

$$N = N_0 \exp(-x/\upsilon\tau)$$

In CM-frame, the lifetime $\, {\cal T}_{_0} \,$ is not same as $\, {\cal T} \,$ The relationship is:

$$\tau = \frac{\tau_0}{\sqrt{1 - v^2 / c^2}} = \frac{\tau_0}{\sqrt{1 - \beta^2}} = \gamma \tau_0$$

University of Gaziantep Page 5:11
The population (N) of pions can also be written as:

$$N = N_0 \exp(-x/\lambda)$$
where λ is the mean decay length which is given by:

$$\lambda = \gamma \beta \tau_0 c$$
If we know momentum p in MeV/c and mass m in MeV/c² of the pions:

$$\gamma = \sqrt{p^2 + m^2} / m$$

$$\beta = \sqrt{1 - 1/\gamma^2}$$

$$\tau_0 = 2.602 \times 10^{-8} \text{ s}$$

Computer Simulation

- $N_0 = 10,000$ pions are generated for each run
- All pions assumed to have **same** momentum *p* and **same** direction
- The pion counter is moved from 1m to 10m, step 1m
- Decay Rates are calculated by counting pions corresponding to each Distance
- A graph is constructed for <u>Decay Rates</u> vs <u>Distance</u> in a *semilog* plot of data (linear dependence)
- The slope and intercept is extracted from the plot using Least Square Fitting technique. (see: http://www1.gantep.edu.tr/~andrew/ep208/notes?lecture=3)
- From the slope, mean lifetime is calculated

University of Gaziantep	March 200
Department of Engineering Physics	Page 11/1
Sample Output	
*** Monte Carlo Simulation for the **********	
*** Measurement of Charged Pion Life Time ***	
Pion mom. generated (MeV/c): 5.000e+01	
Pion life time (s) : 2.602e-08	
Number of Pion generated : 10000	
Number of counter positon : 10	
Values obtained for each position:	
1 6912 8.841e+00	
2 4852 8.48/0+00	
3 3382 8.1260100	
5 1724 7 452e+00	
6 1211 7 0990+00	
7 832 6.724e+00	
8 574 6.353e+00	
9 398 5.986e+00	
10 270 5.598e+00	
Fitting results:	
Slope, A = -3.5804e-01	