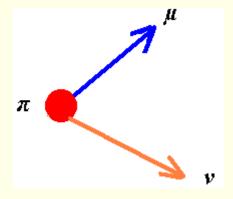
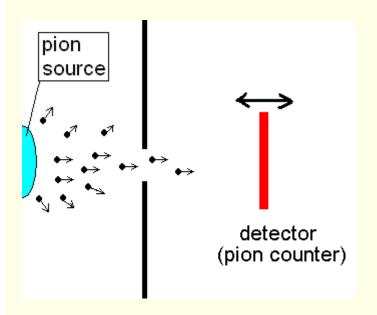
Monte Carlo Simulation for the Measurement of π^{\pm} Life Time

> Ahmet Bingül March 2006


University of Gaziantep Department of Engineering Physics

Introduction

The charged pions decay by the weak interaction (as suggested by 10⁻⁸ s lifetime) into leptons.


The main decay channel (BR \approx 100%) is:

$$\pi^{\pm}
ightarrow \mu^{\pm} + \overline{v}_{\mu}$$

Measuring Lifetime

The most precise measurement of lifetimes of charged pions was done in an experiment reported by Ayres [1].

A counter is moved along the pion beam and measured the number of pions at various distances.

Pion Decay

Radioactive decay law:

$$N = N_0 \exp(-t/\tau)$$

gives realtive number of pions surviving at time t. Where τ lab-frame lifetime.

If beam traves at velocity v, the decay law can be written in terms of distance x = vt

$$N = N_0 \exp(-x / \upsilon \tau)$$

In CM-frame, the lifetime T_0 is not same as T. The relationship is:

$$\tau = \frac{\tau_0}{\sqrt{1 - v^2 / c^2}} = \frac{\tau_0}{\sqrt{1 - \beta^2}} = \gamma \tau_0$$

The population (*N*) of pions can also be written as:

$$N = N_0 \exp(-x / \lambda)$$

where λ is the mean decay length which is given by:

$$\lambda = \gamma \beta \tau_0 c$$

If we know momentum p in MeV/c and mass m in MeV/c^2 of the pions:

$$\gamma = \sqrt{p^2 + m^2} / m$$
$$\beta = \sqrt{1 - 1 / \gamma^2}$$
$$\tau_0 = 2.602 \times 10^{-8} \text{ s}$$

decay length

π

Decay length of a pion can be choosen from the probability distribution:

$$\ell = -\lambda \ln(R)$$

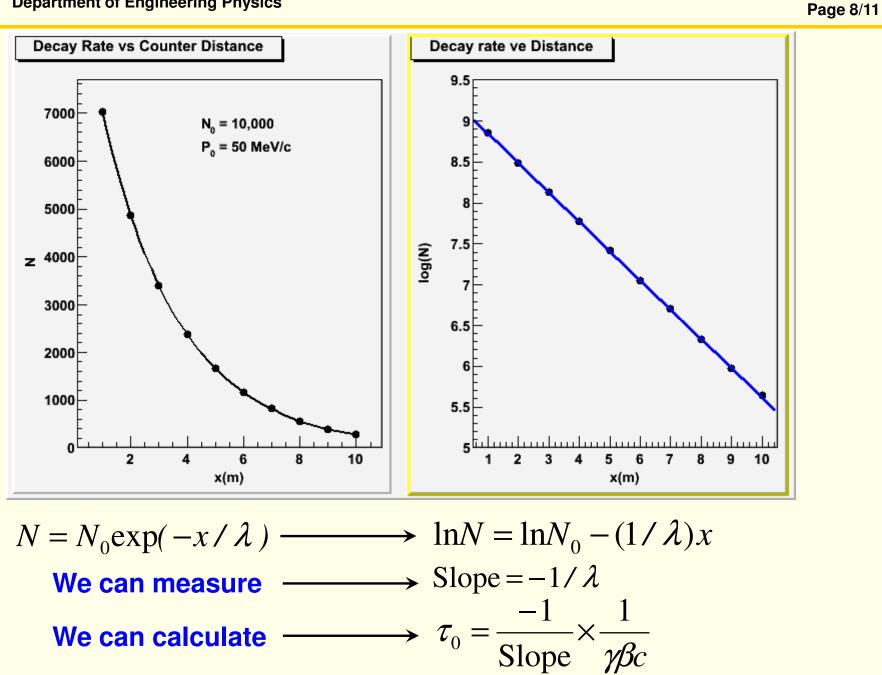
where R is a random number selected from a uniform distribution in the range [0,1].

This is a statistical process $e^{-t/\tau}$

H

v

More information about random distributions can be found at:


http://www1.gantep.edu.tr/~bingul/seminar/monte-carlo/page11.html http://www1.gantep.edu.tr/~andrew/ep208/notes?lecture=8

Computer Simulation

- $N_0 = 10,000$ pions are generated for each run
- All pions assumed to have **same** momentum *p* and **same** direction
- The pion counter is moved from 1m to 10m, step 1m
- Decay Rates are calculated by counting pions corresponding to each Distance
- A graph is constructed for <u>Decay Rates</u> vs <u>Distance</u> in a *semilog* plot of data (linear dependence)
- The slope and intercept is extracted from the plot using Least Square Fitting technique. (see: <u>http://www1.gantep.edu.tr/~andrew/ep208/notes?lecture=3</u>)
- From the slope, mean lifetime is calculated

University of Gaziantep Department of Engineering Physics

Results

Experiment is repeated 20 times to get average value and error.

Simulation results:

$$\tau_0 = (2.600 \pm 0.008) \times 10^{-8} \text{ s}$$

 $\tau_0 = 26.00 \pm 0.08 \text{ ns}$

Experimental results[2]: $\tau_0 = 26.02 \pm 0.04$ ns

References: [1]. Ayres et al., *Phys. Rev.* D 3, 1051 (1971) [2]. Krane, *Introduction to Nuclear Physics*

Computer Programs

You can download the computer implementation of the Simulation at:

Fortran 90:

http://www1.gantep.edu.tr/~bingul/seminar/pion-lifetime/plt.f90

C:

http://www1.gantep.edu.tr/~bingul/seminar/pion-lifetime/plt.c

ROOT:

http://www1.gantep.edu.tr/~bingul/seminar/pion-lifetime/plt.cxx

Sample Output

*** Monte Carlo S	imulation for the ********
*** Measurement o	f Charged Pion Life Time ***
=	ed (MeV/c): 5.000e+01
	(s) : 2.602e-08
Number of Pion ge	nerated : 10000
Number of counter	positon : 10
/alues obtained f	or each position:
1 6912	8.841e+00
2 4852	8.487e+00
3 3382	8.126e+00
4 2391	7.779e+00
5 1724	7.452e+00
6 1211	7.099e+00
7 832	6.724e+00
8 574	6.353e+00
9 398	5.986e+00
.0 270	5.598e+00
itting results:	
Slope, A =	-3.5804e-01
Intercept, B =	8.8558e+00
Measured lifetime	: 2.5987e-08