A Monte-Carlo Simulation of the Stern-Gerlach Experiment

SGE: $d B / d z>0, S z$ is quantized

Dr. Ahmet BingüL
Gaziantep Üniversitesi
Fizik Mühendisliği Bölümü
Nisan 2008

Content

- Stern-Gerlach Experiment (SGE)
- Electron spin
- Monte-Carlo Simulation

You can find the slides of this seminar and computer programs at: http://www1.gantep.edu.tr/~bingul/seminar/spin

The Stern-Gerlach Experiment

- The Stern-Gerlach Experiment (SGE) is performed in 1921, to see if electron has an intrinsic magnetic moment.
- A beam of hot (neutral) Silver $\left({ }_{47} \mathrm{Ag}\right)$ atoms was used.
- The beam is passed through an inhomogeneous magnetic field along z axis. This field would interact with the magnetic dipole moment of the atom, if any, and deflect it.
- Finally, the beam strikes a photographic plate to measure, if any, deflection.

The Stern-Gerlach Experiment

- Why Neutral Silver atom?
$>$ No Lorentz force ($\mathbf{F}=q \mathbf{v} \times \mathbf{B}$) acts on a neutral atom, since the total charge (q) of the atom is zero.
$>$ Only the magnetic moment of the atom interacts with the external magnetic field.
$>$ Electronic configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1} 4 p^{6} 4 d^{10} 5 s^{1}$ So, a neutral Ag atom has zero total orbital momentum.
$>$ Therefore, if the electron at 5 s orbital has a magnetic moment, one can measure it.
- Why inhomogenous magnetic Field?
$>$ In a homogeneous field, each magnetic moment experience only a torque and no deflecting force.
$>$ An inhomogeneous field produces a deflecting force on any magnetic moments that are present in the beam.

The Stern-Gerlach Experiment

- In the experiment, they saw a deflection on the photographic plate. Since atom has zero total magnetic moment, the magnetic interaction producing the deflection should come from another type of magnetic field. That is to say: electron's (at 5s orbital) acted like a bar magnet.
- If the electrons were like ordinary magnets with random orientations, they would show a continues distribution of pats. The photographic plate in the SGE would have shown a continues distribution of impact positions.
- However, in the experiment, it was found that the beam pattern on the photographic plate had split into two distinct parts.
Atoms were deflected either up or down by a constant amount, in roughly equal numbers.
- Apparently, z component of the electron's spin is quantized.

The Stern-Gerlach Experiment

A plaque at the Frankfurt institute commemorating the experiment

IM FEBRUAR 1922 WURDE IN DIESEM GEBÄUDE DES PHYSIKALISCHEN VEREINS, FRANKFURT AM MAIN, VON OTTO STERN UND WALTHER GERLACH DIE FUNDAMENTALE ENTDECKUNG DER RAUMQUANTISIERUNG DER MAGNETISCHEN MOMENTE IN ATOMEN GEMACHT. AUF DEM STERN-GERLACH-EXPERIMENT BERUHEN WICHTIGE PHYSIKALISCH-TECHNISCHE ENTWICKLUNGEN DES 20. JHDTS., WIE KERNSPINRESONANZMETHODE, ATOMUHR ODER LASER. OTTO STERN WURDE 1943 FÜR DIESE ENTDECKUNG DER NOBELPREIS VERLIEHEN.

Electron Spin

- 1925: S.A Goutsmit and G.E. Uhlenbeck suggested that an electron has an intrinsic angular momentum (i.e. magnetic moment) called its spin.
- The extra magnetic moment μ_{s} associated with angular momentum \mathbf{S} accounts for the deflection in SGE.
- Two equally spaced lined observed in SGE shows that electron has two orientations with respect to magnetic field.

Electron Spin

- Orbital motion of electrons, is specified by the quantum number l.
- Along the magnetic field, l can have $2 l+1$ discrete values.

$$
\begin{aligned}
L & =\sqrt{l(l+1)} \hbar & l & =0,1,2, \cdots, n-1 \\
L_{z} & =m_{l} \hbar & m_{l} & =l, l-1, \cdots,-(l-1),-l
\end{aligned}
$$

Electron Spin

- Similar to orbital angular momentum \mathbf{L}, the spin vector \mathbf{S} is quantized both in magnitude and direction, and can be specified by spin quantum number s.
- We have two orientations: $2=2 s+1 \rightarrow s=1 / 2$

$$
S=\sqrt{s(s+1)} \hbar=\sqrt{1 / 2(1 / 2+1)} \hbar=\frac{\sqrt{3}}{2} \hbar
$$

The component S_{z} along z axis:

$$
S_{z}=m_{s} \hbar \quad \begin{array}{ll}
m_{s}=+1 / 2 & (\text { spin up }) \\
m_{s}=-1 / 2 & (\text { spin down })
\end{array}
$$

Electron Spin

It is found that intrinsic magnetic moment $\left(\boldsymbol{\mu}_{\mathrm{s}}\right)$ and angular momentum (\mathbf{S}) vectors are proportional to each other:

$$
\boldsymbol{\mu}_{s}=-g_{s} \frac{e}{2 m} \mathbf{S}
$$

where g_{s} is called gyromagnetic ratio.
For the electron, $g_{s}=2.0023$.

The properties of electron spin were first explained by
Dirac (1928), by combining quantum mechanics with theory of relativity.

Monte-Carlo Simulation

Experimental Set-up:

Ag Source \quad magnetic field region \quad photographic plate

Monte-Carlo Simulation

Ag atoms and their velocities:

Initial velocity v of each atom is
selected randomly from the
Maxwell-Boltzman distribution function:

$$
F_{m b}=\sqrt{2} N \pi\left(\frac{m}{\pi k T}\right)^{3 / 2} v^{2} \exp \left(-\frac{m v^{2}}{2 k T}\right)
$$

around peak value of the velocity:

$$
v_{p}=\sqrt{2 k T / m}
$$

Note that:

- Components of the velocity at ($\mathrm{x}_{0}, 0, \mathrm{z}_{0}$) are assumed to be:
$v_{\mathrm{y} 0}=v$, and $v_{\mathrm{x} 0}=v_{\mathrm{z} 0}=0$.
- Temperature of the oven is chosen as $T=2000 \mathrm{~K}$.

- Mass of an Ag atom is $m=1.8 \times 10^{-25} \mathrm{~kg}$.

Monte-Carlo Simulation

The Slit:

Initial position $\left(x_{0}, 0, y_{0}\right)$, of each atom is seleled randomly from a uniform distribution.

That means: the values of x_{0} and z_{0} are populated randomly in the range of [Xmax, Zmax], and at that point,
 each atom has the velocity $(0, v, 0)$.

Monte-Carlo Simulation

The Magnetic Field:

In the simulation, for the field gradient
 (dB/dz) along z axis, we assumed the following 3-case:

- uniform magnetic field: $\partial B_{z} / \partial z=0$
- constant gradient $\quad: \partial B_{z} / \partial z=100 \mathrm{~T} / \mathrm{m}$
- field gradient is modulated by a Gaussian i.e. $\partial B_{z} / \partial z=100 \exp \left(-k x^{2}\right)$

We also assumed that along beam axis:

$$
\begin{aligned}
& \partial B_{z} / \partial x=0 \\
& \partial B_{x} / \partial z=0 \\
& \partial B_{x} / \partial x \approx 0
\end{aligned} \quad B_{y}=0
$$

Monte-Carlo Simulation
 Equations of motion:

Potential Energy of an electron:

$$
U=-\mu_{s} \cdot \mathbf{B}=-\mu_{s x} B_{x}-\mu_{s y} B_{y}-\mu_{s z} B_{z}
$$

Componets of the force:

$$
\begin{aligned}
& F_{x}=-\frac{\partial U}{\partial x}=\mu_{s x} \frac{\partial B_{x}}{\partial x}+\mu_{s z} \frac{\partial B_{z}}{\partial x} \approx 0 \quad\left(\text { since } \partial B_{x} / \partial x \approx 0 \text { and } \partial B_{z} / \partial x=0\right) \\
& F_{y}=-\frac{\partial U}{\partial y}=0 \\
& \begin{array}{l}
\left(\text { since } B_{y}=0\right)
\end{array} \\
& F_{z}=-\frac{\partial U}{\partial z}=\mu_{s x} \frac{\partial B_{z}}{\partial z}+\mu_{s z} \frac{\partial B_{z}}{\partial z}=\mu_{s z} \frac{\partial B_{z}}{\partial z} \quad\left(\text { since } \partial B_{z} / \partial z=0\right) \\
& \text { Consequently we have, } \\
& F_{x} \approx 0 \quad F_{y}=0 \quad F_{z}=\mu_{s z} \frac{\partial B_{z}}{\partial z}=\mu_{s} \cos \theta \frac{\partial B_{z}}{\partial z}
\end{aligned}
$$

Monte-Carlo Simulation
 Equations of motion:

Differential equations and their solutions:

$$
\begin{array}{l|c}
a_{x}=\frac{d^{2} x}{d t^{2}}=\frac{F_{x}}{m_{A g}} \approx 0 \\
x=x_{0}+v_{0 x} t & \begin{array}{c}
a_{y}=\frac{d^{2} y}{d t^{2}}=\frac{F_{y}}{m_{A g}}=0 \\
y=y_{0}+v_{y} t
\end{array} \\
\text { since } \mathrm{v}_{0 \mathrm{x}}=0 \\
x=x_{0} & \begin{array}{c}
a_{z}=\frac{d^{2} z}{d t^{2}}=\frac{F_{z}}{m_{A g}}=\frac{\mu_{s z} \partial B_{z} / \partial z}{m_{A g}} \\
\text { since } \mathrm{v}_{0 \mathrm{y}}=\mathrm{v} \text { and } \mathrm{y}_{0}=0 \\
y=v t
\end{array} \\
z=z_{0}+v_{0 z} t+\frac{1}{2} a_{z} t^{2} \\
\text { since } \mathrm{v}_{0 z}=0 \\
z=z_{0}+\frac{1}{2} a_{z} t^{2}
\end{array}
$$

So the final positions on the photographic plate in terms of v, L and D :

$$
x=x_{0} \quad y=L+D
$$

$$
z=z_{0}+\frac{1}{2} a_{z}\left(\frac{L}{v}\right)^{2}+D \sqrt{\frac{2 a_{z} L}{v}}
$$

Here x_{0} and z_{0} are the initial positions at $\mathrm{y}=0$.

Monte-Carlo Simulation

Quantum Effect:

Spin vector components:

$$
\mathbf{S}=\left(S_{\mathrm{x}}, S_{\mathrm{y}}, S_{\mathrm{z}}\right)
$$

In spherical coordinates:

$$
\begin{aligned}
& S_{\mathrm{x}}=|\mathbf{S}| \sin (\theta) \cos (\varphi) \\
& S_{\mathrm{y}}=|\mathbf{S}| \sin (\theta) \sin (\varphi) \\
& S_{\mathrm{z}}=|\mathbf{S}| \cos (\theta)
\end{aligned}
$$

where the magnitude of the spin vector is: $\quad|\mathbf{S}|=\frac{\sqrt{3}}{2} \hbar$

Monte-Carlo Simulation Quantum Effect:

Angle φ can be selected as:

$$
\varphi=2 \pi R
$$

where R is random number in the range $(0,1)$.

However, angle θ can be selected as follows:

- if S_{z} is not quantized, $\cos \theta$ will have uniform random values:

$$
\cos \theta=2 R-1
$$

- else if S_{z} is quantized, $\cos \theta$ will have only two random values:

$$
\cos \theta=\frac{S_{z}}{S}=\frac{ \pm \hbar / 2}{\sqrt{3} \hbar / 2}= \pm \frac{1}{\sqrt{3}}
$$

Monte-Carlo Simulation

Geometric assumptions in the simulation:

- $L=100 \mathrm{~cm}$ and $D=10 \mathrm{~cm}$
- $X \max =5 \mathrm{~cm}$ and $Z \max =0.5 \mathrm{~cm}$

Monte-Carlo Simulation

Physical assumptions in the simulation:

- $N=10,000$ or $N=100,000 \mathrm{Ag}$ atoms are selected.
- Velocity (v) of the Ag atoms is selected from Maxwell-Boltzman distribution function around peak velocity.
- The temperature of the Ag source is takes as $T=2000 \mathrm{~K}$. (For the silver atom: Melting point $T=1235 \mathrm{~K}$; Boiling point 2435 K)
- Field gradient along z axis is assumed to be:
$>\partial B_{z} / \partial z=0$
$>\partial B_{z} / \partial z=100 \mathrm{~T} / \mathrm{m} \quad$ constant field gradient along z axis
$>\partial B_{z} / \partial z=100 \exp \left(-k x^{2}\right) \quad$ field gradient is modulated by a Gaussian
- z component of the spin $\left(S_{z}\right)$ is
$>$ either quantized according to quantum theory such that $\cos \theta=1 /$ sqrt(3)
$>$ or $\cos \theta$ is not quantized and assumed that it has random orientation.

Results

- Hereafter slides, you will see some examples of simulated distributions that are observed on the photographic plate.
- Each red point represents a single Ag atom.
- You can find the source codes of the simulation implemented in Fortran 90, ANSI C and ROOT programming languages at:
http://www1.gantep.edu.tr/~bingul/seminar/spin

Results $\quad \mathrm{dB} / \mathrm{dz}=0$

$$
N=10,000
$$

SGE: $\mathrm{dB} / \mathrm{dz}=0, \mathrm{Sz}$ is not quantized.

$N=100,000$

SGE: $\mathrm{dB} / \mathrm{dz}=0, \mathrm{Sz}$ is not quantized.

Results $\quad d B / d z=0$

$N=10,000$

SGE: $\mathrm{dB} / \mathrm{dz}=0, \mathrm{Sz}$ is quantized

$N=100,000$

SGE: $\mathrm{dB} / \mathrm{dz}=0, \mathrm{Sz}$ is quantized

Results $\quad \mathrm{dB} / \mathrm{dz}=$ constant >0

$$
N=10,000
$$

SGE: $\mathrm{dB} / \mathrm{dz}>0, \mathrm{Sz}$ is not quantized

$N=100,000$

SGE: $d B / d z>0, S z$ is not quantized

Results $\quad \mathrm{dB} / \mathrm{dz}=$ constant >0

$$
N=10,000
$$

SGE: $\mathrm{dB} / \mathrm{dz}>0, \mathrm{Sz}$ is quantized

$N=100,000$

SGE: $\mathrm{dB} / \mathrm{dz}>\mathbf{0 , S z}$ is quantized

Results dB/dz = constant * $\exp \left(-k x^{2}\right)$

$$
N=10,000
$$

SGE: $d B / d z>0, S z$ is not quantized

$N=100,000$

SGE: $\mathrm{dB} / \mathrm{dz}>0, \mathrm{Sz}$ is not quantized

Results dB/dz = constant * $\exp \left(-k x^{2}\right)$

$$
N=10,000
$$

SGE: $\mathrm{dB} / \mathrm{dz}>0, \mathrm{Sz}$ is quantized

$$
N=100,000
$$

SGE: $\mathrm{dB} / \mathrm{dz}>0, \mathrm{Sz}$ is quantized

End of Seminar

Thanks.

April 2008

