

C++ for Fortran 95 Users June 2007 Page 46

Functions

A function may return more than ONE value using references:

PROGRAM Main
REAL :: Rx , X = 3.2
INTEGER :: Ix

CALL Convert(X,Ix,Rx)
PRINT *,"X = ",X
PRINT *,"Ix = ",Ix
PRINT *,"Rx = ",Rx

END PROGRAM

SUBROUTINE Convert(Num,Ip,Rp)
REAL, INTENT(IN) :: Num
INTEGER, INTENT(OUT) :: Ip
REAL, INTENT(OUT) :: Rp

Ip = Num
Rp = Num - INT(Num)

END SUBROUTINE

#include <iostream.h>

void Convert(float, int& ,float&);

main()
{

float rx, x=3.2;
int ix;

Convert(x,ix,rx);
cout << " x = " << x << endl;
cout << " ix= " << ix << endl;
cout << " rx= " << rx << endl;

}

void
Convert(float num,int& ip, float& rp)
{

ip = num;
rp = num - int(num);

}

X = 3.2
Ix = 3
Rx = 0.2

C++ for Fortran 95 Users June 2007 Page 47

Functions

Variable number of arguments (Default arguments)
Fortran and C++ allows a function to have a variable number of arguments.

Consider the second order polynomial function: a + bx + cx2

PROGRAM Main
REAL :: x = 1.0

PRINT *,"p(x,7) = ",p(x,7.0)
PRINT *,"p(x,7,6) = ",p(x,7.0,6.0)
PRINT *,"p(x,7,6,3)= ",p(x,7.0,6.0,3.0)

CONTAINS

REAL FUNCTION P(X,A,B,C)
REAL, INTENT(IN) :: X,A
REAL, INTENT(IN), OPTIONAL :: B,C

P = A
IF(PRESENT(B)) P = P + B*X
IF(PRESENT(C)) P = P + C*X**2

END FUNCTION P

END PROGRAM Main

p(x,7) = 7.
p(x,7,6) = 13.
p(x,7,6,3)= 16.

C++ for Fortran 95 Users June 2007 Page 48

Functions

#include <iostream.h>

// -- optional parameters must all be listed last --
double p(double, double, double =0, double =0);

main()
{
double x=1.0;

cout << "p(x,7) = " << p(x,7) << endl;
cout << "p(x,7,6) = " << p(x,7,6) << endl;
cout << "p(x,7,6,3)= " << p(x,7,6,3) << endl;

}

double p(double x, double a, double b, double c)
{

return a + b*x + c*x*x;
}

p(x,7) = 7.
p(x,7,6) = 13.
p(x,7,6,3)= 16.

C++ for Fortran 95 Users June 2007 Page 49

Functions

Overloading Functions
#include <iostream.h>

int max(int x, int y){
return (x>y ? x:y);

}

int max(int x, int y, int z){
int m = (x>y ? x:y);
return (z>m ? z:m);

}

double max(double x, double y){
return (x>y ? x:y);

}

main(){
cout <<"max(9,7) = " << max(9,7) << endl;
cout <<"max(3,6,2) = " << max(3,6,2) << endl;
cout <<"max(3.1,4.7)= " << max(3.1,4.7) << endl;

}

max(9,7) = 9
max(3,6,2) = 6
max(3.1,4.7)= 4.7

C++ for Fortran 95 Users June 2007 Page 50

Arrays

Decleartion of an Array
An array is a squence of objects all of which have the same type.

A four-element array:

Index values: 1, 2, 3, …,N 0, 1, 2, …,N-1
A(1), A(2), A(3), A(4) a[0], a[1], a[2], a[3]

Reading and Printing an array:

INTEGER :: A(4) int a[4];

PROGRAM Array
INTEGER :: A(4)

READ *,A
PRINT *,A

END PROGRAM

main(){
int a[4];

for(int i=0; i<4; i++)
cin >> a[i];

for(int i=0;i<4;i++)
cout << a[i];

}

C++ for Fortran 95 Users June 2007 Page 51

Arrays

Initializing Arrays

or

Assigning all elements to zero:

INTEGER :: A(4)

A(1) = 22
A(2) = 33
A(3) = 44
A(4) = 77

int a[4];

a[0] = 22;
a[1] = 33;
a[2] = 44;
a[3] = 77;

INTEGER :: A(4)=(/22,33,44,77/) int a[4] = {22,33,44,77};

// compiler will assume
// size of the array is 4
int a[] = {22,33,44,77};

INTEGER :: A(4)
A = 0

int a[4] = {0};

C++ for Fortran 95 Users June 2007 Page 52

Arrays

Multidimensional Arrays
REAL :: A(4) ! vector
REAL :: B(2,3) ! Matrix
REAL :: C(5,2,4)

double a[4]; // vector
double a[2][3]; // matrix
double c[5][2][4];

PROGRAM Arrays
INTEGER, PARAMETER :: N=5, M=4
INTEGER :: I,J, A(N,M)

DO I=1,N
DO J=1,M

A(I,J) = I*J
END DO
END DO

DO I=1,N
PRINT *,A(I,:)

END DO

END PROGRAM

#include <iostream.h>

main(){
const int n=5, m=4;
int i,j, a[n][m];

for(i=0; i<n; i++)
for(j=0; j<m; j++)

a[i][j] = (i+1)*(j+1);

for(i=0; i<n; i++){
for(j=0; j<m; j++){
cout << a[i][j] << " ";

}
cout << '\n';

}
}

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20

C++ for Fortran 95 Users June 2007 Page 53

Arrays

Passing an Array to a Function
PROGRAM ArrayFunc
REAL :: A(4),Eb, Max

A = (/1.0, 6.1, 3.4 ,5.8/)
Eb = Max(A)

PRINT *,"Biggest is ",Eb

END PROGRAM

REAL FUNCTION Max(A)
REAL, INTENT(IN) :: A(:)
INTEGER :: I

Max = A(1)
DO I=2,SIZE(A)

IF(A(I)>Max) Max = A(I)
END DO

END FUNCTION

#include <iostream.h>

float Max(float x[],int);

main(){
float a[4] = {1.0,6.1,3.4,5.8};
float eb;

eb = Max(a,4);
cout << "Biggest is " << eb;

}

float Max(float x[],int size){
float max = a[0];

for(int i=1; i<size; i++)
if(a[i]>max) max = a[i];

return max;
}

C++ for Fortran 95 Users June 2007 Page 54

Pointers and References

When a variable is declared and assigned to a value
four fundamental attributes associated with it:

� its name
� its type
� its value (content)
� its address

int n = 33;

33

0x3fffd14

n

int

Memory address

C++ for Fortran 95 Users June 2007 Page 55

Pointers and References

Address Operator
The value of a variable is accessed via its name.
The address of a variable is accessed via the address operator &.

#include <iostream.h>

// printing both the value and address

main()
{
int n = 33;
cout << " n = " << n << endl;
cout << "&n = " << &n << endl;

}

n = 33
&n = 0xbfdd8ad4

C++ for Fortran 95 Users June 2007 Page 56

Pointers and References

References
The reference is an alias, a synonym for a variable.
It is declerated by using the address operator &.
#include <iostream.h>
main(){
int n = 33;
int& r = n; // r is a reference for n

cout << n << r << endl;
--n;
cout << n << r << endl;
r *= 2;
cout << n << r << endl;
cout << &n << &r << endl;

}

33 33
32 32
64 64
0xbfdd8ad4 0xbfdd8ad4

33

0xbfdd8ad4

n,r

int

C++ for Fortran 95 Users June 2007 Page 57

Pointers and References

Pointers
The address operator returns the memory adress of a variable.
We can store the address in another variable, called pointer.

#include <iostream.h>

main()
{
int n = 33;
int* p = &n; // p holds the address of n
cout << " n = " << n << endl;
cout << "&n = " << &n << endl;
cout << " p = " << p << endl;
cout << "&p = " << &p << endl;

}

n = 33
&n = 0xbfdd8ad4
p = 0xbfdd8ad4
&p = 0xbffafad0

33

0xbfdd8ad4

n

int

0xbfdd8ad4

0xbfdd8ad0

p

int*

C++ for Fortran 95 Users June 2007 Page 58

Pointers and References

#include <iostream.h>

main(){
int n = 33;
int *p;

p = &n; // p points to n
cout << "n *p: " << n << *p <<endl;

*p = 66;
cout << "n *p: " << n << *p <<endl;
}

N P: 33 33
N P: 66 66

PROGRAM PointerExample

INTEGER, TARGET :: N = 33
INTEGER, POINTER :: P

P => N ! P points to N
PRINT *,”N P: ”,N,P

P = 66
PRINT *,”N P: ”,N,P

END PROGRAM

In Fortran pointer variable is
decelerated by POINTER attribute,
to point a variable whose attribute
must be TARGET.

In C/C++ you can directly access the value
stored in the variable which it points to. To
do this, we simply have to precede the
pointer's identifier with an asterisk (*) called
dereference operator.

n *p: 33 33
n *p: 66 66

C++ for Fortran 95 Users June 2007 Page 59

Pointers and References

Use of Pointers in Functions
#include <iostream.h>

void Swap(float *, float *);

main(){
float *pa, *pb;
float a = 11.0, b =22.0;

pa = &a;
pb = &b;

cout << "a b : " << a << b << endl;
Swap(pa,pb);
cout << "a b : " << a << b << endl;

}

void Swap(float *x, float *y){
float z;
// z equal to value pointed by x
z = *x;

*x = *y;
*y = z;

}

PROGRAM Swapping
REAL, POINTER :: PA,PB
REAL, TARGET :: A = 11.0
REAL, TARGET :: B = 22.0

PA => A
PB => B

PRINT *,"A B: ",A,B
CALL Swap(PA,PB)
PRINT *,"A B: ",A,B

END PROGRAM

SUBROUTINE Swap(X,Y)
REAL, POINTER :: X,Y
REAL, POINTER :: Z

Z => X
X => Y
Y => Z

END SUBROUTINE

C++ for Fortran 95 Users June 2007 Page 60

Pointers and References

The Swap function can be re-written without using a pointer.

#include <iostream.h>

void Swap(float &, float &);

main(){
float a = 11, b =22;

cout << "a b : " << a << b << endl;
Swap(a,b);
cout << "a b : " << a << b << endl;

}

void Swap(float& x, float& y)
{

float z;
z = x;
x = y;
y = z;

}

PROGRAM Swapping
REAL :: A = 11.0, B = 22.0

PRINT *,"A B: ",A,B
CALL Swap(A,B)
PRINT *,"A B: ",A,B

END PROGRAM

SUBROUTINE Swap(X,Y)
REAL, INTENT(INOUT) :: X,Y
REAL :: Z

Z = X
X = Y
Y = Z

END SUBROUTINE

A B: 11.0 22.0
A B: 22.0 11.0

C++ for Fortran 95 Users June 2007 Page 61

Pointers and References

Pointers and Arrays
The concept of array is very much bound to the one of pointer. In fact, the
identifier of an array is equivalent to the address of its first element.
Therefore the array name is a constant pointer.
Consider the declaration:

Following assignment is valid (since array name is a constant pointer):

The following assignments are equivalent:

int numbers[20];
int *p;

p = numbers;

numbers[4] = 25;
*(p+4) = 25;

C++ for Fortran 95 Users June 2007 Page 62

Pointers and References

Pointer Arithmetics
To conduct arithmetical operations on pointers is a little different than to
conduct them on regular integer data types.
Suppose that we define three pointers in this compiler:

Let they point to memory locations
1000, 2000 and 3000 respectively.

If we write:

char *cp;
short *sp;
long *lp;

cp++;
sp++;
lp++;

C++ for Fortran 95 Users June 2007 Page 63

Pointers and References

Both the increase (++) and decrease (--) operators have greater operator
precedence than the dereference operator (*).

Following expressions may lead to confusion:

*p++; // equivalent to *(p++);

C++ for Fortran 95 Users June 2007 Page 64

Pointers and References

Pointers to Pointers
C++ allows the use of pointers that point to pointers.

#include <iostream.h>

main(){
char a = 'x';
char* p1;
char** p2;

p1 = &a;
p2 = &p1;

cout << a << *p1 << **p2 << endl;

*p1 = 'y';
cout << a << *p1 << **p2 << endl;

**p2 = 'z';
cout << a << *p1 << **p2 << endl;

}

PROGRAM TwoPointers
CHARACTER,TARGET :: A = 'x'
CHARACTER,POINTER :: P1,P2

P1 => A
P2 => P1

PRINT *,A,P1,P2

P1 = 'y'
PRINT *,A,P1,P2

P2 = 'z'
PRINT *,A,P1,P2

END PROGRAM

x x x
y y y
z z z

C++ for Fortran 95 Users June 2007 Page 65

Pointers and References

Pointers to Functions
Like an array name, a function name is actually a constant pointer.
A pointer to a function is a pointer whose value is the address of the
function name. Consider the declaration:

int f(int n)
{
...
}

pf

f

int f(int); // decleres func. f
int (*pf)(int); // decleres func. pointer pf
pf = &f; // assigns address of f to pf

C++ for Fortran 95 Users June 2007 Page 66

Pointers and References

// returns f(1)+f(2)+ ... +f(n)
int sum(int (*pf)(int x), int n)
{
int i,s=0;
for(i = 1; i <= n; i++)

s += (*pf)(i);
return s;

}

// pointer to functions
#include <iostream.h>

int square(int);
int cube(int);
int sum(int (*)(int), int);

main ()
{
cout << sum(square,4) << endl;
cout << sum(cube,4) << endl;
}

int square(int x){
return x*x;

}

int cube(int x){
return x*x*x;

}

30
100

C++ for Fortran 95 Users June 2007 Page 67

Dynamic Memory

The new Operator
In order to request dynamic memory we use the operator new.

General form:

For example:

pointer = new type // single
pointer = new type [number_of_elements];

int * a;
a = new int [5];

C++ for Fortran 95 Users June 2007 Page 68

Dynamic Memory

The delete Operator
delete operator reverses the action of the new operator, that is
it frees the allocated memory by the new operator.

General form:

For example:

delete pointer // for a single pointer
delete [] pointer

delete [] a;

C++ for Fortran 95 Users June 2007 Page 69

Dynamic Memory
#include <iostream.h>
// mean of n numbers
main (){

float *x, mean,s;
int i,n;

while(1){
cout << "How many elements: ";
cin >> n;

if(n<=0) break;

x = new float[n];

cout << "Input elements: ";
for(i=0, s=0.0; i<n; i++){

cin >> x[i];
s += x[i];

}
mean = s/n;
cout << "Mean = " << mean << endl;
delete [] x;

}
}

PROGRAM DynamicMemory
! mean of n numbers
REAL, ALLOCATABLE :: X(:)
REAL :: Mean
INTEGER :: N

DO
PRINT *,"How many elements:"
READ *,N

IF (N<=0) EXIT

ALLOCATE(X(N))
PRINT *,"Input elements:"
READ *,X

Mean = SUM(X)/N
PRINT *,"Mean = ",Mean

DEALLOCATE(X)
END DO

END PROGRAM

C++ for Fortran 95 Users June 2007 Page 70

Dynamic Memory

How many elements: 3
Input elements: 1 2 3
Mean = 2.0
How many elements: 6
Input elements: 2 4 5 9 1 0
Mean = 3.5
How many elements: 0

Here is a sample output of the previous program(s):

C++ for Fortran 95 Users June 2007 Page 71

Dynamic Memory

Dynamic Memory in ANSI C
Operators new and delete are exclusive of C++.

They are not available in the C language. But using pure C language,
dynamic memory can also be used through the functions

malloc, calloc, realloc and free, defined in <cstdlib.h>

An example usage: (this is not recommended in C++)
double *array; /* decleration */
int n;

scanf("%d",&n); /* read number of elements */

/* allocate the memory */
array = (double *) malloc(sizeof(double)*n);

/* ... use array here ... */

free(array); /* free the memory */

C++ for Fortran 95 Users June 2007 Page 72

Data Structures

Fortran and C/C++ allow you to define your own data types.

� A data structure (or derived data types) is a group of data
elements grouped together under one name.

� These data elements, known as members, can have different
types and different lengths.

General forms:

struct name {
type1 member_name1;
type2 member_name2;
.
.
} object_names;

TYPE name
type1 member_name1;
type2 member_name2;
.
.
END TYPE name

struct Student{
string name;
int mt1, mt2, fin;

} std1, std2;

TYPE Student
CHARACTER (15) :: Name
INTEGER :: MT1,MT2,FIN

END TYPE Student

C++ for Fortran 95 Users June 2007 Page 73

Data Structures
#include <iostream.h>

struct product{
int weight;
float price;

};

main ()
{

product apple, banana;
float ta,tb;

apple.weight = 10;
apple.price = 1.50;
banana.weight = 12;
banana.price = 3.75;

ta= apple.weight * apple.price;
tb= banana.weight * banana.price;

cout << "Total Prices" << endl;
cout << "Apple : " << ta << endl;
cout << "Banana: " << tb << endl;

}

PROGRAM Structure
IMPLICIT NONE

TYPE Product
INTEGER :: Weight
REAL :: Price

END TYPE Product

TYPE(Product) :: Apple, Banana;
REAL :: TA,TB

Apple%Weight = 10
Apple%Price = 1.50
Banana%Weight = 12
Banana%Price = 3.75

TA= Apple%Weight * Apple%Price
TB= Banana%Weight * Banana%Price

PRINT *,"Total Prices",
PRINT *,"Apple : ",TA
PRINT *,"Banana: ",TB

END PROGRAM

C++ for Fortran 95 Users June 2007 Page 74

Other Data Types

Defined Data Types
C++ allows the definition of our own types based on other existing
data types. This is done by typedef keyword having general form:

typedef existing_type new_type

#include <iostream.h>

typedef int INTEGER;
typedef float REAL;

main (){
INTEGER i = 33;
REAL r = 45.0;

cout << i << r << endl;
}

#include <iostream.h>

#define PROGRAM_Main main()
#define IMPLICIT_NONE {
#define END_PROGRAM }
#define PRINT cout

typedef int INTEGER;
typedef float REAL;

PROGRAM_Main
IMPLICIT_NONE
INTEGER i = 33;
REAL r = 45.0;

PRINT << i << r;

END_PROGRAM

C++ for Fortran 95 Users June 2007 Page 75

Other Data Types

Enumerations
Enumerations create new data types to contain something different that is
not limited to the values fundamental data types may take.

For example, we could create a new type of variable called color to store
colors with the following declaration:

We can then declare variables of this type:

enum type_name{enumerator _list}

enum Color_t {black, blue, green, red, gray};

Color_t c1,c2;
c1 = black; // c1 = 0;
c2 = green; // c2 = 2;
if(c1==c2) cout << "same color.\n";

C++ for Fortran 95 Users June 2007 Page 76

Other Data Types
#include <iostream.h>

enum Mount{Jan=1, Feb, Mar, Apr, May,
Jun, Aug, Sep, Oct, Nov, Dec};

enum Base{Binary=2, Octal=8, Decimal=10,
Hexadecimal=16};

main(){
Mount m = Apr;
Base b = Hexadecimal;

cout << "Mount : " << m << ", ";
cout << "Base : " << b << endl;

m = Jun;
b = Decimal;

cout << "Mount : " << m << ", ";
cout << "Base : " << b << endl;

}

Mount = 4, Base = 16
Mount = 6, Base = 10

C++ for Fortran 95 Users June 2007 Page 77

Classes

� A class is an expanded concept of a data structure: instead of
holding only data, it can hold both data and functions.

� An object is an instantiation of a class. In terms of variables,
a class would be the type, and
an object would be the variable.

� Classes are declerated by using class keyword.

class class_name {
access_specifier_1:
member1;
access_specifier_2:
member2;
...

} object_names;

C++ for Fortran 95 Users June 2007 Page 78

Classes

An access specifier is one of the followings:
� private

members of a class are accessible only from within
other members of the same class

� public
members are accessible from anywhere where the object
is visible

� protected
members are accessible from members of their same class
but also from members of their derived classes

By default, all members of a class declared with the class
keyword have private access for all its members.

C++ for Fortran 95 Users June 2007 Page 79

Classes

An example class:

� declares a class (i.e., a type) called Cylinder and
an object (i.e., a variable) of this class called my_cylinder.

� The functions: set_values() and volume() are called
member functions or methods.

� Member pi,r and h have (default) private access and
member functions have public access.

class Cylinder {
double pi;
double r,h;

public:
void set_values(double,double);
double volume();

} my_cylinder;

C++ for Fortran 95 Users June 2007 Page 80

Classes
#include <iostream.h>

class Cylinder{
private:

double pi, r, h;
public:

void set_values(double,double);
double volume();

};

main(){
Cylinder c;
c.set_values(1.5,2);
cout << "volume: " << c.volume();

}

void Cylinder::set_values(double R,double H){
r = R;
h = H;
pi= 3.141593;

}

double Cylinder::volume(){
return (pi*r*r*h);

}

volume: 14.137168

C++ for Fortran 95 Users June 2007 Page 81

Classes
Classes in C++ can be considered to be modules in Fortran 95.

Can be a separate file and compiled to
an object or library that can be linked
with a main program.

Can be a separate file and compiled to
an object or library that can be linked
with a main program.

Default access specifier is privateDefault access specifier is PUBLIC

Members are not accessed directly.
First you should call the object:

object_name.member;

Members are accessed by directly
calling their names.

Can be used in any other programs
after declaring objects of the class type
like other variables.
class_name object_name;

Can be used in any other programs after
including USE statement.

USE module_name

Contain member data and functions.Contain member data and functions.

Classes in C++Modules in Fortran 95

C++ for Fortran 95 Users June 2007 Page 82

Classes
MODULE Cylinder
REAL, PRIVATE :: pi,r,h;

CONTAINS

SUBROUTINE Set_Values(x,y)
REAL,INTENT(IN) :: x,y

r = x
h = y
pi = 3.141593

END SUBROUTINE

REAL FUNCTION Volume()
Volume = pi*r*r*h

END FUNCTION

END MODULE

PROGRAM Main
USE Cylinder

CALL Set_Values(1.5,2.0)
PRINT *,"Volume: ",Volume()

END PROGRAM

#include <iostream.h>

class Cylinder{
private:

double pi, r, h;
public:

void set_values(double,double);
double volume();

};

void
Cylinder::set_values(double x,double y){

r = x;
h = y;
pi= 3.141593;

}

double Cylinder::volume(){
return (pi*r*r*h);

}

main(){
Cylinder c;
c.set_values(1.5,2);
cout << "Volume: " << c.volume();

}

C++ for Fortran 95 Users June 2007 Page 83

Classes
Self Contained Implementation
Here is the same
Cylinder class
with the definitions of its
member functions included
within the class decleration.

#include <iostream.h>

class Cylinder{
private:

double pi,r, h;
public:

void set_values(double R,double H){
r = R;
h = H;
pi= 3.141593;

}
double volume(){
return (pi*r*r*h);

}
};

main(){
Cylinder c(1.5,2.0);
cout << "Volume: " << c.volume();

}

C++ for Fortran 95 Users June 2007 Page 84

Classes

Constructors

In the Cylinder class set_values() function initialize its objects.
It would be more natural to have this initialization occur
when objects are declared.

A constructor is a member function that is called automatically when
an object is declared.

A constructor function must have the same name as the class itself,
and declared without return type.

C++ for Fortran 95 Users June 2007 Page 85

Classes
#include <iostream.h>
// example: class constructor
class Cylinder{
private:
double pi,r, h;

public:
Cylinder(double,double);
double volume(){return (pi*r*r*h); }

};

Cylinder::Cylinder(double R,double H){
r = R;
h = H;
pi= 3.141593;

}

main(){
Cylinder c(1.5,2);
cout << "Volume: " << c.area();

}

Volume: 14.137168

C++ for Fortran 95 Users June 2007 Page 86

Classes

Pointers to Classes
It is perfectly valid to create pointers that point to classes.
For example:

is a pointer to an object of class Cylinder.

In order to refer directly to a member of an object pointed by a
pointer we can use the arrow operator (->) of indirection.

Cylinder * pc;

C++ for Fortran 95 Users June 2007 Page 87

Classes
#include <iostream.h>

class Cylinder{
double pi,r,h;

public:
void set_values(double,double);
double volume(){return (pi*r*r*h);}

};
void Cylinder::set_values(double R,double H){

r = R;
h = H;
pi= 3.141593;

}

main () {
Cylinder c, *p;

c.set_values(1,2);
cout << "c volume: " << c.volume() << endl;

p = &c; // p points to c
p->set_values(3,4);
cout << "c volume: " << c.volume() << endl;
cout << "*p volume: " << p->volume()<< endl;

}

c volume: 6.283186
c volume: 113.097348
*p volume: 113.097348

C++ for Fortran 95 Users June 2007 Page 88

Classes
Overloading Operators
C++ incorporates the option to use standard operators to perform
operations with classes in addition to with fundamental types.

For example we can perform the simple operation:

However following operation is not valid:

We can design classes able to perform operations using
standard operators. Thanks to C++ �

int a, b=22, c=44;
a = b + c;

class Product{
int weight;
float price;

} a, b, c;
a = b + c;

C++ for Fortran 95 Users June 2007 Page 89

Classes
#include <iostream.h>

class Vector {
public:

int x,y;
Vector () {x=0; y=0;} // default constructor
Vector (int a,int b){x=a; y=b;}
Vector operator + (Vector);

};

Vector Vector::operator+ (Vector param) {
Vector temp;
temp.x = x + param.x;
temp.y = y + param.y;
return (temp);

}

main () {
Vector a (3,1);
Vector b (1,2);
Vector c;
c = a + b;
cout << "c= (" << c.x << "," << c.y << ")";

}

c = (4,3)

C++ for Fortran 95 Users June 2007 Page 90

Classes
Inheritance Between Classes
Inheritance allows to create classes which are derived from other
classes, so that they automatically include some of its "parent's"
members, plus its own.

Suppose that we want to declare a series of classes which
have certain common properties.

C++ for Fortran 95 Users June 2007 Page 91

Classes
#include <iostream.h>

class CPolygon {
protected:

int width, height;
public:

void set_values (int a, int b){
width=a;
height=b;

}
};

class CRectangle: public CPolygon {
public:

int area (){
return (width * height);

}
};

class CTriangle: public CPolygon{
public:
int area (){

return (width * height / 2);
}

};

20
10

main()
{

CRectangle rect;
CTriangle trgl;

rect.set_values (4,5);
trgl.set_values (4,5);

cout << rect.area() << endl;
cout << trgl.area() << endl;

}

C++ for Fortran 95 Users June 2007 Page 92

Classes
Polymorphism
C++ allows objects of different types to respond differently to the
same function call.

This is called polymorphism and
it is achived by means of virtual functions.

C++ for Fortran 95 Users June 2007 Page 93

Classes
#include <iostream.h>
class CPolygon {

protected:
int width, height;

public:
void set_values (int a, int b){

width=a; height=b;
}
virtual int area(){

return (0);
}

};

class CRectangle: public CPolygon {
public:

int area (){
return (width * height);

}
};
class CTriangle: public CPolygon{

public:
int area (){

return (width * height / 2);
}

};

20
10
0

main()
{
CRectangle rect;
CTriangle trgl;
CPolygon poly;
CPolygon * ppoly1 = ▭
CPolygon * ppoly2 = &trgl;
CPolygon * ppoly3 = &poly;

ppoly1->set_values(4,5);
ppoly2->set_values(4,5);
ppoly3->set_values(4,5);

cout << ppoly1->area() <<'\n';
cout << ppoly2->area() <<'\n';
cout << ppoly3->area() <<'\n';
}

C++ for Fortran 95 Users June 2007 Page 94

Linked Lists
Pointers in classes (derived data types) may even point to the class
(derived data type) being defined.

This feature is useful, since it permits construction of various types of
dynamic structures linked together by successive pointers during the
execution of a program.

The simplest such structure is a linked list, which is a list of values
linked together by pointers.

Following derived data type contains a real number and a pointer:

class Node{
public:
int data;
Node *next;

};

TYPE Node
INTEGER :: data
TYPE(Node),POINTER :: next
END TYPE Node

C++ for Fortran 95 Users June 2007 Page 95

Linked Lists

The following programs (given next page) allow the user
to create a linked list in reverse.It traverses the list
printing each data value.

An example output:
Enter a list of numbers:
22
66
77
99
-8
Reverse order list:
99
77
66
22

C++ for Fortran 95 Users June 2007 Page 96

Linked Lists
#include <iostream.h>

class Node{
public:
int data;
Node *next;

};

main(){
int n=0,num;
Node *q, *p = NULL;

cout << "Input a list of numbers"<<endl;

while(1){
cin >> num;
if(num<0) break;
n++;
q = new Node;
q->data = num;
q->next = p;
p = q;

}
q = p;
cout << "Reverse order list: ";
while(1){
if(q==NULL) break;
cout << q->data << ", ";
q = q->next;

}
}

PROGRAM Linked_List

TYPE Node
INTEGER :: Data
TYPE (Node), POINTER :: Next

END TYPE Node

INTEGER :: Num, N=0
TYPE (Node), POINTER :: P, Q
NULLIFY(P)

PRINT *, "Input a list of
numbers:"

DO
READ *, Num
IF (Num < 0) EXIT
N=N+1
ALLOCATE(Q)
Q%Data = Num
Q%Next => P
P => Q

END DO
Q => P
PRINT *, "Reversee order list: "
DO
IF (.NOT.ASSOCIATED(Q)) EXIT
PRINT *, Q%Data
Q => Q%Next

END DO
END PROGRAM

C++ for Fortran 95 Users June 2007 Page 97

END OF SEMINAR

