PAGE
1
EP475 COMPUTATIONAL PHYSCICS – INTRODUCTION TO MONTE CARLO METHOD

	
 Introduction to
 Monte Carlo Method

By Ahmet Bingül, Jan 2004

Department of Engineering Physics
University of Gaziantep

You can view this seminar again at:
http://www1.gantep.edu.tr/~bingul/seminar/monte-carlo/

You can download all computer programs (Fortran 90 and C sources) from: http://www1.gantep.edu.tr/~bingul/seminar/monte-carlo/src/
You can download the MS-Word Document Version from:
http://www1.gantep.edu.tr/~bingul/seminar/monte-carlo/files/mc.zip/
CONTENT

	Introduction ..
	3

	Random Number ..
	5

	Random Number Generators ..
	6

	Random Distributions ...
	11

	MC Integration ..
	21

	MC Optimization ..
	24

	Probability ..
	26

	MC Applications ...
	28

	References ..
	39

	Exercises ..
	40

<< INTRODUCTION >>
The deterministic systems are described by some mathematical rule.
But some systems are not deterministic known as random or stocastic.

Monte Carlo refers to any procedure that makes use of random numbers and
it is opposed to deterministic algorithms.

·
Mathematics, Numerical Analysis
· Physics, Simulation of Natural Phenomena

· Engineering, Simulation of Experimental Apparatus

· Biology, Cell Simulations

· Statistics, Distribution Functions

· Economy, Modelling Stock Exchange

· . . .

Monte Carlo Methods are one of the most important tools in Physics:
· for data analysis

· for simulation of physics events, which are based on random processes/probabilities

· for detector design, optimization and simulation

So, we have to learn the basic principles:

· Purpose of Monte Carlo generators/programs

· Random number generation

· Monte Carlo integration

· Examples of popular Monte Carlo programs

<< RANDOM NUMBER >>
A Random Number is a number chosen as if by chance from some specified distribution.

In a uniform distribution of Random Number in the range [0,1], every number have the same chance of turning up.

[image: image1.png]Px

X

As an example:
When you throw a dice the numbers incoming are uniformly distributed over the range between 1 and 6. Because every number have the same chance of turning up. Try !

<< RANDOM NUMBER GENERATORS >>
	In principle, the best way to obtain a series of random numbers

{x1 , x2 , x3 , ... xn}

is to use some process in nature:

· throw a coin or dice

· take the decay time of radioactive nuclei

· take the soccer results of last sunday

· Lotto 6-49
	[image: image2.png]

This of course is not very efficient. Therefore computer algorithms have been developed.

Q: How can we possibly hope to get a computer program to do anything random?
A : With a random number generator.

A Random Number Generator is a computer sub-program that produce squence of random numbers.

Today, all computer languages contain a mechanism for producing a squence of random numbers which are uniformly distributed in [0,1].

These should really be termed pseudo-random numbers, because for each run, you will obtain same squence of random numbers for the same seed.

You can download the source of computer programs from: rng.f90 | rng.c

In general, these functions uses Linear Conguential Method (Lehmer, 1948) using 32-bit integers have a period of at most 231 ~ 109. This many random numbers can be generated in seconds on a modern workstation.

The method is employed by an equation of the form:

xn+1 = (a xn + b) mod m
where mod means modulo. Constants a, b and m are chosen carefully such that the sequence of numbers becomes chaotic and evenly distributed.
Rules:

· First initial number, x0, called seed, is selected

· m > x0, a, b ≥ 0

· The range of values is 0 to m (divide by m to convert to 0. to 1.). The period of this generator is m-1. So m should be as large as possible since the period can never be longer than m.

Example: if we select a = b = x0 = 7 and m = 10 results in the squence:

 7, 6, 9, 0, 7, 6, 9, 0, ...
or dividing each number by 10
 0.7,0.6,0.9,0.0, 0.7,0.6,0.9,0.0, ... (very poor)
A popular random number generator called RANDU was distributed by IBM in 1960 with the algorithm:

xn+1 = (69069 xn) mod 231-1
and then Park and Miller proposed a minimal standard:

xn+1 = (16807 xn) mod 231-1

The computer implementations of the algorithm (Fortran 90): randu.f90 | minimal.f90
<< RANDOM DISTRIBUTIONS >>

Uniform (flat) Distribution

	If R is a random real number in the range [0,1]
and if A and B are real numbers, and M and N are integer numbers, then the value

A + (B-A)*R

will be random real number in the range [A,B], and

M + INT(N*R)

will be random integer number in the range [M,N].
	[image: image3.png]

[image: image4.png]

For example, to generate uniform integer random distribution between [1,6] you can use:

Dice = 1 + INT(6*R)

How to obtain a general Pobability Distribution Function (PDF) ?

In simulations of random processes we often require a non-uniform distribution of random numbers. For example, radioactive decay is characterised by a Poisson distribution.

Two standard methods are:

· The Transformation Method

· The Rejection Method

The aim of both these methods is to convert a uniform distribution of random numbers of the form Px(x) into a non-uniform distribution of the form Py(y).

	[image: image5.png]Px

X

	[image: image6.png]

	[image: image7.png]

	Uniform (flat) distribution of a set of random numbers
	
	Non-uniform distribution of a set of random numbers

The Transformation Method
Consider a collection of variables {x1, x2, x3, ...} that are distributed according to the function Px(x), then the probability of finding a value that lies between x and x+dx is
Px(x)dx. If y is some function of x then we can write:

[image: image8.png]|Po(z)dz| = |Py(y)dy|

where Py(y) is the probability density that describes the collection {y1, y2, y3, ...}.
	[image: image9.png]X

	Px(x) = C (i.e. Uniform)
and so Py(y) = C |dx/dy|

In order to obtain a sequence characterised by the distribution Py(y) we must find a transformation function y = f(x) which satisfies:
[image: image10.png]dx
Z|=r
131 = B

The constant C can be dropped as it simply scales the function.

Summary:

· we want: Py(y) (the required distribution)

· so we find: y = f(x) (the transformation function) such that: |dx/dy| = Py(y)
where x is from a uniform distribution, y is the transformed value.

Some functions and thier transformation functions
[image: image11.png]Target distribution | Transformation function

Py(y) /(=)
k z/k
Yy V2r
y* [(n + 1)a]'/mtt
1/y e’
e¥ —Inz
cosy arcsin

Vi [3/22]%3

	Example: Consider that we want the distribution
Py(y) = y. The transformation function is then

[image: image12.png]dz
d—y:Py=y=>z=/ydy

solving for y:

[image: image13.png]y=f(z) =2z

	[image: image14.png]Px

X

 INCLUDEPICTURE "http://www1.gantep.edu.tr/~bingul/seminar/monte-carlo/images/non-uni-dist-y.gif" * MERGEFORMATINET [image: image15.png]Py

The computer implementations of the algoritm for 20,000 events:

	Fortran 90
	
	transformation.f90
	histogram.f90
	transformation.fout

	ANSI C
	
	transformation.c
	histogram.h
	transformation.cout

The Rejection Method
The Transformation Method is useful when the function f(x) can easly be evaluated.
However, there are cases when desired distribution may not be known in analitic form.

For example, consider we want Gaussian Distribution:

[image: image16.png]

for this case we dont find the function y=f(x) , because

[image: image17.png]dz

dy

=P = eV == /e'”’dy

the last integral cannot be evaluated analytically.

Such problems can be handled with an algorithm known as Rejection Method.

The method provides an alternative to the transformation method, it has the advantage.

In this method a sequence of random numbers {y1, y2, y3, ...} is generated with a uniform distribution in the range of interest, ymin to ymax. Now suppose that our goal is to produce a sequence of numbers distributed according to the function Py(y):
[image: image18.png]Pymax

ymin
y ymax

We proceed through the sequence {y1, y2, y3, ...} and accept values with a probability proportional to Py(y).

	Algorithm:
1. Set m=0

2. Determine Py_max and the range (ymin and ymax) of the target distribution, Py(y).

3. Generate N random numbers, x(N), y(N), from a uniform distribution.

4. For each value of y: Set y = ymin + (ymax-ymin)*y

5. LOOP from i=1 to N

 Generate a new random number, ptest distributed

 uniformly in the range 0 to Py_max:

 Set ptest = Py_max * y(i)

 Test: if(Py(y(i)) > ptest) then

 Set m=m+1 # Entry y(i) passed the test

 Set z(m)=y(i) # so we record it in z(m)

 otherwise

 remove(reject) y(i) from the squence

 end if Test

 END LOOP i

5. The numbers remaining in the sequence are therefore distributed according

 to the function Py(y).

 Plot z

	Example: Consider that we want the distribution
Py(y) = exp(-y) y 2 in the range y = 0 to 10. Maximum value of the function, Pymax, is found from:

dPy/dy = 0

The function has a maximum value at y = 2 which corresponds Pymax = 0.541. Ptest is therefore generated from 0 to 2.
	[image: image19.png]Px

X

[image: image20.png]Py

Py, .= 0541

The computer implementations of the algoritm for 40,000 events:

	Fortran 90
	
	rejection.f90
	histogram.f90
	rejection.fout

	ANSI C
	
	rejection.c
	histogram.h
	rejection.cout

<< MC INTEGRATION >>

In Monte Carlo integration, numerical integration of a function is performed by making use of random numbers.

· one-dimensional integrals is not as effective as other
numerical integration methods (such as Trapizoidal, Simpson)

· though for high-dimensional integrals the MC method can be more efficient

	[image: image21.png]y=1%

	Algoritm:
1. Enclose the function in a box area y_max.

2. Uniformly populate the box with N random points:

 Generate two random numbers

 R1, R2, a random point in the box is then

 x = a + (b-a)*R1

 y = y_max*R2

3. Count the number of points M

 that lie below the curve f(x).

4. The integral is then estimated from:

 I/A = M/N and so

 I = (M/N)*A and so

 I = (b-a)*y_max M/N

Example: Computing area under the curve: y = 10 sin(x) between 0 and pi.
Exact solution is 20.0.

	 N Area Error

 ------------- -------- ---------

 10 18.84956 1.1504420

 100 20.42035 0.4203548

 1,000 19.94912 0.0508842

 10,000 20.08106 0.0810623

 100,000 19.94000 0.0599956

 1,000,000 20.00874 0.0087432

 10,000,000 19.99852 0.0014839

 100,000,000 20.00074 0.0007362

 1,000,000,000 20.00051 0.0005044
	We have to perform
many experiments, with different seeds, to see results more clearly.

The computer implementations of the algoritm: mc-int.f90 | mc-int.c | mc-int.cpp | mc-int.exe
<< MC OPTIMIZAION >>

You can use random numbers to find the minimum or maximum value of a function of several variables.

Random Search

This method repeatedly evaluates the function at randomly selected values of the independent variables. If a sufficient number of samples is conducted, the optimum will eventually be located.

PROBLEM:
Use Monte Carlo Method to locate minimum of

f(x) = x2 - 6x + 5
in the domain bounded by x = 1 to x = 5.

Exact solution is: fmin = -4.0 at x = 3.0

	Algorithm: for minima

 Determine N (# of experiment)

 Determine a and b (domain [a,b])

 Set fmin = 9E9 (very large value)
 LOOP from i=0 to N

 Generate a random number R

 from a uniform distribution

 Set x = a + (b-a)*R

 Check IF F(x) < fmin THEN

 fmin = F(x)

 xmin = x

 END IF

 END LOOP

 OUTPUT N, xmin, fmin
	Output: for a=1, b=5

 N xmin fmin

--------- -------- ---------

 10 3.215880 -3.953396

 100 2.974332 -3.999341

 1,000 2.994102 -3.999965

 10,000 3.000074 -4.000000

 100,000 3.000074 -4.000000

The computer implementations of the algorithm : mc-min.f90 | mc-min.c

<< PROBABILITY >>
If a coin is tossed in the air. It is not certain that an head will appear. However, suppose we repeat this experiment, let S be the number of incoming head and let N be the number of tosses, then the ratio S/N becomes stable after long run.

The probability P of a an event A is defined as follows: if A can occur in S ways out of a total N equally likely ways, then

P = S / N

Example: In tossing a coin a head can occur one way out of two ways,
hence: P = 1/2

	Algorithm:

 Determine N

 Set Head = 0
 LOOP from i=0 to N

 Generate a random number R

 from a uniform distribution

 Check IF R<0.5 THEN

 Increment Head by 1

 END IF

 END LOOP
 OUTPUT N, Head, Head/N
	Output:

 N Head Head/N

------------- -------- ---------

 10 4 0.4000000

 100 41 0.4100000

 1,000 466 0.4660000

 10,000 5059 0.5059000

 100,000 49942 0.4994200

 1,000,000 500351 0.5003510

 10,000,000 4998906 0.4998906

 100,000,000 50006417 0.5000641

1,000,000,000 500008369 0.5000084

The computer implementations of the algorithm : coin.f90 | coin.c
<< MC APPLICATIONS >>

You will find some MC Applications in the following pages:

· Tossing A Coin

· Tossing A Die

· Computing Pi

· Random Walk

· Simulating Radioactive Decay

Tossing A Coin

A coin is tossed 6 times. Calculate probability of getting:

 (a) exactly four heads
 (b) at least four heads

Exact results:

	(a)
	 [image: image22.png]6 2 4
DLV 2B ga3a375
202)\2) 64

	(b)
	 [image: image23.png]

	where
	 [image: image24.png]o nl
(s

	Algorithm:

 Determine N (# of experiment)

 Set E4H = 0 (Exacly 4 Head)

 Set AL4H = 0 (At Least 4 Heads)
 LOOP1 from i=0 to N

 Set Head = 0

 LOO2 k=1,6

 Generate a random number R

 from a uniform distribution

 Check IF R<0.5 THEN

 Increment Head by 1

 END IF

 END LOO2

 Check IF Head =4 Increment E4H by 1

 Check IF Head>=4 Increment AL4H by 1

 END LOOP1
 OUTPUT N, E4H/N, AL4H/N
	Output:

 N (a) (b)

------------- --------- ---------

 10 0.1000000 0.3000000

 100 0.3400000 0.4600000

 1,000 0.2360000 0.3380000

 10,000 0.2342000 0.3393000

 100,000 0.2328500 0.3430800

 1,000,000 0.2346350 0.3438360

 10,000,000 0.2343817 0.3434362

 100,000,000 0.2343522 0.3437505

1,000,000,000 0.2343743 0.3437576

The computer implementations of the algorithm : coin6.f90 | coin6.c
Tossing A Die
Example in tossing a dice a 6 can occur one way out of six ways,
hence P=1/6.

	Algorithm:

 Determine N

 Set Six = 0
 LOOP from i=0 to N

 Generate a random number R

 from a uniform distribution

 Set Dice = 1 + INT(6*R)

 Check if Dice=6 THEN

 Increment Six by 1

 END IF

 END LOOP

 OUTPUT N, Six, Six/N
	Output:

 N Six Six/N

------------- -------- ---------

 10 3 0.3000000

 100 19 0.1900000

 1,000 186 0.1860000

 10,000 1659 0.1659000

 100,000 16748 0.1674800

 1,000,000 166705 0.1667050

 10,000,000 1667210 0.1667210

 100,000,000 16666290 0.1666629

1,000,000,000 166672853 0.1666728

The computer implementations of the algorithm : die.f90 | die.c

Computing Pi
	Let's look at the unit circle (radius=1) within a square with sides equal to 2 (see figure). Now if we pick a random point (x,y) were both x and y are between [-1,1], the probability of that this random point lies inside the unit circle is given as the proportion between the area of the unit circle and the square:

[image: image25.png]P

	[image: image26.png]

If we pick a random point N times and M of those times the point lies inside the unit circle, the probability of that a random point lies inside the unit circle is given as:

[image: image27.png]o
PPl < 1) = —

where the dot indicates that this is a discreet distribution (because M and N are integers). But if N becomes very large (theoretically infinite), the two probabilities will become equal and we can write:

[image: image28.png]

	Output:

 N PI Error

 ------------- --------- ----------

 10 3.200000 0.058407

 100 3.120000 0.021593

 1,000 3.156000 0.014407

 10,000 3.166800 0.025207

 100,000 3.138880 0.002713

 1,000,000 3.141920 0.000327

 10,000,000 3.140899 0.000694

 100,000,000 3.141710 0.000117

 1,000,000,000 3.141604 0.000012

The computer implementations : pi.f90 | pi.c | pi.cpp | pi.exe | pi.html
Random Walk
Assume that a walker is able to take steps length unity along a line as shown in Figure.

[image: image29.png]

The walker begins at the origin (x=0) and each step is choosen at random to be either to the right or left each with probability 1/2.

Problem:
Calculate 'Average Number of Steps' for the walker to be outside of the region [-a,+a].

	Algorithm:

 Determine N (Number of experiment)

 Determine a (Border)

 Set sum = 0 (Sum of steps)
 LOOP1 from i=0 to N

 set step=0

 set x=0

 LOOP2

 Generate a random number R

 from a uniform distribution

 Take a step left or right:

 IF R < 0.5 x=x-1

 ELSE x=x+1

 Increment step by 1

 Check IF |x| > a THEN

 Add step to sum

 EXIT from LOOP2

 END IF

 END LOOP2

 END LOOP1
 Set avrs = sum/N(Avreage Number of Steps)

 OUTPUT N, avrs
	Output: For a = 3

 N avrs

------------- ---------

 10 19.800000

 100 15.660000

 1,000 16.634000

 10,000 16.166200

 100,000 16.018900

 1,000,000 16.011948

 10,000,000 15.996875

 100,000,000 15.999419

The computer implementations of the algorithm : rw.f90 | rw.c

Simulating Radioactive Decay
This is a truly random proceses. The probability of decay is constant. The probabilty that a nucleus undergoes radioactive decay in time dt is p:

p = L dt (for L dt <<1)

where L (decay constant) is probability per unit time for the decay of each nucleus of a given nuclide.

Consider a system initially having N0 unstable nuclei. How does the number of parent nuclei, N, change with time?

Theoretically, the number of undecayed nuclei at time t is given by:

N = N 0 exp (- L t)

where N0 is the number of parent(undecayed) nuclei at t = 0.
	Alogrithm:

 Determine N (initial number of parents)

 Determine L (decay constant)

 Determine Tmax (any time)

 Determine dt (time step)

 LOOP from t=0 to Tmax, step dt

 LOOP over each remaining parent nucleus

 Generate a random number R from a uniform distribution

 Decide if the nucleus decays:

 Check IF(R < L dt) THEN

 reduce the number of parents by 1

 END IF

 END LOOP over nuclei

 PLOT or Record N vs t

 END LOOP over time

The computer implementations of the algoritm: rd.f90 | rd.c
The plots N vs t (both linear and logaritmic): Gif image

[image: image30.png]theory

experiment

L =015t
Tmax= 500's
N =1000

Tim s (2

Tim s (2

<< REFERENCES >>
1. Lecture Notes on Computational Physics, Dean Karlen, Carleton University
2. Lecture Notes on Particle Physics and Data Analisis, CERN Docs

3. EP208 Lecture Notes, Dr. Andrew Beddall, University of Gaziantep

4. Computational Physics, Nicholas J. Giordano, Purdue University

5. Numerical Methods for Engineers, S.C.Chapra, McGraw-Hill

6. Probability, Seymour Lipschuts, Schaum's Outlines, McGraw-Hill

7. Concepts of Modern Physics, Arthur Beiser, McGraw-Hill

8. Programming with C++, John Hubbard, Schaum's Outlines, McGraw-Hill

9. Fortran 90 for Engineers & Scientists, Larry R. Nyhoff, Prentice Hall

<< EXERCISES >>
· Exercise 1 - General PDF
· Exercise 2 - Integration

· Exercise 3 - Optimzation

· Exercise 4 - Probability

· Exercise 5 - Random Walk

· Exercise 6 - Radiactive Decay
Exercise 1 - General PDF

Uniform Distribution:

1. Write a program that generates 100 real random numbers in the range [-10,10].

2. Write a program that generates 100 integer random numbers in the range [-10,10].
	Transformation Method:

1. For the following transformation functions transforming uniform distributions of random numbers Px(x) in the range 0 < x < 1 into non-uniform distributions Py(y):

(a) y = SQRT(3+x)
(b) y = ArcCosine(1-2x)
(c) y = 1/(x+0.5)

· Determine the transformed probability density functions Py(y).

· Write down the range of y values.

· Sketch the distribution Py(y).

· Show that the integral of the transformed distribution is equal to the integral of the original uniform distribution.

2. For each the following target distribution functions, Py(y):

(a) Py = 2y2 (b) Py = ln(y) (c) Py = sin(y)

· Determine the transformation functions y=f(x).

· Sketch the distribution Py(y) and f(x).
	Rejection Method:

1. For each the following target distribution functions, Py(y), (for given ranges in the square brakets) :

(a) Py = pi+cos(y) [-pi,3pi]
(b) Py = exp(-y2) [-10,10]
(c) Py = 1-x2 [-1,1]

· Sketch the distribution Py(y).
· Write a program to view function Py.

Exercise 2 - Monte Carlo Integration

1. Write a program to perform a Monte Carlo integration of the function y = x - sin(x) over the interval x=0 to x=pi.
Compare your results with the analytic solutions.

2. Write a Monte Carlo integration program to integrate the function f(x) = (1-x2)1/2 over the range x = -1 to x = 1.

· Sketch the function and determine ymax

· Compare your computed result with the analytical result

· How many pairs of random numbers are required to achieve an accuracy of three decimal places?

3. Write a program to compute the transcendental number e.
(Hint: Consider the integral of 1/x from x=1 to 10)

4. Write a program to compute the volume of a sphere whose radius is 2.
Compare your results with the analytic solutions.

Exercise 3 - Optimization

1. Write a program to get maximum value of the functions:

a. f(x) = sin(x), domain : [0,pi]

b. f(x) = x2 exp(-x), domain : [0,4]

c. f(x,y) = y - x - 2x2 - 2xy - y2, domain_x : [-2,2], domain_y : [1,3]

2. Write a program to get minimum value of the functions:

a. f(x) = exp(x)/x2, domain : [1/2,5]

b. f(x) = x2 - 9, domain : [-2,3]

c. f(x,y) = 1 - (x-1)2 - (y-2)2, domain_x : [0,2], domain_y : [1,3]

Exercise 4 - Probability

1. A coin is tossed 4 times. Write a program, to calculate probability of getting

a. exactly four heads

b. at least two heads

c. no heads

Compare your results with the analytic solutions.

2. A pair of dice is tossed. Write a program to find the probability of getting 6:6.
Compare your results with the analytic solutions.

3. A fair dice is tossed 7 times. Write a program to find the probability of getting:

a. exactly four 1

b. at least four 1

c. no 1

Compare your results with the analytic solutions.

4. A woman has N children, the probability of each child being female is 50%.
Copy the program below and modify it to determine the probability of all the N children being female.
Write a program to determine the probability for N = 1, 2, 3, 12.
Compare your results with the analytic solutions.

Exercise 5 - Random Walk

Assume that a walker is able to take steps length unity over a 2d-box as shown in Figure. The walker begins at the origin (0,0) and each step is choosen at random to be either to the right, left, top or bottom each with probability 1/4.

Write a program to calculate 'Average Number of Steps' for the walker to be outside of the region. (if a=3)

 y

 ^

 |

 a|

 +---+---+---+---+---+---+

 | | | | | | |

 | | | | | | |

 +---+---+---+---+---+---+

 | | | | | | |

 | | | | | | |

 +---+---+---+---+---+---+

 | | | ^ | | |

 -a | | | | | | | a

 ---------+---+---+<--o-->+---+---+---------> x

 | | | | | | |

 | | | V | | |

 +---+---+---+---+---+---+

 | | | | | | |

 | | | | | | |

 +---+---+---+---+---+---+

 | | | | | | |

 | | | | | | |

 +---+---+---+---+---+---+

 -a|

 |

Exercise 6 - Radioactive Decay

1. Write a program to implement the algorithm given in the seminar.
Graph the number of remaining nuclei as a function of time for
N0 = 5000, L = 0.03 1/s and dt = 1 s.
(Take Tmax = 100 s)

2. Write a program to simulate radioactive decay of Molybdenum-99 (99Mo).
Graph the number of remaining nuclei as a function of time for
N0 = 100000, T1/2 = 67 hours and dt = 1 day.
(Take Tmax = 1 year)

