




Introduction to Lens Design

Optical lenses have many important applications, from telescopes and spectacles, to
microscopes and lasers. This concise, introductory book provides an overview of the
subtle art of lens design. It covers the fundamental optical theory, and the practical
methods and tools employed in lens design, in a succinct and accessible manner. Topics
covered include first-order optics, optical aberrations, achromatic doublets, optical
relays, lens tolerances, designing with off-the-shelf lenses, miniature lenses, and zoom
lenses. Covering all the key concepts of lens design, and providing suggestions for
further reading at the end of each chapter, this book is an essential resource for graduate
students working in optics and photonics, as well as for engineers and technicians
working in the optics and imaging industries.

jos é sas i án is Professor of Optical Design at the James C. Wyant College of Optical
Sciences at the University of Arizona in Tucson, AZ. He has taught a course on lens
design for more than 20 years and has published extensively in the field. He has worked
as a consultant in lens design for the optics industry, and has been responsible for the
design of a variety of successful and novel lens systems.
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With appreciation to my lens design students.
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This is evident even more when we realize that the combinations of
lenses are very capricious entities, which in certain arrangements,
probably because of laws deeply hidden in the building blocks of
complicated functions, will give either not a good image at all, or one
that is inevitably curved or distorted, and one understands easily that
a lack of knowledge of these laws can lead to high costs and great
useless efforts.

Joseph Maximillian Petzval
Bericht über die Ergebnisse einiger dioptrischen

Untersuchungen (Pest, 1843)
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Preface

I have been fortunate to have taught for many years the course Lens Design
OPTI517 at the James C. Wyant College of Optical Sciences at the University of
Arizona. The thrust of this course is to help graduate students to acquire the skill
of lens design and obtain a solid foundation in the subject in the space of about
16 weeks, which is the duration of the Fall academic term. Behind the scenes,
the challenge has been how to completely and effectively achieve this thrust.
This book is the result of teaching OPTI517 for about 20 years, and outlines the
essential material interested students or optical engineers should know.

I have had the support and help from many individuals and I would like to
acknowledge and to thank them. Robert Shannon handed me OPTI517, which
he initiated and taught for many years at the then Optical Sciences Center. My
colleagues Russell Chipman, John Greivenkamp, Angus Macleod, Jim Burge,
Yuzuru Takashima, Tom Milster, Ron Liang, Buddy Martin, Hong Hua, Jim
Schwiegerling, Roland Shack, Masud Mansuripur, Roger Angel, Stanley Pau,
Bill Wolfe, Roy Frieden, Brian Anderson, Arvind Marathay, Rolf Binder, Dae
Woo Kim, Eustace Dereniak, Steve Jacobs, Harry Barrett, Charles Falco, Jack
Gaskill, John Koshel, and Dan Vukobratovich have been helpful and inspir-
ational. I also would like to thank Richard Powell, Jim Wyant, and Tom Koch
for the support they have provided me.

I have been fortunate to receive a “yes” when I asked many experts to visit
the University of Arizona and help me teach lectures in optical design. Among
the many individuals that I can recall and would like to acknowledge and thank
are Richard Juergens, Bill Cassarly, Rich Pfisterer, Michael Humphreys,
Akash Arora, Vini Mahajan, Richie Youngworth, Richard Buchroeder, Donald
Dilworth, Mary Turner, Michael Gauvin, Craig Pansing, Dave Shafer, Jay
Wilson, Jake Jacobsen, and John Rogers.

I would like to acknowledge and thank the lens design software companies,
Lambda Research Corporation, Optenso™, Optical Systems Design, Inc.,
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Synopsis®, and Zemax for always providing excellent academic access to their
lens design software and for their outstanding support.

Richard Buchroeder, William Hicks, Craig Pansing, and Jim Schwiegerling
provided many useful comments and suggestions to improve several chapters
in this book. I am grateful for their help in this endeavor.

I would like thank Nicholas Gibbons, Sarah Lambert, and Roisin Munnelly,
at Cambridge University Press, Vinithan Sethumadhavan at SPi-Global, and
Liz Steel for their excellent editorial work in publishing this book.
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1

Introduction

Lens design is an exciting and important field of optics. This field provides
designs for a great diversity of lens and mirror systems needed in many other
fields, such as consumer optics, microscope optics, telescope optics, lenses for
optical lithography, and photographic optics. Lens and mirror systems are
ubiquitous. The work of a lens designer is to provide the constructional data
and fabrication tolerances of all the optical elements that a given lens system
requires to perform the intended function. Currently many students and engin-
eers are interested in lens design because the field by itself is of great interest,
or because they have the need to analyze and design lens systems required in
their engineering practice. An optical engineer should have at least some
familiarity with how a lens system is designed so that he or she can effectively
contribute to develop optical systems.

1.1 Aims of This Book

This book is an introduction to lens design, and has been written to provide an
overview of topics that are indispensable to acquire the skill of lens design.
Acquiring this skill, the skill of lens design, requires learning some theory,
learning how to use lens design software, and gaining experience by designing
actual lenses. This book will help the interested reader to understand the theory
and methods used in lens design. The book does not have lengthy discussions
but, rather, brief discussions to point out essential knowledge. A few refer-
ences are given for further reading, where the reader can deepen his or her
knowledge about a topic.

There are many excellent books about lens design, such as Lens Design
Fundamentals by Rudolf Kingslake and Barry Johnson, and Modern Lens
Design by Warren Smith. However, these and other comprehensive books

1
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might not be appropriate for an introduction to lens design, as part of their
main focus is the design and survey of a variety of specific lenses. Instead, this
introductory book intends to be brief and also to give an overview of topics
that a current optical engineer needs to know about lens system design.
A graduate student or an optical engineer who understands the content of this
book and models, in a lens design program, the different lens systems dis-
cussed in it, would then have a solid foundation to practice the skill of lens
design. Another aim of this book is to provide an efficient introduction to lens
design to an interested student or optical engineer, so that he or she is well
positioned to analyze, combine, debug, adjust, or design lens systems.

1.2 Topics Covered

Essential to lens design, and to optical engineering, is an understanding about
how optical aberrations are corrected, balanced, or minimized. The reader
should have some familiarity with first-order optics and with the theory of
optical aberrations, as many discussions revolve about the choices made in the
layout of a lens system and how to correct the aberrations. In this book,
structural aberration coefficients are used to determine primary aberrations
and to understand how to correct, balance, or minimize them. Chapter 2
provides a review of first-order optics and aberrations. Chapter 3 provides a
brief discussion of aspheric surfaces. Chapter 4 provides a discussion of thin
lenses and how aberrations are controlled in very simple lens systems. Chap-
ter 5 provides a discussion about how ray tracing takes place, and some useful
techniques. Chapter 6 provides a discussion about radiometric aspects of a lens
system, which are important for a more comprehensive understanding of how
lenses work. Chapter 7 discusses achromatic and athermal lenses. Chapter 8
provides a number of lens examples that use combinations of achromatic
doublets. This chapter is insightful because it shows how lenses are combined.
Chapter 9 discusses the tools used to determine image quality. Chapter 10
discusses how to perform a tolerancing analysis for providing tolerances to the
constructional parameters of a lens system that will be manufactured. Chap-
ter 11 comments on issues in using a lens design program. Chapter 12 dis-
cusses three classical lenses; the Petzval portrait objective, the Cooke triplet,
and the double Gauss lens. Chapter 13 discusses issues that arise in combining
lens systems; it also contributes to providing a more comprehensive view
about lens systems. Chapter 14 discusses designing with off-the-shelf lenses.
Chapter 15 discusses ghost images in a lens system. Chapter 16 discuses some
basic mirror systems. Chapter 17 discusses miniature lenses. Chapter 18

2 Introduction
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provides basic concepts in zoom lens design. In addition to a glossary of terms,
the book provides five Appendices, where several tables related to aberrations
are provided, as well as a discussion of the sine condition. Thus, the book
contents provide a shift in the way lens design is taught. In this introductory
book there is more emphasis on providing a broader view of fundamentals and
essential topics in lens design, rather than bringing attention to the detailed
design of a survey of lenses. This shift responds to current needs in the optical
industry, and modern approaches to learning. Yet, this book provides a solid
introduction for those who would like to specialize in the art of lens design.

1.3 The Art of Lens Design

There are many types of lens systems, and their variety is increasing with
advancements and the creation of new technological fields. Examples of lens
types are projection lenses, telephoto lenses, convertible lenses, catadioptric
lenses, zoom lenses, underwater lenses, lenses for aerial photography, ana-
morphic lenses, panoramic lenses, lenses for video and cinematography, lenses
for scanning, relay lenses, periscope lenses, and lenses for endoscopes.

The process of lens design starts with understanding the application the
intended lens is to be designed for. From understanding the application,
the lens specifications list follows. This list of specifications is not always
complete or correct. A lens designer must make efforts to verify that the
specifications list is as complete and correct as possible. The lens specifications
may involve first-order, packaging, image quality, environmental, and lens
fabrication constraints and requirements. Once the specifications are under-
stood, the lens designer may start a design from first principles, and by adding
complexity to simple lenses. A first-order lens layout can help to visualize a
given lens and determine, for example, lens size, element optical power, and
type of lens configuration. From the first-order layout, considerations are made
about how the aberrations could be corrected. Then a lens design program is
used to model and optimize the lens system, and to find alternative lens
solutions for comparison. A lens analysis is also made to determine tolerances
that a lens manufacturer would need to make the lens elements. A lens design
can also start from existing lenses in the patent literature. A lens designer
should have effective communication with the opto-mechanical engineer and
lens manufacturer to make sure that the designed lens can be mounted in a
barrel, fabricated, and assembled. Lens drawings are then drafted. Some
optical engineers may not actually design lenses, but would analyze, debug,
adjust, and combine existing lens systems. A critical design review is often

1.3 The Art of Lens Design 3
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held to approve, or disapprove, a lens for fabrication. The overall process of
lens design is also of exercising design creativity, and this in part is what
makes lens design an exciting field.

Further Reading

Bentley, Julie L., Olson, Craig, Youngworth, Richard N. “In the era of global optimiza-
tion, the understanding of aberrations remains the key to designing superior optical
systems,” Proceedings of SPIE 7849, Optical Design and Testing IV, 78490C
(2010); doi: 10.1117/12.871720.

Kidger, M. J. “The importance of aberration theory in understanding lens design,”
Proceedings of SPIE, 3190 (1997), 26–33.

Sasián, J. “Trends in teaching lens design,” Proceedings of SPIE, 4588 (2001), 56–58.
Sasián, José. “From the landscape lens to the planar lens: a reflection on teaching lens

design,” Proceedings of SPIE 5865, Tribute to Warren Smith: A Legacy in Lens
Design and Optical Engineering, 58650I (2005); doi: 10.1117/12.624566.

Shannon, Robert R. “Teaching of lens design,” Proceedings of SPIE 1603, Education in
Optics (1992); https://doi.org/10.1117/12.57848.
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2

Classical Imaging, First-Order Imaging, and
Imaging Aberrations

This chapter provides a brief overview of essential imaging concepts used in
lens design. Whether classical imaging, which is congruent with first-order
optics, is required in a lens system, or any other type of imaging, depends on
system application. Therefore, a clear understanding of what imaging is and of
departures from such imaging, called aberrations, is essential for a lens design
practice.

2.1 Classical Imaging

The main goal in lens design is the design of imaging lenses where images,
particularly sharp, are formed. Then it is important to discuss the concept of an
image. Depending on application, different imaging concepts can be devised.
However, classical imaging, where the image is a scaled copy of the object, is
often required for a lens system. The underlying mechanism for classical
imaging is central projection. Object points are projected into image points
on an image plane, by the line defined by an object point on the object plane
and a central projection point pair as shown in Figure 2.1. The projection point
pair is the center of perspective and in a lens system, which we assume to have
axial symmetry, is represented by a nodal point in object space and its
conjugate point, the nodal point in image space. The main attributes of a
classical image are its location and its size. The Newtonian or Gaussian
imaging equations shown in Table 2.1 permit calculating these attributes and
represent central projection imaging.

Ideal imaging as defined by central projection is often a designing goal. For
an object at infinity that subtends a semi-field of view, θ, the image height, �yi,
measured from the optical axis, is related to the focal length, f , by the
mapping, �yi ¼ f � tan θð Þ. However, according to application, there are other

5
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possible mappings such as the equidistant mapping, �yi ¼ f �θ, or the ortho-
graphic mapping, �yi ¼ f � sin θð Þ. We are assuming that the object and image
lay on planes perpendicular to the optical axis of the optical system. There are
some applications that require the image to lay on a curved surface, and then
the concept of classical imaging no longer applies.

The point is that lenses are designed to produce images which require a lens
designer to be clear about what imaging means. Imaging is and will continue to
be an important subject which substantially impacts lens design. What imaging
is depends on system application.

2.2 First-Order Optics

The concept of first-order imaging arises from a first-order approximation to
the path of a real ray. A real ray in homogenous media travels in straight lines,

Figure 2.1 Central projection imaging where the object on the left is imaged on
the right. In this case the projection points coincide in space.

Table 2.1 Imaging equations

Newtonian equations Gaussian equations

z
f ¼ � 1

m
f 0
z0 þ f

z ¼ 1
z0
f 0 ¼ �m z

f ¼ 1� 1
m

zz0 ¼ ff 0 z0
f 0 ¼ 1� m

The object and image distances z and z0
are measured, respectively, from the front
and rear focal points. f and f 0 are the front
and rear focal lengths.

The object and image distances z and z0
are measured, respectively, from the front
and rear principal points. The transverse
magnification is m.

6 Classical Imaging, 1st-Order Imaging & Imaging Aberrations
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refracts according to Snell’s law, n0 sin I 0ð Þ ¼ n sin Ið Þ, and its tracing con-
siders the actual shape of the refracting surface. A first-order ray refracts
according to a first-order approximation to Snell’s law, n0i0 ¼ ni, and treats
the optical surfaces as planar, but with refracting power, ϕ. To trace a first-
order ray, the refraction and transfer equations are used:

n0u0 ¼ nu� yϕ (2.1)

y0 ¼ yþ u0t, (2.2)

where u and u0 are the slopes of the ray before and after refraction, y is the ray
height at the surface which is assumed planar but with optical power ϕ, n is the
index of refraction, and t is the distance to the next surface.

In lens designwe are concernedwith first-order imaging, as obtained by tracing
first-order rays, because it is equivalent to central projection imaging. In addition,
first-order imaging establishes a model for a lens system where the cardinal
points – these are the focal points, the nodal points, and the principal points –
have specific ray properties and serve as useful references. Many calculations in
lens design are done by tracing first-order rays and, therefore, an optical designer
must be familiar with first-order optics. An example of a calculation in lens design
software iswhat is known as a “solve” inwhich the program automatically sets the
distance t from the last surface to the ideal image plane using t ¼ �y=u0.

The space where the object resides is called the object space and is infinite in
extent. Similarly, the space where the image resides is called the image space
and is infinite in extent. An important structure in a lens system is the aperture
stop. The aperture stop is assumed to be circular, to lay on a plane perpendicu-
lar to the optical axis, and it solely limits the amount of light for the on-axis
beam. The aperture stop helps to well define a lens system; this is, light beams
for every field point become well defined after they pass through the aperture
stop. The image of the aperture stop in object space is defined as the entrance
pupil, and the image of the aperture stop in image space is defined as the exit
pupil. The pupils and the stop are optically conjugated, meaning that their
locations and sizes satisfy the Newtonian or Gaussian equations that are
summarized in Table 2.1. Another aperture that contributes to well define a
lens system is the field stop. The field stop limits the field of view of a lens
system, and ideally it is located at an image plane.

Rays that travel in a plane that contains the lens system axis of rotational
symmetry are calledmeridional rays. Rays that do not travel in a meridional plane
are called skew rays. Two important first-order rays are the marginal and chief
rays. By definition, the marginal ray is a meridional ray that originates at the on-
axis object point and passes through the edge of the aperture stop. The chief ray is
a meridional ray that originates at the edge of the field of view and passes through

2.2 First-Order Optics 7
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the center of the aperture stop. The trace of these two rays permits obtaining useful
information about the imaging of an optical system. Figure 2.2 shows an object
plane, an aperture stop, a lens, an image plane, and two sets of rays defining two
light beams for the on-axis object point and for an off-axis point. In particular,
Figure 2.2 illustrates the marginal and chief rays using bold rays. Table 2.2
provides a glossary of first-order concepts, and Table 2.3 provides a
summary of first-order quantities. The Lagrange invariant, Ж, is defined by

Table 2.2 First-order concepts

Optical axis The axis about which an optical system has rotational
symmetry.

Object space The space where the object resides, which is assumed
infinite in extent.

Image space The space where the image resides, which is assumed
infinite in extent.

Aperture stop The aperture that solely limits the amount of light for
the axial light beam.

f Front focal length.
f 0 Rear focal length.
Optical power or Refractive
power (ϕ)

ϕ ¼ � n
f ¼ n0

f 0; n is the index of refraction in object
space, and n0 is the index in image space. The unit of
power is the diopter or 1/meter.

Effective focal length (EFL) The inverse of the optical power.
F/#, F-number The effective focal length divided by the diameter of

the entrance pupil. F=# ¼ EFL
2ye

Lagrange invariant (Ж) It relates to the optical throughput or capacity of
an optical system to transfer optical
power. Ж ¼ n�uy� nu�y

Afocal The focal lengths are not defined.
Telecentricity in object space The image of the aperture stop in object space is at

infinity. Equivalently, the chief ray in object space is
parallel to the optical axis.

Telecentricity in image space The image of the aperture stop in image space is at
infinity. Equivalently, the chief ray in image space is
parallel to the optical axis.

Transverse magnification (m) The first-order ratio of the image size to the object
size.

Object plane
Aperture stop

Marginal ray

Image plane

Chief ray
Lens Field

stop

Figure 2.2 The marginal and chief rays (highlighted in bold) in relation to the
aperture stop, the object and image planes, the field stop, and an ideal lens.
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Ж ¼ n�uy� nu�y, using the slope and height of the marginal and chief rays. Its
value does not depend on the transverse plane where it is calculated. The amount
of optical flux, or optical throughput, T ¼ π2Ж2, that can pass through an optical
system is proportional to the square of the Lagrange invariant.

Figure 2.3 provides a representation of an optical system where the object and
image planes and the entrance and exit pupils are shown. The solid line represents
a real ray traveling from the object plane to the image plane, and the broken line
represents a first-order ray. Two points are required to define a ray; the first point is
defined by the field vector,H

!
, which lies in the object plane, and the second point

is defined by the aperture vector, ρ
!
, which lies in the exit pupil plane. Both vectors

are normalized so their magnitudes range from 0 to 1. To indicate an actual field

Table 2.3 Marginal and chief first-order rays’ related quantities

Item Marginal ray Chief ray

Object/pupil distance s �s
Image/pupil distance s0 �s0
Ray slope of incidence i ¼ u� α �i ¼ �u� �α
Ray height at surface y

ye
ys

�y
�yo
�yi

Ray slope u ¼ �y=s �u ¼ ��y=�s
Normal line slope α ¼ �y=r ¼ u� i �α ¼ ��y=r ¼ �u��i
Refraction invariant A ¼ ni ¼ n 1

r � 1
s

� �
y �A ¼ n�i ¼ n 1

r � 1
�s

� �
�y

Surface radius r
Surface vertex curvature c
Thickness to next surface t
Surface optical power ϕ ¼ n0�n

r
Lagrange invariant Ж ¼ n�uy� nu�y ¼ �Ay� A�y

Quantities related to the chief ray carry a bar.
Primed quantities refer to the image space and un-primed to the object space.

Figure 2.3 Model of an axially symmetric optical system showing the path of a
first-order ray and the path of a real ray.

2.2 First-Order Optics 9
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point, the field vector is scaled by the chief ray height in object space, �yo, and the
aperture vector is scaled by the marginal ray height, ys, at the exit pupil. In
Figure 2.3 the real ray and the first-order ray coincide necessarily, per definition,
at the object plane and at the exit pupil plane. Everywhere else these rays may
differ in path. In particular, at the image plane they differ by the vector �yiΔH

!
, and

at the entrance pupil plane by the vector yeΔ ρ!. They differ at the image plane
because of image defects known as image aberrations; similarly they differ at the
entrance pupil because of pupil aberrations.

A lens designer may start a design with a first-order lens layout, as shown in
Figure 2.4. Two ideal lenses with the same focal length form a 4f relay, as the
distance between object and image is four-times the focal length of the lens
elements. Such a layout provides useful information such as the ideal path of
rays, the diameter of the lens elements, and the system’s size.

In sum, first-order optics is equivalent to classical imaging and provides a
basic structure to model a lens system.

2.3 Imaging Aberrations

Actual lens systems do not produce perfect imaging, but introduce image
defects known as optical aberrations. Aberration can refer to wave aberration,
transverse, longitudinal, or angular ray aberration.

In relation to Figure 2.5 the Optical Path Length (OPL) along a ray is
defined as,

Figure 2.4 A doubly telecentric relay system in a first-order layout. Rays from on-
axis and off-axis field points are shown. Two ideal positive lenses are schematic-
ally drawn as vertical lines with arrow ends.

Figure 2.5 Left: Path of a ray in an inhomogeneous medium. Right: Path of a ray
in several homogenous media.

10 Classical Imaging, 1st-Order Imaging & Imaging Aberrations
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OPL ¼
ðb

a

n sð Þds, (2.3)

where n x; y; zð Þ is the index of refraction as a function of position, and ds is the
element of arc length. If the index of refraction is uniform from medium to
medium, then the OPL reduces to a summation over the different media,

OPL ¼
X
i

nisi, (2.4)

where ni is the index of refraction, and si is the ray length in medium i. The units
of OPL are of length, for example, millimeters. If the OPL is divided by the
speed of light, then we obtain a transit time from point a to point b along the ray.

Taking an object point as the origin of rays, the geometrical wavefront is
defined as the locus of constant optical path length. As shown in Figure 2.6, in
a homogenous medium the wavefront is spherical in shape. However, when
the wavefront propagates through an optical system, it is deformed, and its
shape is no longer spherical. As the rays are normal to the wavefront, they no
longer converge to a sharp image point; i.e., the ideal image point as defined by
central projection. In relation to Figure 2.7, the wavefront aberration represents

Figure 2.6 Rays and waves which diverge from a point source are refracted by a
lens and converge to a point image.

Figure 2.7 Different metrics to refer to aberrations as wavefront deformation,
angular ray aberration, transverse ray aberration, or longitudinal ray aberration.

2.3 Imaging Aberrations 11
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wave deformation, W=n, and the ray error represents angular, α, transverse, ε,
or longitudinal, l, aberration.

The wavefront deformation is measured with respect to a reference sphere.
As shown in Figure 2.8, the reference sphere is centered at the ideal image
point and passes by the on-axis exit pupil point. Note that, because of
transverse ray aberration, ε!¼ �yiΔH

!
, the ray does not intersect the ideal image

point at �yi H
!
. Given a ray defined by the field and aperture vectors H

!
and ρ

!
,

the distance along the ray between the reference sphere and the actual wave-
front times the index of refraction in image space is the wavefront deformation
from the reference sphere for that ray.

For an axially symmetric system the aberration function, W H
!
; ρ!

� �
, pro-

vides the geometrical wavefront deformation at the exit pupil as a function of
the normalized field, H

!
, and aperture, ρ!, vectors. The field vector is located

at the object plane and defines where a given ray originates from. The aperture
vector defines the intersection of a given ray with the pupil plane. The
aperture vector is usually located at the exit pupil plane, but it can also be
located at the entrance pupil plane. Figure 2.9 shows in image space the ideal
image of the field vector and the aperture vector at the exit pupil plane. The
aberration function, being a scalar, involves dot products of the field and
aperture vectors, specifically H

! � H!, H
! � ρ!, and ρ! � ρ!. These dot products only

Figure 2.8 The wavefront deformation W/n is determined with the aid of a
reference sphere.

Figure 2.9 The field and aperture vectors (scaled by the marginal ray height at the
exit pupil and the chief ray height at the image plane) and the angle between them,
looking down the optical axis.
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depend on the magnitude of the vectors and on the cosine of the angle, ϕ,
between them. The dot products are used to describe axial symmetry, and are
known as the rotational invariants, since they do not change their magnitude
upon a rotation of the coordinate system about the optical axis.

The aberration function provides the wavefront deformation in terms of
optical path, as measured along a particular ray (defined by the tip of the field
vector and the tip of the aperture vector) and from the reference sphere to the
wavefront. Equivalently, the aberration function provides the Optical Path
Difference (OPD) between the OPL from the object to the wavefront at the
exit pupil, and the OPL from the object point to the reference sphere. The
aberration function is written to sixth-order of approximation as:

W H
!
; ρ!

� �
¼

X
j,m,n

Wk,l:m H
! �H!

� �j
H
! � ρ!

� �m
ρ!� ρ!

� �n

¼W000þW200 H
!�H!

� �
þW111 H

!� ρ!
� �

þW020 ρ!� ρ!
� �

þW040 ρ
!� ρ!

� �2
þW131 H

!� ρ!
� �

ρ
!� ρ!

� �
þW222 H

! � ρ!
� �2

þW220 H
!�H!

� �
ρ!� ρ!

� �
þW311 H

!�H!
� �

H
!� ρ!

� �
þW400 H

! �H!
� �2

þW240 H
!�H!

� �
ρ
!� ρ!

� �2
þW331 H

!�H!
� �

H
!� ρ!

� �
ρ
!� ρ!

� �

þW422 H
!�H!

� �
H
! � ρ!

� �2
þW420 H

! �H!
� �2

ρ!� ρ!
� �

þW511 H
! �H!

� �2
H
!� ρ!

� �
þW600 H

! �H!
� �3

þW060 ρ!� ρ!
� �3

þW151 H
!� ρ!

� �
ρ
!� ρ!

� �2
þW242 H

! � ρ!
� �2

ρ!� ρ!
� �

þW333 H
! � ρ!

� �3

(2.5)

where the sub-indices, j,m, n, represent integers, and k ¼ 2jþ m, l ¼ 2nþ m,
and Wk, l,m represent aberration coefficients. The terms in the aberration function
represent aberrations, that is, basic forms in which the wavefront can be deformed.
The sum of all aberration terms and orders produces the actual total wavefront
deformation. The order of an aberration term is given by 2� jþ mþ nð Þ, which is
always an even order. In the aberration function the field and aperture vectors are
normalized so that, when they are unity, the coefficients represent the maximum
amplitude of each aberration,which is expressed inwavelengths. The lower indices
k, l,m in each coefficient indicate, respectively, the algebraic power of the field
vector, the aperture vector, and the cosine of the angle ϕ between these vectors.

Table 2.4 summarizes the first four orders of aberrations using both vector
and algebraic expressions. The fourth-order terms are often called the primary
aberrations. The ten sixth-order terms can be divided into two groups. The first
group (first six terms) can be considered as an improvement upon the primary

2.3 Imaging Aberrations 13
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aberrations by their increased field dependence, and the second group (last four
terms) represents new wavefront deformation forms. Figure 2.10 shows the
shape (aperture dependence only) of the zero, second, fourth, and the new
wavefront shapes of the sixth-order aberrations.

Table 2.4 Wavefront aberrations

Aberration name Vector form Algebraic form j m n

Zero-order
Uniform piston W000 W000 0 0 0
Second-order
Quadratic piston W200 H

!� H!
� �

W200H2 1 0 0

Magnification W111 H
!� ρ!

� �
W111Hρ cos ϕð Þ 0 1 0

Focus W020 ρ
!� ρ!

� �
W020ρ2 0 0 1

Fourth-order
Spherical
aberration W040 ρ! � ρ!

� �2 W040ρ4 0 0 2

Coma W131 H
!� ρ!

� �
ρ
!� ρ!

� �
W131Hρ3 cos ϕð Þ 0 1 1

Astigmatism
W222 H

! � ρ!
� �2 W222H2ρ2 cos 2 ϕð Þ 0 2 0

Field curvature W220 H
!� H!

� �
ρ
!� ρ!

� �
W220H2ρ2 1 0 1

Distortion W311 H
!� H!

� �
H
!� ρ!

� �
W311H3ρ cos ϕð Þ 1 1 0

Quartic piston
W400 H

! � H!
� �2 W400H4 2 0 0

Sixth-order
Oblique spherical
aberration W240 H

!� H!
� �

ρ
! � ρ!

� �2 W240H2ρ4 1 0 2

Coma W331 H
!� H!

� �
H
!� ρ!

� �
ρ
!� ρ!

� �
W331H3ρ3 cos ϕð Þ 1 1 1

Astigmatism
W422 H

!� H!
� �

H
! � ρ!

� �2 W422H4ρ2 cos 2 ϕð Þ 1 2 0

Field curvature
W420 H

! � H!
� �2

ρ
!� ρ!

� �
W420H4ρ2 2 0 1

Distortion
W511 H

! � H!
� �2

H
!� ρ!

� �
W511H5ρ cos ϕð Þ 2 1 0

Piston
W600 H

! � H!
� �3 W600H6 3 0 0

Spherical
aberration W060 ρ! � ρ!

� �3 W060ρ6 0 0 3

W151 H
!� ρ!

� �
ρ
! � ρ!

� �2 W151Hρ5 cos ϕð Þ 0 1 2

W242 H
! � ρ!

� �2
ρ
!� ρ!

� �
W242H2ρ4 cos 2 ϕð Þ 0 2 1

W333 H
! � ρ!

� �3 W333H3ρ3 cos 3 ϕð Þ 0 3 0
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Zero-Order

Second-Order

W000

W020 (r . r) W111 (H . r) W200 (H . H)

Fourth-Order

Sixth-Order

W040 (r . r)2 W131 (H . r)(r . r) W222 (H . r)2

W311 (H . H)(H . r)W220 (H . H)(r . r)

W151 (H . r)(r . r)2

W242 (H . r)2(r . r)

W220 (r . r)3

W333 (H . r)3

W400 (H . H)2

Figure 2.10 Basic wavefront deformation shapes according to symmetry. All of
the basic deformations are either axially symmetric, double plane symmetric, or
plane symmetric.
(Grid figures with permission and courtesy of Roland Shack.)
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In Table 2.4, the piston terms represent a uniform phase change across the
aperture that does not degrade the image quality. Physically, piston terms
represent a time delay or advance in the time of arrival of the wavefront as it
propagates from the object to the exit pupil. The second-order term magnifica-
tion represents a change of magnification, and the focus term represents a change
in the axial location of the image. The coefficients for magnification and focus
are set to zero given that Gaussian and Newtonian optics accurately predict the
size and location of an image. However, a focus term can be added to minimize
aberrations or to focus light on a plane other than the ideal image plane.

2.4 Computing Aberration Coefficients

For an optical system made out of j spherical surfaces, the fourth-order
aberration coefficients are determined by computing the Seidel sums, SI , SII ,
SIII , SIV , and SV . These sums depend only on the Lagrange invariant, and on
quantities from a first-order marginal and chief ray trace. Table 2.5 provides

Table 2.5 Aberration coefficients for a system of j spherical surfaces in terms
of Seidel sums

Coefficient Seidel sum

W040 ¼ 1
8 SI SI ¼ �Pj

i¼1
A2yΔ u

n

� �� �
i

W131 ¼ 1
2 SII SII ¼ �Pj

i¼1
A�AyΔ u

n

� �� �
i

W222 ¼ 1
2 SIII SIII ¼ �Pj

i¼1

�A
2
yΔ u

n

� �� �
i

W220 ¼ 1
4 SIII þ SIVð Þ

SIV ¼ �Ж2Pj
i¼1

Pi

W311 ¼ 1
2 SV SV ¼ �Pj

i¼1

�A �A
2Δ 1

n2

� �
y� P Ж þ �Ayð Þ�y

h i� �
i

Table 2.6 Quantities derived from first-order ray data used in computing the
aberration coefficients

Refraction
invariant
marginal ray

Refraction
invariant chief ray

Lagrange
invariant

Surface
curvature

Petzval
sum term

A ¼ ni ¼ nuþ nyc �A ¼ n�i ¼ n�uþ n�yc Ж ¼ n�uy� nu�y
¼ �Ay� A�y

c ¼ 1
r P ¼ c�Δ 1

n

� �

16 Classical Imaging, 1st-Order Imaging & Imaging Aberrations

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.003
https://www.cambridge.org/core


the Seidel sums formulae, and Table 2.6 provides first-order quantities used in
the computation.

In Table 2.5 the operator, ΔðÞ, gives the difference of the argument after and
before refraction, this is Δ nð Þ ¼ n0 � n: The summation symbol indicates that
the total amount of aberration, for example for spherical aberrationW040, is the
sum of the spherical aberration contributed by each spherical surface in the
system.

2.5 Field of View and Relative Aperture

Two important specifications for a lens system are its field of view (FOV) and
its relative aperture (F/#). The field of view is the observable scene of a lens
system for which it is designed. For a lens that works at finite conjugates, the
FOV is specified by the object or image size, and giving the height, width, or
both. When the object is at infinity the field of view is usually specified by the
semi-angle subtended by the scene, or object, as seen from the entrance pupil,
either horizontally, vertically, or both. It can also be specified by the height,
width, or both, of the image.

The relative aperture is defined as the ratio of the effective focal length EFL
to the diameter of the entrance pupil DE. Also known as F=#, FNO, F-
number, and focal ratio F. For lens systems that work at finite conjugates the
effective relative aperture, sometimes referred to as the working F=#, is given
by F=# ¼ 1� mð ÞEFL=DE, where m is the transverse magnification.

In a lens that is free from spherical aberration the numerical aperture (NA) is
defined by NA ¼ n sin θð Þ, where n is the index of refraction and θ is the angle
of the real marginal ray with the optical axis. The NA can refer to the object or
image spaces. In an aplanatic system the on-axis image brightness is propor-
tional to the square of the numerical aperture, NA2.

Being aware of the field of view and relative aperture in a lens system is
important. Usually, the larger the field of view or the lower the F/# is, the more
difficult it is to design a lens. Table 2.7 provides ranges of these specifications
in lens systems.

Table 2.7 Ranges of field of view and relative apertures in lens systems

Very small Small Medium Large Very large

FOV
< �½� �½� to 5� �5� to 25� �25� to 45� > �45�

F/#
< 1 1 to 4 4 to 8 8 to 16 > 16

2.5 Field of View and Relative Aperture 17

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.003
https://www.cambridge.org/core


2.6 Lens Design Example

A lens designer often starts with the lens specifications. Some important first-
order lens specifications are the focal length, the F-number, and the field of
view. The lens in consideration is a cemented doublet lens corrected for
spherical aberration and coma, this is aplanatic. The specifications are given
in Table 2.8, and a first-order layout is shown in Figure 2.11.

After a first-order lens layout is created to visualize the lens, a lens designer
may substitute ideal lenses for real lenses and correct, balance, or minimize
some aberrations. The doublet design is shown in Figure 2.12, where computer
optimization was performed to provide a focal length of 100 mm and to correct
for spherical aberration W040 and coma aberration W131. There are three lens
surfaces, and their curvatures are effective variables to satisfy the focal length
requirement and the aberration correction.

Table 2.9 provides the doublet lens prescription, Table 2.10 provides afirst-order
ray trace, and Table 2.11 provides the Seidel sum calculation surface by surface.

Table 2.8 Doublet lens optical specifications, λ ¼ 0:6328 μm

Focal
length F-number

Field of
view

Aperture
stop

Object
location

Image
quality

100 mm 5 �5� At doublet At infinity Aplanatic

Table 2.9 Doublet lens prescription

Surface Radius Thickness Glass

Stop 71.262 4 LAK33
2 �40.363 3 SF6
3 �1,237.921 96.028 Air
Image Air

Units are millimeters.

Figure 2.11 First-order layout of the doublet lens. Two light beams are shown for
the on-axis field point and for the 5 degrees off-axis field point.

Figure 2.12 Doublet lens drawn with lens surfaces.
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Examination of Table 2.11 shows that surface curvatures were chosen to
correct for spherical aberration and coma aberration. There are 5.92 waves of
astigmatism aberration and 4.77 waves of field curvature aberration. Distortion
aberration is negligible.

2.7 Stop Shifting

Stop shifting is the change of position along the optical axis of the aperture
stop to a new location while maintaining the optical throughput, T ¼ π2Ж2, of
the system. This requires maintaining the F=# and, consequently, the aperture
stop must change size. The parameter �S quantifies stop shifting and can be
computed at any surface of the optical system using the old and new quantities
at that surface, as indicated by

�S ¼ �unew � �uold
u

¼ �ynew � �yold
y

¼
�Anew � �Aold

A
, (2.6)

where �A ¼ n�i is the refraction invariant for the chief ray, A ¼ ni is the refrac-
tion invariant for the marginal ray, �u is the chief ray slope, u is the marginal ray
slope, �y is the chief ray height at the surface, and y is the marginal ray height at
the surface.

A useful set of formulas to determine the change of Seidel sum when the
stop aperture is shifted along the optical axis is presented in Table 2.12, where
the asterisk indicates the new value for the Seidel sum, and where �S is the stop
shifting parameter.

Table 2.10 First-order ray trace

Surface y n0u0 n0i0 �y n0�u0 n0�i0

1 10.00 �0.06 0.14 0.00 0.05 0.09
2 9.76 �0.05 �0.53 0.20 0.05 0.08
3 9.60 �0.10 �0.11 0.35 0.09 0.09

Table 2.11 Doublet lens wave aberration coefficients, λ ¼ 0:6328 μm

Surface W040 W131 W222 W220 W311

1 1.34 3.33 2.08 2.86 3.57
2 �2.90 1.73 �0.26 �0.24 0.07
3 1.56 �5.06 4.10 2.16 �3.49
Total 0.00 0.00 5.92 4.77 0.14
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Stop shifting formulas provide insight into how aberrations change upon
stop shifting whenever there is aberration present in a system. For example, in
the presence of spherical aberration, the amount of coma aberration can be
changed by stop shifting according to S∗II ¼ SII þ �SSI .

2.8 Parity of the Aberrations and the Principle
of Symmetry

The aberrations can be divided into even and odd aberrations depending on
the algebraic power of the aperture. The even aberrations are spherical aberra-
tion, astigmatism, and field curvature. The odd aberrations are coma and
distortion. When there is some lens symmetry about the stop aperture, the
odd aberrations tend to cancel, and this provides a mechanism to correct or
mitigate the odd aberrations. This is known as the principle of symmetry about
the stop.

Further Reading

Greivenkamp, J. Field Guide to Geometrical Optics (Bellingham, WA: SPIE Press,
2004).

Sasián, J. Introduction to Aberrations in Optical Imaging Systems (Cambridge, UK:
Cambridge University Press, 2013).

Table 2.12 Seidel sums upon stop
shifting

S∗I ¼ SI
S∗II ¼ SII þ �SSI
S∗III ¼ SIII þ 2��SSII þ �S

2
SI

S∗IV ¼ SIV
S∗V ¼ SV þ �S SIV þ 3�SIIIð Þ þ 3��S2SII þ �S

3
SI
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3

Aspheric Surfaces

Optical systems comprise lenses and mirrors made with precise surfaces.
Optical surfaces can be divided into spherical and nonspherical surfaces; the
latter are called aspheric surfaces. For a given image quality, the choice of
optical surfaces has a major impact on the packaging and cost of a lens system.
Therefore, familiarity with types of optical surfaces, with how they can correct
aberration, and with their manufacturing and testing methods is important in
lens design. This chapter provides an overview of several useful surface types,
some of their optical properties, and how they introduce and mitigate
aberrations.

3.1 Spherical Surfaces

Spherical surfaces are the preferred optical surfaces because they are relatively
easy to manufacture and are described by the equation, r2 ¼ x2þ
y2 þ z� rð Þ2, where r is the radius of curvature. The reason for their ease of
manufacturing is that two spherical surfaces of the same radius, one concave
and one convex, fit each other regardless of their relative position. In trad-
itional optics fabrication, two surfaces are rubbed against each other in the
presence of an abrasive, and naturally they tend to conform to each other,
acquiring a spherical form. Because of the ease of fabrication and testing,
spherical surfaces are the default surfaces in lens design. Optically a spherical
surface is specified by its radius of curvature, r, and its clear aperture.

Surfaces that are not spherical are called aspherical, and we assume that they
have an axis of rotational symmetry. Specifically, their sag x2 þ y2ð Þ, or depth,
z, depends on the radial distance,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, to the axis of rotation or the

optical axis, which coincides with the z coordinate axis.
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3.2 Conicoids

By rotating the conic sections about their axes, surfaces of revolution called
conicoids, or conoids, are generated. These are described by their vertex radius
of curvature, r, and their conic constant, k ¼ �ε2, where ε is the eccentricity.
Unlike the sphere, the ellipsoid, the paraboloid, and the hyperboloid surfaces
possess two separated optical foci. Light from a point source located at one
focus, after reflection on the conicoid, converges to or appears to diverge from
the other focal point.

In optical design, the sag of a conic surface is expressed by,

sag x2 þ y2
� � ¼ z x2 þ y2

� � ¼ c x2 þ y2ð Þ
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1þ kð Þ x2 þ y2ð Þc2p , (3.1)

where c ¼ 1=r is the vertex curvature of the surface. As shown in Figure 3.1,
depending on the value of the conic constant k, the surface can be a sphere,
k ¼ 0; a paraboloid, k ¼ �1; an ellipsoid, �1 < k < 0; a hyperboloid,
k < �1; or a spheroid, k > 0. The equation of a conic is of second order,
and it is possible to find the intersection point of a ray in closed
mathematical form.

Within the fourth-order theory of aberrations, the correction of spherical
aberration by a surface requires,

W040 ¼ � 1
8
A2yΔ

u

n

� �
� 1
8
kc3y4Δ nð Þ ¼ 0: (3.2)

Then for an object at infinity we must have,

k ¼ � n

n0
� �2

: (3.3)

As shown in Figure 3.2, when n0 ¼ 1 there is no spherical aberration if
k ¼ �n2, which requires a hyperboloid surface. When n ¼ 1 there is no
spherical aberration if k ¼ �1=n02, which requires an ellipsoidal surface.

Figure 3.1 Cross-sections of conicoids with the same vertex radius of curvature
and according to the conic constant k.
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For light reflection on a mirror surface to have no spherical aberration we
must require,

k ¼ � 1þ m

1� m

� �2

, (3.4)

where m is the transverse magnification.

3.3 Cartesian Ovals

Cartesian ovals are curves or surfaces defined by using two points, one in
object space, s 0; 0; sð Þ, the other in image space, s0 0; 0; s0ð Þ, and by requiring
that the optical path length for any ray from the object to a surface point,

p xp; yp; zp
� �

, and to the image point be constant. Mathematically, Cartesian

ovals are defined by,

n0s0 � ns ¼ n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ y2p þ zp � s0

� �2q
þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ y2p þ zp � s

� �2q
, (3.5)

where n and n0 are the indices of refraction in object and image spaces,
respectively. Cartesian ovals produce, geometrically, a perfect on-axis point
image free from spherical aberration. Figure 3.3 shows a lens with Cartesian

Figure 3.2 Left: Light refraction by a hyperboloid surface with n = 1.5, n0 = 1, and
k = �2.25. Right: Light refraction by an ellipsoid surface with n = 1, n0 = 1.5, and
k = �0.4444.

Figure 3.3 A lens with Cartesian surfaces forming a point image from a point
object source.
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ovals as surfaces. In some cases Cartesian ovals become conicoids, such as in
reflection or when one of the defining points is at infinity.

3.4 Polynomial Surfaces

To extend the modeling capabilities, polynomial surfaces are also used in lens
design. The sag of a polynomial surface is given by,

sag x2 þ y2
� � ¼ A2 x2 þ y2

� �þ A4 x2 þ y2
� �2 þ A6 x2 þ y2

� �3 þ � � � , (3.6)

where A2, A4, and A6 are the second, fourth, and sixth-order coefficients of
asphericity, respectively. Figure 3.4 shows the cross-sections of the mono-
mials, x2 þ y2, x2 þ y2ð Þ2, x2 þ y2ð Þ3, x2 þ y2ð Þ4, and x2 þ y2ð Þ5. Note that, as
the algebraic order increases, most of the asphericity takes place toward the
surface edge.

For many practical lens design problems, the superposition of a conicoid
and a polynomial surface provides substantial flexibility to model optical
surfaces, this is,

sag x2 þ y2
� � ¼ c x2 þ y2ð Þ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ kð Þ x2 þ y2ð Þc2p þ A2 x2 þ y2

� �þ A4 x2 þ y2
� �2

þ A6 x2 þ y2
� �3 þ � � � :

(3.7)

Usually the second-order coefficient of asphericity, A2, is not used simultan-
eously with the vertex radius of curvature, r ¼ 1=c, as first-order properties
would depend on both r and A2. The number of aspheric coefficients used
depends on the polynomial convergence to find the ideal surface needed, and
on the ability of the lens design optimizer to find a solution. In a polynomial
surface the algebraic order of the monomials can be even, or even and odd.

Figure 3.4 Monomials x2 þ y2, x2 þ y2ð Þ2, x2 þ y2ð Þ3, x2 þ y2ð Þ4, and x2 þ y2ð Þ5.
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Adding odd monomials to a surface description enhances its modeling cap-
abilities; for example, a conical surface can be modeled with the term,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. The sag of an odd and even polynomial aspheric surface is,

sag x2 þ y2
� � ¼ c x2 þ y2ð Þ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ kð Þ x2 þ y2ð Þc2p þ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 2

þA3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 3 þ A4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 4 þ A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 5

þA6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 6 þ � � � : (3.8)

In the presence of a polynomial surface there is no closed form solution to the
intersection point of a ray, and therefore an iterative procedure is used to find
the intersection point to a high degree of accuracy. Aspheric surfaces can often
lead to better optical performance, to size and weight reduction of an optical
system, and, in some cases, to unique solutions to certain design problems.
Depending on the application, aspheric surfaces can be cost effective, such as
in plastic optical systems that are mass produced. For ease of fabrication and
testing, spherical surfaces are the default surfaces to be specified, then con-
icoids, Cartesian ovals, and last polynomial surfaces. An aspheric surface is
specified by its nominal vertex radius of curvature, conic constant, aspheric
coefficients, and diameter.

3.5 Aberration Coefficients

The contributions to the Seidel sums from an aspheric surface specified with
the vertex radius of curvature, r ¼ 1=c, conic constant, k, and fourth-order
coefficient of asphericity, A4, are given in Table 3.1. An aspheric surface is
thought of as the superposition of a sphere of radius r, and an aspheric cap
defined by k and A4. The fourth-order aberration contributed by the aspheric
surface is the sum of the aberration by the spherical part, for example, SI , for
spherical aberration, and for the aspheric cap, δSI .

The ratio of the chief ray height to the marginal ray height, �y=y, at the
aspheric surface determines whether the surface will contribute only spherical

Table 3.1 Contributions to the Seidel sums from an aspheric surface with conic
constant, k, and fourth-order coefficient of asphericity, A4

δSI ¼ a δSII ¼ �y
y

� �
a δSIII ¼ �y

y

� �2
a

δSIV ¼ 0
δSV ¼ �y

y

� �3
a a ¼ �kc3 þ 8A4

� �
y4Δ nð Þ
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aberration (�y=y ¼ 0), or in addition coma, astigmatism, and distortion
(�y=y 6¼ 0). When an aspheric surface is located at the aperture stop, or at a
pupil, spherical aberration W040 is the only contribution of fourth-order.

3.6 Testing Aspheric Surfaces

Whenever an aspheric surface is specified it is necessary to determine how that
surface could be tested. As an example, a paraboloid mirror has applications in
astronomical telescopes, and a null corrector is often used for its testing. Light
from a point source illuminates and passes through a lens system, called a null
corrector, then it reaches the aspheric surface under test where the light is
reflected, then passes a second time through the null corrector, and finally
forms a point image. Any error on the surface of the mirror, called a figure
error, produces an aberration in the point image and provides information
about how to polish the mirror to correct its optical figure error. Since light
passes twice through the null corrector, the configuration is referred to as a
double pass.

An easy way to design a null corrector is in a single pass. As shown in
Figure 3.5, light rays from a point at infinity are refracted by a paraboloid surface
and become coincident with the normal lines to the paraboloid. This is modeled
in a lens design program by setting the index of refraction prior to the paraboloid
equal to n ¼ 1�10�8. Since the index of refraction in object space is nearly
zero, then the angle of refraction is nearly zero, and the refracted rays must
coincide with the normal lines to the paraboloid. The refracted rays suffer from
negative spherical aberration and form a ray caustic at the mirror vertex’s center
of curvature where a field lens is located. Then a relay lens is placed to form a
point image. The negative spherical aberration from the paraboloid surface is
compensated with the positive spherical aberration from the relay lens, which
has spherical surfaces for ease of fabrication, characterization, and testing.

Near the ray caustic the ray height is non-linear, and for low F/# mirrors a
single relay lens would not adequately compensate for aberrations, as also

Figure 3.5 Testing a paraboloid mirror. Left: Schematic of an Offner null cor-
rector. Right: Single relay lens null corrector.
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shown in Figure 3.5. The field lens redistributes the rays at the relay lens so
that their height becomes more linear, allowing for a good match between the
aberration from the paraboloid and the aberration from the relay lens. The field
lens creates an image of the surface under test on the relay lens and controls
higher order spherical aberration. Once a null corrector is designed in a single
pass, it can be verified in a double pass, as shown in Figure 3.6.

3.7 Control of Spherical Aberration

Aspheric surfaces provide effective degrees of freedom to correct all orders of
spherical aberration. Figure 3.7 shows a light focusing plano-convex lens free
from spherical aberration. The convex surface uses an elliptical surface defined
with a conic constant, k, and a fourth-order coefficient of asphericity, A4. In
this case only two coefficients are needed to provide satisfactory correction.
However, if no conic constant is used, then up to fourteenth order aspheric
coefficients are needed to properly correct for spherical aberration. This is due
to the lack of fast convergence of the polynomial surface for this single lens
design. For ease of alignment the lens must be corrected also for coma aberra-
tion so that a small field of view with excellent image quality is provided. This
can be done by using the index of refraction as a second degree of freedom, or

Figure 3.6 Schematic of an Offner null corrector in double pass. In modeling the
test configuration with lens design software, a flat mirror has been added to unfold
the path of light. This unfolding is not physically possible, but can be done in ray
tracing.

Figure 3.7 Left: An aspheric plano-convex lens corrected for spherical aberration.
Right: A double convex aspheric lens corrected for spherical and coma aberration.
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by using the curvature of the second surface, as also shown in Figure 3.7. When
a lens system is corrected for both spherical aberration and coma aberration, it is
referred to as an aplanatic lens.

Since spherical aberration depends on the fourth-order of the lens aperture, it
is often best to correct for it at a location in a lens system where the marginal
ray height is maximum. In addition, in order to not introduce other fourth-order
aberrations, spherical aberration is often corrected by an aspheric surface that
coincides, or is near, the aperture stop or a pupil.

3.8 Freeform Surfaces

The lens systems that are discussed in this book are mainly axially symmetric.
However, if the axial symmetry in a lens system is not retained, new design
possibilities and solutions to imaging problems result. Such non-axially sym-
metric lens systems also benefit from aspheric surfaces and, because these
surfaces have at most one plane of symmetry and provide enhanced degrees of
freedom to correct aberration, they are called freeform surfaces.

A freeform surface does not have axial or translational symmetry. Two
cylindrical surfaces of the same radius fit to each other if they are translated
along the cylinder axis, or translated perpendicular to the axis. Thus, cylin-
drical surfaces have translational symmetry, and have two orthogonal planes of
symmetry. An axially symmetric surface has an infinite number of planes of
symmetry, i.e., any meridional plane. Thus, a freeform surface is aspheric and
has no more than one plane of symmetry.

Freeform surfaces are used in lens and mirror systems that do not have axial
symmetry. These systems can have, in addition to spherical aberration, uni-
form astigmatism and uniform coma aberration over the field of view. The
aberrations that plane symmetric systems can have are given in Appendix 4.

A useful freeform surface is defined by the superposition of a conic surface
and a plane symmetric polynomial, symmetric about the Z–Y plane. The sag is,

sag x2; y
� � ¼ c x2 þ y2ð Þ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ kð Þ x2 þ y2ð Þc2p þ A2 x2

� �þ A3 x2 þ y2
� �

y

þ A4 x2 þ y2
� �2 þ � � � : (3.9)

The term, A2 x2ð Þ, adds a cylindrical deformation which is useful in controlling
uniform astigmatism. The term, A3 x2 þ y2ð Þy. is a cubic deformation which is
useful for controlling uniform coma aberration. The term, A4 x2 þ y2ð Þ2, is
axially symmetric, and is useful for controlling spherical aberration.
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3.9 User Defined Surfaces

For certain design problems, standard aspheric surfaces do not provide a
solution because of a slow convergence and a limited number of aspheric
terms. Then it is possible to write the code for a user defined surface to be used
by lens design software. Writing the computer code for such a surface requires
coming up with a potential surface type, producing the mathematical equations
that describe that surface, finding the normal line at each surface point,
performing refraction or reflection, and then compiling the code.

Further Reading

Brauneckeer, B., Hentschel, R., Tiziani, H. J. Advanced Optics Using Aspherical
Elements (Bellingham, WA: SPIE Press, 2008).

Forbes, G. W. “Shape specification for axially symmetric optical surfaces,” Optics
Express, 15 (2007), 5218–26.

Greynolds, Alan W. “Superconic and subconic surface descriptions in optical design,”
Proceedings of SPIE 4832, International Optical Design Conference 2002
(December 23, 2002).

Hsueh, Chun-Che, Elazhary, Tamer, Nakano, Masatsugu, Sasián, José. “Closed-form
sag solutions for Cartesian oval surfaces,” Journal of Optics, 40(4) (2011),
168–75.

Offner, Abe. “A null corrector for testing paraboloidal mirrors,” Applied Optics, 2(2)
(1963), 153–55.

Reshidko, Dmitry, Sasián, José. “A method for the design of unsymmetrical optical
systems using freeform surfaces,” Proceedings of SPIE 10590, International
Optical Design Conference 2017, 10590V (2017).

Sasián, José. “Design of null correctors for the testing of astronomical optics,” Optical
Engineering, 27(12) (1988), 121051.

Sasián, José, Reshidko, Dmitry, Li, Chia-Ling. “Aspheric/freeform optical surface
description for controlling illumination from point-like light sources,” Optical
Engineering, 55(11) (2016), 115104.

Shultz, G. Aspheric Surfaces, Progress in Optics, Vol. XXV (Amsterdam: Elsevier,
1988), 349–415.

Further Reading 29

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.004
https://www.cambridge.org/core


4

Thin Lenses

This chapter provides a discussion about thin lenses and how they are treated
and analyzed for optical imaging. The concept of a thin lens is useful because
aberration calculation with formulas is simplified. Structural aberration
coefficients are used to determine aberrations and to show the rationale on
the choice of the lens shape and aperture stop location. An understanding of
how a singlet lens works is indispensable for the design of complex lens
systems. The Wollaston periscopic lens, or landscape lens, is discussed
regarding the technique of artificially flattening the field of view. A simple
optical relay system is discussed, and then complexity is added to correct the
primary monochromatic aberrations.

4.1 Thin Lens with the Aperture Stop at Lens

A useful concept in lens design is the thin lens where the central thickness is
zero. As shown in Figure 4.1, from left to right, a thick plano-convex lens
becomes a thin lens as the thickness becomes zero. The optical power, ϕ, of a
thick lens in air is given by,

ϕ ¼ ϕ1 þ ϕ2 �
t

n
ϕ1ϕ2, (4.1)

where the surface optical powers are,

ϕ1 ¼
n� 1
r1

, ϕ2 ¼ � n� 1
r2

, (4.2)

and where t is the central thickness, and n is the index of refraction of the lens
material. By setting the thickness, t, equal to zero, we obtain a thin lens with
optical power, ϕ ¼ ϕ1 þ ϕ2, and, where the marginal and chief rays at each

30

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.005
https://www.cambridge.org/core


surface are the same, this is y1 ¼ y2 and �y1 ¼ �y2. As a consequence, aberration
calculation is simplified.

Table 4.1 gives the Seidel sums in terms of structural aberration coefficients,
σI , σII , σIII , σIV , σV , the Lagrange invariant,Ж , the optical power, ϕ, of the lens
or lens system, and the marginal ray height, yP, at the principal planes. The
structural aberration coefficients do not depend on the field of view, the optical
speed, or the optical power, but on the structure of the lens system. Therefore,
aberration properties are quantified as simply as possible. In addition, struc-
tural aberration coefficients allow lens system trade-off studies.

For a thin lens in air, the formulas for the structural coefficients, σI , σII , σIII ,
σIV , σV , as a function of the shape, X, and conjugate, Y , factors, are given in
Table 4.2. The shape factor, X ¼ c1 þ c2ð Þ= c1 � c2ð Þ, depends on the lens
curvatures, and characterizes the shape of a lens. The conjugate factor,
Y ¼ 1þ mð Þ= 1� mð Þ, depends on the transverse magnification at which the
lens system works. Figure 4.2 illustrates the shape of a lens as a function of X.
Changing the shape of a lens while maintaining its optical power is called lens
bending. For equal lens curvatures the shape factor is not defined.

Spherical aberration, W040 ¼ SI=8 ¼ y4Pϕ
3σI=32, via the structural coeffi-

cient, σI , depends on the parameters, A,B,C,D, the shape factor, X, and the
conjugate factor, Y , which in turn depends on the transverse magnification, m.
Figure 4.3 (left) shows a plot of spherical aberration, W040, in waves vs. the
shape factor, X, for a thin lens with f = 100 mm, F/4, Y = 1, λ ¼ 587 nm, and
for various indices of refraction, and (right) difference between the actual OPD
and the fourth-order spherical aberration,W040. Note the strong dependence on
the index of refraction, and the increased higher order aberration, OPD-W040,
for positive shape factors.

Figure 4.1 From left to right, a thick lens becomes a thin lens with zero central
thickness. A positive thin lens is represented in first-order optics as a double
tipped arrowhead, as shown in the far right image.

Table 4.1 Seidel sums in terms of structural aberration coefficients. Pupils
located at principal planes

SI ¼ 1
4
y4Pϕ

3σI SII ¼ 1
2
Жy2Pϕ

2σII SIII ¼ Ж2ϕσIII SIV ¼ Ж2ϕσIV SV ¼ 2Ж3σV
y2P
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As a function of the shape factor, X, spherical aberration, σI , is quadratic.
The plot of W040 vs. X is a parabola and, therefore, there may be two lens
shapes for a given amount of spherical aberration. Spherical aberration
strongly depends on the index of refraction; a higher index of refraction

Table 4.2 Structural aberration coefficients of a thin lens in air (Stop at lens)

σI ¼ AX2 � BXY

þCY2 þ D

σII ¼ EX � FY σIII ¼ 1 σIV ¼ 1
n

σV ¼ 0

A ¼ nþ 2

n n� 1ð Þ2 B ¼ 4 nþ 1ð Þ
n n� 1ð Þ C ¼ 3nþ 2

n
D ¼ n2

n� 1ð Þ2
E ¼ nþ 1

n n� 1ð Þ

F ¼ 2nþ 1
n

X ¼ c1 þ c2
c1 � c2

¼ � r1 þ r2
r1 � r2

Y ¼ 1þ m

1� m
ϕ ¼ n� 1ð Þ� 1

r1
� 1
r2

� �

Figure 4.2 Shape of a lens from 5 to �5 for positive power lenses, upper row; and
for negative power lenses, bottom row.

Figure 4.3 Left: thin lens spherical aberration, W040, in waves at λ ¼ 587nmvs.
shape factor, X, varying from �5 to 5, and for several indices of refraction. Right:
higher-order, OPD-W040, spherical aberration.
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reduces both the amount of spherical aberration, W040, and the amount of
higher order, OPD-W040, spherical aberration.

For a thin lens, the minimum spherical aberration, W040, takes place when
the shape factor is,

X ¼ B

2A
Y ¼ 2 n2 � 1ð Þ

2þ n
Y , (4.3)

for which, σI becomes,

σI ¼ n2

n� 1ð Þ2 �
n

2þ n
Y2: (4.4)

When the object is at infinity, m ¼ 0, Y ¼ 1, and the index is n ¼ 1:5, the
shape factor for minimum spherical aberration is X ffi 0:71 and σI ffi 8:57.
Spherical aberration is positive for a thin lens with positive optical power, and
negative when the optical power is negative.

Coma aberration, W131 ¼ SII=2 ¼ Жy2Pϕ
2σII=4, by way of σII , depends on

the parameters, E,F, the shape factor, X, and the conjugate factor, Y . As a
function of the shape factor, coma is a linear function and, therefore, there is a
lens shape for which coma is zero,

X ¼ F

E
Y ¼ 2nþ 1ð Þ n� 1ð Þ

nþ 1
Y: (4.5)

When n ¼ 1:5 and the object is at infinity, Y ¼ 1, coma is σII ¼ 10X � 8ð Þ=3.
For a shape factor of X ¼ 0:8, there is no coma, σII ¼ 0: For X ¼ 1, we have
σII ¼ 2=3. For a thin lens, spherical aberration and coma become simultan-
eously zero when X ¼ � 2nþ 1ð Þ and Y ¼ � nþ 1ð Þ= n� 1ð Þ. For an index,
n ¼ 1:5, we have X ¼ �4 and Y ¼ �5. In this case, one surface satisfies
Δ u=nð Þ ¼ 0, and the other surface satisfies �A ¼ 0.

When the stop is at the thin lens, astigmatism aberration, W222 ¼ SIII=2 ¼
Ж2ϕ=2, does not depend on the shape or conjugate factor.

For a thin lens, Petzval field curvature, W220P ¼ SIV=4 ¼ Ж2ϕ=4n, does not
depend on the shape or conjugate factors; it is inversely proportional to the lens
index of refraction.

Distortion aberration is zero when the stop coincides with the thin lens,
because the nodal points coincide with the lens vertex, and chief rays are not
deviated.

Table 4.3 provide the structural aberration coefficients, σI and σII , for some
special cases of a thin lens.
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Table 4.3 Thin lens structural aberration coefficients, σI and σII , for some special cases of the shape factor, X, and the conjugate
factor, Y. Stop at lens

X Y σI σII

X ¼ 2 nþ 1ð Þ n� 1ð Þ
2þ n

Y Y σI ¼ n2

n� 1ð Þ2 �
n

2þ n
Y2 (minimum spherical aberration) σII ¼ � 1

2þ n
Y

X ¼ 2nþ 1ð Þ n� 1ð Þ
1þ n

Y Y σI ¼ n2

n� 1ð Þ2 �
n2

nþ 1ð Þ2 Y
2 σII ¼ 0 (zero coma)

X ¼ � 2nþ 1ð Þ Y ¼ � nþ 1
n� 1

σI ¼ 0 (zero spherical aberration) σII ¼ 0 (zero coma)

X ¼ 0 (equi-cx/cc lens) Y σI ¼ 3nþ 2
n

Y2 þ n2

n� 1ð Þ2 σII ¼ � 2nþ 1
n

Y

X ¼ 1 (plano-cx/cc lens Y ¼ 1 (Object at ∞) σI ¼ 4 1þ 2� n

n n� 1ð Þ2
 !

σII ¼ �2þ 2
n n� 1ð Þ

X ¼ �1 (plano-cx/cc lens) Y ¼ 1 (Object at ∞) σI ¼ 2n
n� 1

� �2

σII ¼ � 2n
n� 1
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4.2 Thin Lens with Remote Aperture Stop

In the presence of aberration, aberrations change as the stop aperture shifts
along the optical axis. The change of aberration due to stop shifting is given in
Table 4.4 as a function of the stop shifting parameter, �Sσ .

In the presence of spherical aberration, the stop location can be used to
correct coma aberration and, therefore, we must satisfy,

σ∗II ¼ 0 ¼ σII þ �SσσI , (4.6)

which gives a stop shifting factor, �Sσ ,

�Sσ ¼ � σII
σI

: (4.7)

To simultaneously have zero astigmatism, we must also satisfy,

σ∗III ¼ 0 ¼ σIII þ 2�SσσII þ �S2σσI , (4.8)

which requires,

σII ¼ � ffiffiffiffiffiffiffiffiffiffiffi
σIIIσI

p ¼ � 2n
n� 1

: (4.9)

Therefore, the solution for zero coma and astigmatism aberration is a plano
convex lens, X ¼ �1, working at Y ¼ 1, given that its coma aberration is,

σII ¼ � 2n
n� 1

: (4.10)

The stop shifting parameter is,

�Sσ ¼ yP�yPϕ
2Ж

¼ � σII
σI

¼ n� 1
2n

¼ �yPϕ
2�u

¼ �yP n� 1ð Þ
2�ur2

: (4.11)

Then the distance, �s, to the stop from the thin lens is,

�s ¼ �yP
�u
¼ r2

n
: (4.12)

Table 4.4 Stop-shifting formulas for structural coefficients

σ∗I ¼ σI σ∗II ¼ σII þ �SσσI

σ∗III ¼ σIII þ 2�SσσII þ �S2σσI σ∗IV ¼ σIV

σ∗V ¼ σV þ �Sσ σIV þ 3σIIIð Þ þ 3�S2σσII þ �S3σσI
�Sσ ¼ yP�yPϕ

2Ж
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Alternatively, we can understand this thin lens solution by considering that, for
an object at infinity, we have Δ u=nð Þ ¼ 0 for the plane surface, and �A ¼ 0 for
the curved surface, which ensure both lens surfaces do not contribute any coma
or astigmatism aberration. Figure 4.4 shows a thick plano-convex lens satisfy-
ing these conditions. In this simple lens, spherical aberration is controlled by
reducing the aperture size, which has a strong impact because spherical aber-
ration depends on the fourth power of the marginal ray height.

Field curvature aberration is given by,

W220 ¼ 1
4

SIII þ SIVð Þ: (4.13)

Since there is no astigmatism, we have,

W220 ¼ 1
4
SIV ¼ 1

4
Ж2
Xj
i¼1

niþ1 � ni
niþ1ni

1
ri
: (4.14)

Then the image falls on the Petzval surface with vertex radius, ρ, given by the
Petzval sum,

1
ρ
¼ �

Xj
i¼1

niþ1 � ni
niþ1ni

1
ri
: (4.15)

For a system of thin lenses of power, ϕi, in air the Petzval sum becomes,

1
ρ
¼ �

Xj
i¼1

ϕi
ni
: (4.16)

For the singlet plano-convex lens the Petzval radius is ρ ¼ �nf 0.

Figure 4.4 Plano-convex lens with stop in front and imaging on the Petzval
surface.
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4.3 Field Curves

The ideal image surface is a planar, flat surface. However, in the absence of
astigmatism, the surface of sharp imaging is the Petzval surface. Therefore, it is
desirable in a lens system to reduce the Petzval sum. If astigmatism aberration
is present, the Petzval surface loses meaning. Then, for a small aperture,
meridional rays focus on the tangential field curve, and sagittal rays focus on
the sagittal field curve. A curve (not shown) between the sagittal and the
tangential field curves is called the medial field curve. Figure 4.5 illustrates
the field curves, and Table 4.5 gives the vertex curvature of the curves. The
ideal image plane is labeled the Gaussian surface.

4.4 Optical Relay System

Creating an image of an object located at a finite distance or relaying an image
to a given location is often required in optical systems. Thus, developing
expertise about the design of optical relays is useful in optical engineering.
A simple relay operating at m ¼ �1 can be formed by combining two plano-
convex lenses, as shown in Figure 4.6. The advantages are the simplicity, the
correction for coma and astigmatism aberration, the control of spherical aber-
ration by reducing the optical speed, and the relatively low cost.

Figure 4.5 Field curves.

Table 4.5 Field curve vertex curvature
in terms of structural coefficients

CPetzval ¼ �n0ϕ�σIV
CSagittal ¼ �n0ϕ� σIV þ σIIIð Þ
CMedial ¼ �n0ϕ� σIV þ 2σIIIð Þ
CTangential ¼ �n0ϕ� σIV þ 3σIIIð Þ
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If lens complexity is allowed, spherical aberration can be corrected with an
aspheric surface located at the aperture stop. In addition, since spherical
aberration, coma, and astigmatism depend on the marginal ray height at a thin
lens, then no contribution to these aberrations would result from a lens placed
at, or near, an image where the marginal ray height is zero. Such a lens at, or
near, an image is known as a field lens, and would contribute Petzval field
curvature aberration. Thus, by adding field flattener lenses, in addition to an
aspheric plate at the stop, a relay corrected for the monochromatic primary
aberrations would result, as shown in Figure 4.7. Distortion aberration is
corrected because the relay is symmetrical about the aperture stop, and sym-
metrical about the imaging conjugates, given that m ¼ �1.

4.5 Wollaston Periscopic Lens

Spectacle lenses have been around since the thirteenth century and, before the
nineteenth century, the lenses used in spectacles were plano-convex or plano-
concave in shape, likely for ease of fabrication. Using a plano lens for
correcting the eye’s vision provides a sharp image at the center of the visual
field. However, toward the periphery of the field the images lose clarity.
Wollaston noted that a circle looks the same in every direction when it is seen
from its center, and reasoned that the best shape for the lenses in spectacles

Figure 4.6 Optical relay consisting of two plano-convex lenses. The image lies on
the Petzval surface.

Figure 4.7 Symmetrical relay corrected for the monochromatic primary aberra-
tions. An aspheric surface in a central glass plate coinciding with the aperture stop
is used to correct for spherical aberration. The field lenses with negative focal
length correct for Petzval field curvature.
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was spherical. He had no optical theory to prove his assertion, but commis-
sioned the fabrication of several lenses with the same focal length but of
different optical shape. Wollaston then demonstrated that a meniscus lens
shape was best to render a clear field of vision, and called these lenses
periscopic, as they also allowed one to look clearly around the periphery of
the field of view. In addition to being used in spectacles, periscopic lenses were
used in camera obscuras to obtain brighter images (in comparison to camera
obscuras without a lens) on a flat surface, as shown in Figure 4.8. The
Wollaston periscopic lens is better known as the landscape meniscus lens.

The analysis of periscopic lenses made clear the importance of the aperture
stop and its position in a lens system, and led to the concept of artificially
flattening the field of view. To obtain sharp imaging on a flat surface there
must be neither astigmatism aberration, W222, nor Petzval field curvature
aberration, W220P. If there is no astigmatism, then the image falls on the
Petzval surface. When the field is artificially flattened, negative astigmatism
is introduced to flatten the tangential field curve.

Figure 4.9 shows the sagittal and tangential field curves when the ratio of
astigmatism to Petzval field curvature is, W222=W220P ¼ �0:8. For a given
focal length, Wollaston periscopic lenses have two degrees of design freedom:
the stop location and the lens shape. The lens shape is used to correct for coma
aberration, and the stop position is used to introduce negative astigmatism, as
given by stop shifting,

σ∗III ¼ σIII þ 2�SσσII þ �S2σσI : (4.17)

The lens contributes positive spherical aberration, σI , and the term �S2σσI is
positive. However, the lens contributes negative coma, σII (stop at lens), and
the term 2�SσσII dominates, resulting in negative astigmatism to artificially
flatten the field of view. Further, spherical aberration is controlled with the

Figure 4.8 Meridional rays focus on the ideal image plane as negative astigma-
tism is introduced by the lens. In the absence of astigmatism, meridional and
sagittal rays would focus on the Petzval surface.
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aperture stop diameter, and in such a simple lens there are no further degrees of
freedom to correct chromatic aberrations, or distortion aberration. However,
for a focal length of 100 mm, a field of view of �30∘, and an optical speed of
F/16, a periscopic lens can render useful images for photography on a flat
surface. Figure 4.10 (top row) shows spot diagrams for a plano-convex lens
with the stop in front, and the bottom row shows spot diagrams for a periscopic
lens with the stop in front. The spots are at the ideal image plane. Note that the
periscopic lens provides a better imaging over the field of view, and the plano-
convex lens provides a sharper image only at the field center.

Figure 4.9 Astigmatic field curves for W222=W220P ¼ �0:8. Meridional rays
focus on the tangential field curve, and sagittal rays focus on the Sagittal field
curve. The vertical axis represents the field of view, and the horizontal axis
represents the optical axis.

Figure 4.10 Top row, image quality as shown by spot diagrams for a plano-
convex lens. Bottom row, image quality for a periscopic lens with a focal length of
100 mm, and a field of view from 0:0∘ to 30∘. The spots are at the ideal
image plane.
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There is another periscopic lens solution with the aperture stop in the rear, as
shown in Figure 4.11. This solution has the advantage that the lens protects a
possible shutter mechanism located at the aperture stop. However, the image
quality is less favorable than when the aperture stop is in front. It is frequent in
lens design to find several solutions with the same lens complexity.

4.6 Periskop Lens

The Wollaston periscopic lens suffers from distortion aberration. An improve-
ment, although requiring adding lens complexity, is the Periskop lens in which
two periscopic lenses are arranged symmetrically about the aperture stop.
Because the odd aberrations, coma, and distortion, tend to cancel, they are
substantially corrected in the Periskop lens, as shown in Figure 4.12.

Spherical aberration is mitigated by the aperture stop diameter to provide an
F/16 optical speed. The field is artificially flattened to obtain a best image on a
flat surface. Arranging lenses symmetrically, or nearly so, about the stop
aperture is often used in lens design to help control odd aberrations. Periskop
lenses have been used, for example, in overhead projectors.

4.7 Criterion for Artificially Flattening the Field

While the choice of negative astigmatism to artificially flatten the field of view
was first done experimentally, we can now determine to fourth-order the ratio,
W222=W220P, based on minimizing either the wavefront variance, σ2W , or the
mean square spot size, �ε2.

Figure 4.11 Periscopic lens with rear aperture stop. The lens index of refraction is
n ¼ 2:42, which reduces the Petzval field curvature.
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Let us assume that the aberration function, W H
!
; ρ
!� �

, is given by,

W H
!
; ρ
!� �

¼W020 ρ
!� ρ!
� �

þW040 ρ
! � ρ!
� �2

þW131 H
!� ρ!
� �

ρ
!� ρ!
� �

þW222 H
! � ρ!
� �2

þW220 H
!�H!
� �

ρ!� ρ!
� �

þW311 H
!�H!
� �

H
!� ρ!
� �

:

(4.18)

Then the variance of the wavefront is, σW 2 ¼ W2 �W
2
, where the mean

square deformation is,

W
2 ¼ 1

π

ð2π

0

ð1

0

W2ρdρdϕ, (4.19)

and the mean deformation is,

W ¼ 1
π

ð2π

0

ð1

0

Wρdρdϕ: (4.20)

We can calculate the variance of the wavefront as,

σ2W ¼
1
12

W020þW040þ W220þ1
2
W222

� �
H
! �H!

� �2

þ 1
180

W2
040

þ 1
24

W2
222 H

! �H!
� �2

þ1
4

2
3
W131 H

!���
���þW311 H

! �H!
� �

H
!���
���

� �2

þ 1
72

W2
131H

! �H!

0
BBB@

1
CCCA:

(4.21)

Figure 4.12 Periskop lens using the principle of symmetry to control odd
aberrations.
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By noting thatW220 ¼ W220P þW222=2, and by equating to zero the derivative
of σ2W with respect to W222, we find that, to minimize the variance, we must
have W222 ¼ � 2

3W220P, which calls for a flat tangential field curve.
The mean square spot size, �ε2, is given by,

�ε2 ¼ 1
n02u02

1
π

ð2π

0

ð1

0

∂W
∂ρx

� �2

þ ∂W
∂ρy

 !2
0
@

1
Aρdρdϕ: (4.22)

Then, for the aberration function, W H
!
; ρ
!� �

, we obtain,

�ε2¼ 1
n02u02

2 W020þ4
3
W040þ W220þ1

2
W222

� �
H
! �H!

� �2

þ4
9
W2

040

þ1
2
W2

222 H
! �H!
� �2

þ W131 H
!���
���þW311 H

! �H!
� �

H
!���
���

� �2
þ2
3
W2

131H
! �H!

0
BB@

1
CCA:

(4.23)

By equating to zero the derivative of �ε2with respect to W222, we find that, to
minimize the mean square spot size, we must have W222 ¼ � 4

5W220P, which
calls for a slightly backward curving tangential field, as shown in Figure 4.9.
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5

Ray Tracing

Ray tracing originated in optics to determine the path of light. However, ray
tracing is used in modern technology by many fields, such as acoustics and
computer graphics. Ray tracing is at the heart of optical design. Most optical
calculations are done by tracing rays of light and, therefore, for competent lens
design, it is important to have an understanding about how ray tracing is
performed. This chapter provides an introduction to ray tracing, to ray tracing
pitfalls, and to some useful ray tracing techniques.

5.1 Sequential Ray Tracing

We will consider an axially symmetric optical system. A plane passing through
the axis of symmetry is called a meridional plane. Rays that are contained in
the meridional plane are called meridional rays. Other rays that are not
contained in a meridional plane, but that may intersect it, are called skew rays.
Ray tracing of meridional rays is simple, as quantities are only required in two
dimensions, while skew rays require quantities in three dimensions.

First-order rays are meridional rays and are traced assuming that the optical
surfaces are flat but with optical power, ϕ. The first-order ray tracing equations
n0u0 ¼ nu� yϕ (refraction) and y0 ¼ yþ u0t (transfer) are used to determine the
intersection height of a ray with the next surface and the slope of the refracted ray.

Many calculations in a lens design program are done with first-order rays such
as determining the ideal image position and size, the location of the pupils, and
the cardinal points. First-order ray tracing requires a minimum computation time
and is done very fast. Ray tracing time is critical, and minimizing it is important.

Real rays are traced applying Snell’s law, n0 sin I 0ð Þ ¼ n sin Ið Þ, and deter-
mining the ray intersection with the actual specified surface to a high degree of
accuracy. Most analyses in a lens design program depend on real ray tracing.
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Real ray tracing is performed within a lens design program in an iterative
process from surface to surface. For an imaging lens, the program is instructed to
trace rays in a sequential manner so that a ray is traced first to surface #1, then to
surface #2, and so forth till the last surface, which is often the image surface.
Giving the ray starting coordinates, X0, Y0, and Z0, in a previous surface, and the
ray direction cosines, K, L, and M, of the ray at that point, the ray tracing
algorithm determines the intersection point, X, Y , and Z, in the next surface,
determines the normal line to the surface at that point, and performs reflection,
refraction, or diffraction, to determine the new direction cosines,K 0,L0, andM0, of
the ray. This process is repeated surface after surface in a sequential manner till
the last surface is encountered. The optical path length of the ray is also computed.

The ray intersection with a conic surface can be determined in closed
mathematical form, and this speeds up its ray tracing. Other aspheric surfaces
such as polynomials require of an iterative process to determine the ray
intersection point to a high degree of accuracy. Thus, ray tracing through
aspheric surfaces takes more computing time.

Ray tracing data can be useful to check that a given lens design program is
properly working, or that the designer properly interprets the results of the
program.

5.2 Non-Sequential Ray Tracing

In some optical systems that contain many surfaces, it is not possible to know a
priori, or to specify, the next surface that a ray will intersect. Then the ray
tracing algorithm must determine which is the next surface to be intercepted.
This requires more computing time, and significantly slows down the ray
tracing. For example, the tracing of rays through a faceted gemstone, as shown
in Figure 5.1, is performed with non-sequential ray tracing. Many non-imaging

Figure 5.1 Model of a faceted gemstone that retro reflects an incoming beam of
parallel rays. Simulating light propagation in a gemstone requires non-sequential
ray tracing.
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and illumination optical systems are analyzed using non-sequential ray tracing.
The design of lenses for imaging is usually done with sequential ray-tracing.

5.3 Ray Tracing Equations

Historically there have been many different sets of formulas for sequential ray
tracing. For example, some formulas are suitable to be used with logarithm
tables, some suitable for electronic computers, some for meridional rays or skew
rays, some for spherical surfaces, and others for general aspheric surfaces.

To gain an idea of the computations needed for tracing a ray through a
spherical surface, consider the coordinates of a skew ray, X0, Y0, and Z0, and
the direction cosines, K, L, and M, at a previous surface. If t is the axial
distance to the next spherical surface, X2 þ Y2 þ Z2 � 2rZ ¼ 0, and r is its
radius of curvature, then the coordinates of intersection of the ray, X, Y , and Z,
with the next surface are given by, X ¼ KDþ X0, Y ¼ LDþ Y0, and
Z ¼ MDþ Z0 � tð Þ, where D is the length of the ray from the point, X0, Y0,
and Z0, to the point, X, Y , and Z. The distance, D, is given by,

D ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
, (5.1)

where

a ¼ 1, (5.2)

b ¼ �2r M � KX0 þ LY0 þMZ0 �Mt

r

� �
, (5.3)

and

c ¼ r
Z0 � tð Þ2 þ Y2

0 þ X2
0

r
� 2 Z0 � tð Þ

 !
: (5.4)

The direction cosines of the normal line to the spherical surface at the point of
intersection are, k ¼ � X

r , l ¼ � Y
r , and m ¼ 1� Z

r .
The cosines of the angle of incidence, I, and refraction, I0, are,

cos Ið Þ ¼ M � KX þ LY þMZð Þ
r

, (5.5)

and

cos I 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

n02
1� cos 2 Ið Þð Þ

r
: (5.6)
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By defining the quantity, G ¼ n0 cos I 0ð Þ � n cos Ið Þ
r , the direction cosines, K 0, L0, and

M0, of the refracted ray are found, n0K 0 ¼ nK � GX, n0L0 ¼ nL� GY , and
n0M0 ¼ nM � G Z � rð Þ. The optical path length for a number of j surfaces is

given by, OPL ¼Pj
i¼1

niDi.

5.4 Ray Tracing Pitfalls

There are a number of ray tracing pitfalls to be aware of. These may interfere
with proper system display and analyses. Ray total internal reflection may
occur, and then the algorithm stops the ray tracing and may proceed to trace the
next ray. There might be two possible intersection points with a given surface
and directing the algorithm to the proper intersection point would be required.
Missing a surface because the radius of curvature is too small is another
occurrence. For some aspheric surfaces that are steep, the intersection point
may not be found. Figure 5.2 shows (left) some rays suffering total internal
reflection, (middle) a ray may intersect a surface at two points, and (right) rays
may miss a surface.

5.5 Ray Definition

To trace a given ray requires a first starting point on the object surface, and a
second point in the entrance or exit pupil plane of the system. By default, and
for simplicity, the ray direction is computed based on first-order optics.
Consequently, in object space, first-order rays and real rays perfectly coincide.
However, at the exit pupil, or at the stop surface, first-order rays and real rays
may not coincide. Then, through real ray aiming, the ray tracing algorithm may

Figure 5.2 Ray tracing pitfalls. Left, total internal reflection for rays near the lens
edge; center, two possible ray intersections at a convex surface; right, rays miss a
convex spherical surface of small radius.
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make both rays coincide at another surface rather than at the entrance pupil
plane. Real ray aiming is necessary to properly simulate the passage of light
rays through an optical system. Figure 5.3 shows (left) rays defined in object
space by coordinates at the entrance pupil; (center) the traced rays through the
lens do not coincide with the stop aperture because of pupil aberration; and
(right) with ray aiming, rays are defined with coordinates at the stop and
coincide with the stop aperture. However, ray aiming requires aiming each
ray, and this can take significant time during lens optimization. Instead, ray
definition can be achieved for proper filling of the aperture stop by setting light
vignetting factors.

5.6 Reverse Ray Tracing

Nominally rays are traced from object space to image space. However, some-
times it is convenient to trace rays in reverse, from image space to object space.
This can be done, for example, by reversing all the surfaces in the prescription
of a lens. The initial design of a collimator lens, this is a lens that has the first-
order image at infinity, can be carried by reverse ray tracing. Determining the
presence of some ghost images and stray light in a lens system can be done by
reverse ray tracing. Some calculations are enabled by reverse ray tracing and,
thus, it is a useful technique in lens design.

Figure 5.4 illustrates how rays can enter a lens from high angles to be totally
internally reflected by one surface and Fresnel reflected by the other surface of
a lens to create a ghost image. Such ray paths can be discovered by reverse ray
tracing. This is tracing rays from the image to the lens, performing reflection
on one surface, then identifying total internal reflection on the other surface,
and refracting the rays out of the lens to determine possible ray paths that
contribute ghost images.

Figure 5.3 Ray aiming. Left, ray aiming to the entrance pupil; center, rays do not
properly fill the stop aperture; right, rays properly fill the stop aperture because of
ray aiming at the stop.
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5.7 Zero Index of Refraction

Lens design programs allow the index of refraction to be set to zero or nearly
zero. This is not physically possible; however, by doing so, design simplifica-
tion can be obtained in some lens designs, such as null correctors. If the index
of refraction is set to zero in object space, while the index of refraction in
image space is finite, then the angle of refraction must be zero, or nearly zero.
Therefore, after refraction, a given ray will coincide with the normal line to the
surface at the point of ray intersection. Figure 5.5 shows how rays after
refraction become normal to a parabola.

5.8 Zero Dispersion

If the dispersion of a refracting material of a lens is set to zero (infinite ν-number)
then no chromatic aberration will be contributed by that lens. Then the

Figure 5.4 Reverse ray tracing to discover ray paths that can create ghost images.
Rays are reverse ray traced from the image plane to a lens.

Figure 5.5 Parallel rays after refraction become normal to a parabola; the ray
angle of refraction is zero. The index of refraction in object space is nearly zero.
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contribution to chromatic aberration from other lenses in a system can easily be
determined for analysis or further optimization. By setting a group or groups of
lenses to have zero dispersion, the remaining groups can be corrected for chro-
matic aberration, while still accounting for monochromatic aberration from other
lens groups. This is a method to selectively correct for chromatic aberration.

5.9 Infinite Index of Refraction

Ray diffraction can be simulated by setting the material index of refraction to
infinity or, in practice, to a large value like n ¼ 10,000. The optical power of a
thin lens in air is given by,

ϕ ¼ n� 1ð Þ 1
r1

� 1
r2

� �
: (5.7)

As the index of refraction increases and the optical power remains the same,
the difference in radii of curvature decreases, then the lens tends to behave as a
diffractive optical element working at the first order, m ¼ 1.

Figure 5.6 shows an aplanatic diffractive optical element on a spherical
substrate modeled as a thin lens with an index of refraction, n ¼ 10,000, with
r1 ¼ 100, r2 ¼ 100:01, and t ¼ 0. Rays from an object at infinity are focused
by the aplanatic element.

5.10 Negative Thickness

The ray tracing algorithm allows rays to trace when the thickness to the next
surface is negative. Figure 5.7 shows a double convex lens and several real
rays traced. The marginal ray first intersects the front surface of the lens, in
sequence. However, the distance to the edge of the rear surface is negative.

Figure 5.6 Aplanatic element modeled with a high index of refraction, f 0 ¼ 100.
Parallel rays diffract at a spherical in shape, diffractive optical element defined
with two surfaces, and an index of refraction of n = 10,000.
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Consequently, the marginal ray, after refracting in the front surface, intersects
the rear surface by traveling backwards, and then refracts in the rear surface to
proceed forward. The negative edge thickness is not physically possible, but
real ray tracing is still performed.

5.11 Floating the Aperture Stop

Sometimes the best position for the aperture stop in a lens system needs to be
identified. If the stop aperture is defined as the first surface of the lens system,
and a negative thickness is set for this surface, then the internal position of
the stop in a lens can be identified by allowing the lens design optimizer to
vary the negative thickness. As shown in Figure 5.8, with this method light
rays are traced to the aperture stop, which defines and coincides with the
entrance pupil, then rays are reverse traced to the first surface of the lens
system, and finally rays are traced forward through the lens. Once the best
position of the entrance pupil is identified, the lens internal stop aperture
location is set.

5.12 Dummy Surfaces

Dummy surfaces are surrounded by the same media (same index of refraction,
before and after, for all wavelengths) and, thus, they do not cause ray

Figure 5.7 A marginal real ray traces backwards when the distance to the next
surface is negative.

Figure 5.8 Rays are traced to the aperture stop, and then to the first surface of the
lens system. A negative thickness is set for the aperture stop surface to position the
first surface of the lens to the left of the aperture stop aperture.
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refraction. They are used in a lens design layout to establish reference dis-
tances and to calculate beam characteristics at specific system locations.

5.13 Index Interpolation

For accurate ray tracing it is necessary to know the index of refraction at a
given wavelength, λ, for the lens material being used. The glass manufacturer
measures the index of refraction at a number of wavelengths, and makes a fit to
an interpolation formula to predict the index of refraction at other wavelengths.
There have been several formulas used in the past, but currently the Sellmeier
formula is the most common, as its derivation is based on physical principles
and can be accurate over a relatively wide bandwidth. This formula is:

n2 λð Þ ¼ 1þ B1λ
2

λ2 � C1
þ B2λ

2

λ2 � C2
þ B3λ

2

λ2 � C3
, (5.8)

where B and C are Sellmeier coefficients.
An optical engineer must make sure that the optical design program properly

determines the index of refraction of the material to be used in a lens;
otherwise ray tracing can be inaccurate. Depending on the lens system appli-
cation, the ambient temperature and atmospheric pressure may need to be
considered in the lens design, since the index will change slightly as tempera-
ture and pressure change.

Another dispersion formula that is useful is the Schott formula:

n2 λð Þ ¼ Aþ A1λ
2 þ A2λ

�2 þ A4λ
�4 þ A6λ

�6 þ � � �: (5.9)

By setting the Schott formula to n λð Þ ¼ 10; 000ð Þλ, a dispersive diffractive
optical element can be modeled with standard ray tracing.
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6

Radiometry in a Lens System

Lens systems produce images by transferring radiant energy. At any plane
transverse to the optical axis in an optical system there is a light distribution
that may be subject to specifications. The light distribution is modeled with the
laws of radiometry. To have a broader understanding about how optical
systems work it is relevant to discuss how radiometric aspects impact the
design of a lens system. In particular, we are concerned with the light distribu-
tion at the exit pupil and image planes. This chapter discusses basic and useful
radiometric concepts in a lens system.

6.1 The Pinhole Camera

Let us consider a pinhole camera, as shown in Figure 6.1, where ds0 is an
element of area of the pinhole, and s0 is the distance to the observation plane
along the optical axis. At the observation plane there is an element of area, da0.
Behind the pinhole aperture, which may be large in diameter, there is a
Lambertian source of radiance, L00, in units of W/m2-sr. The element of optical
flux, dϕ02, in Watts, transferred to the element of area, da0, is:

dϕ02 ¼ L0
0 ds

0da0

s02
cos 4 θ0ð Þ: (6.1)

Then the element of irradiance, dI 0, in W/m2, at any point in the observation
plane is given by,

dI 0 ¼ L0
0 ds

0

s02
cos 4 θ0ð Þ, (6.2)

where θ0 is the angle with respect to the optical axis of the line defined by ds0

and da0.
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The irradiance in the optical axis, I00, is obtained by summing over all points
of the pinhole aperture, which is assumed to be circular and to have a radius, a.
This is given by,

I0
0 ¼ 2π

L00

s02

ða

0

r
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s02
p

� �4

dr ¼ 2πL0
0
ðU0

0

sin ξð Þ cos ξð Þdξ

¼ π
L00

n02

� �
n02 sin 2 U0ð Þ: (6.3)

The quantity L0 0
n02 ¼ cte is known as the radiance theorem, and remains invariant

in an optical system that does not lose light; for example, by material absorption.
Therefore, the on-axis irradiance, I00, is proportional to the square of the index of
refraction of the observation media and proportional to the square of the sine of
the semi-angle subtended by the pinhole aperture. The closer the observation
point is to the pinhole camera, the larger the irradiance, I00, becomes.

For radiometric purposes and to first-order, light from the exit pupil of a lens
system can be modeled like that of a pinhole camera. Then, the on-axis
irradiance at the image plane of a lens system is given by,

I0
0 ¼ π

L00

n02
NA2, (6.4)

where NA ¼ n0 sin U0ð Þ is the numerical aperture of the lens system in
image space.

Using the approximation,

sin 2 U0ð Þ ⋍ 1

4 F=#ð Þ2 , (6.5)

in the relationship for I00, allows one to conclude that the image brightness in
the optical axis is inversely proportional to the square of the F/# at which an

Figure 6.1 Geometry of a pinhole camera.
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objective lens is working. Thus, to cast bright images, lenses with small F/#s
are required.

6.2 Pinhole Camera Relative Illumination

If the aperture is small, i.e., a pinhole, and has an area ds0, then, for an off-axis
observation point, the element of irradiance is given by,

dI 0 ¼ L00ds0

s02
cos 4 θ0ð Þ: (6.6)

The relative illumination at the observation plane is defined as the ratio of the
off-axis irradiance to the on-axis irradiance, and is simply given by,

RI ¼ cos 4 θ0ð Þ: (6.7)

This relation is known as the cosine4 law of illumination, and serves as a
reference to describe the relative illumination of a lens system.

A pinhole can have different sizes and, in consideration of the distance to the
observation plane, different F/#’s can be defined. Figure 6.2 shows the relative
illumination of pinhole cameras operating at F/100, F/2, and F/1. As can be
seen, there is little difference in the relative illumination when above F/2.

The transverse position of the pinhole with respect to the optical axis is
specified by ρ!, and the observation point is specified by H

!
. Then the relative

illumination is given in terms of the first-order marginal, u0, and chief, �u0, ray
slopes as,

RI H
!
; ρ!

� �
¼ cos 4 θ0ð Þ
¼ 1� 2u02 ρ!� ρ!

� �
� 4u0�u0 H

!� ρ!
� �

� 2�u02 H
!� H!

� �
þ � � � (6.8)

Figure 6.2 Relative illumination of pinhole cameras at F/100 (bottom curve), F/2
(intermediate curve), and at F/1 (top curve). The field of view is in degrees in the
horizontal axis from 0� to 75�.
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This relation serves as a reference to describe irradiance changes in an optical
system.

6.3 Ratio of On-Axis Irradiance to Exitance
in an Optical System

Let us consider now a lens system imaging a Lambertian source of radiance,
L0. The aperture stop and the entrance pupil coincide in object space. If da is
an element of area on the optical axis, then the element of optical flux emitted
by the source is given by,

dϕ ¼ 2πL0da
ðU

0

sin ξð Þ cos ξð Þdξ ¼ πL0da sin
2 Uð Þ, (6.9)

and an on-axis exitance in object space is given by,

I0 ¼ πL0 sin
2 Uð Þ: (6.10)

The angle, U, is the semi-angle subtended by the entrance pupil, as shown in
Figure 6.3.

The ratio of the on-axis irradiance to exitance in the object and image planes
is then,

I00

I0
¼ L00

L0

sin 2 U0ð Þ
sin 2 Uð Þ : (6.11)

Recalling the radiance theorem, which states that the ratio of radiances in
different media is equal to the ratio of the square of the indices of refraction,

L00

L0
¼ n02

n2
, (6.12)

Figure 6.3 Representation of an optical system imaging a Lambertian source.
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and expressing the real ray angles, U and U0, as a function of the marginal and
chief first-order ray slopes, allows us to write,

I00

I0
¼ n02

n2
sin 2 U0ð Þ
sin 2 Uð Þ ’ n02

n2
1þ u2

u2
u0 þ Δu0ð Þ2

1þ u0 þ Δu0ð Þ2 ’
1
m2

1þ 2
W131

Ж

� �
, (6.13)

where the transverse magnification is m, and where we have used the relation-
ships Δu0

u0 ¼ W311
Ж and W311 ¼ W131 þ 1

2ЖΔ u2ð Þ. The increment in slope, Δu0, is
included as the marginal real ray may not coincide with the first-order marginal
ray in image space.

If the optical system obeys the sine condition, u sin U0ð Þ ¼ u0 sin Uð Þ, there
is no coma, W131 ¼ 0, and the ratio of the on-axis irradiance to exitance is
inversely proportional to the square of the transverse magnification. In the
presence of coma aberration, W131, or equivalently in the presence of pupil
distortion, W311, the ratio of on-axis irradiance to exitance changes. Effect-
ively, the exit pupil increases or decreases in size, changing U0, and then
making the on-axis image point brighter or dimmer.

6.4 Lens System Relative Illumination

Let us consider an optical system where the aperture stop and the entrance
pupil coincide. The exit pupil, being the image of the aperture stop in image
space, can be distorted, not only for the on-axis beam but for off-axis beams.
As the exit pupil distorts the image irradiance changes and, therefore, the
relative illumination does too. To a second-order of approximation, the relative
illumination, RI, of a system can be written as,

RI H
!� �

¼ 1� 2�u02 � 4
Ж

W131

� �
H
!� H!

� �
: (6.14)

In the absence of pupil coma,W131, the relative illumination is that of a pinhole
camera. In the presence of pupil coma, the exit pupil changes size and is
anamorphically distorted. This distortion changes the convergence of the
focusing beams and, thereby, the irradiance. Because pupil coma is related to
image distortion,W131 ¼ W311 þ 1

2ЖΔ �u2ð Þ, the change in relative illumination
can also be explained as a result of the decrease or increase of the imaging area
for a given amount of optical flux.

If the stop is located at the exit pupil, then the relative illumination is, to
second-order, that of a pinhole camera,

RI H
!� �

¼ 1� 2�u02 H
!� H!

� �
: (6.15)
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Because pupil coma can affect the relative illumination, some wide-angle lenses
take advantage to compensate for the cosine4 law of illumination. The Roossi-
nov lens of 1950 (US Patent 2,516,724), as shown in Figure 6.4, was designed
as a nearly symmetrical lens where each half contributes a large amount of pupil
coma which nearly cancels by symmetry. However, because the aperture stop is
in the middle of the lens, only pupil coma that is contributed by the second half
of the lens counts for the lens relative illumination; this pupil coma makes the
lens to have a cosine3 law of illumination, as shown in Figure 6.5.

The exit pupil as a function of the field of view is increasingly magnified and
anamorphically distorted, as shown in Figure 6.6.

6.5 Light Vignetting

The aperture stop defines the relative aperture of the on-axis beam. It also
defines the aperture for off-axis beams. However, there might be other

Figure 6.4 A wide angle objective lens following a cosine3 illumination law.

Figure 6.5 Relative illumination of the Roossinov lens. The field of view is in
degrees in the horizontal axis from 0� to 65�.
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apertures in an optical system that limit the amount of light for off-axis beams.
Rays of light can be obstructed, or clipped, for example by the physical size of
a lens. This loss of light in an off-axis beam is known as light vignetting.
Figure 6.7 shows how beam clipping can take place for off-axis beams.
Because there is light loss, the relative illumination decreases.

However, in some lenses, light vignetting is introduced on purpose to
suppress rays that have aberration beyond tolerances. Light vignetting has
been used extensively in photographic lenses to reduce aberration at low
F/#s and to reduce the overall lens diameter and weight.

6.6 Irradiance at the Exit Pupil Plane

It is of interest to describe the irradiance at the exit pupil plane of a lens system.
We assume that the stop aperture coincides with the exit pupil, and that the object
is a Lambertian source that is circular to maintain axial symmetry. The function,

�I H
!
; ρ!

� �
¼ �I000 þ �I200 ρ!� ρ!

� �
þ �I111 H

!� ρ!
� �

þ �I020 H
!� H!

� �
. . . , (6.16)

provides the irradiance at the exit pupil as a function of the field, H
!
, and aperture,

ρ!, vectors. Figure 6.8 shows graphically the second-order terms �I200 ρ!� ρ!
� �

,

�I111 H
!� ρ!

� �
, and �I020 H

!� H!
� �

, which represent irradiance aberrations.

Figure 6.6 Spot diagrams showing the cross-section of different off-axis beams at
the exit pupil plane. From left to right, on-axis to off-axis field positions.

Figure 6.7 For off-axis beams the physical size of the lens aperture limits the
amount of light. The loss of light increases as the field of view increases.
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With �I000 ¼ 1, the second-order coefficients in terms of image aberration
coefficients are,

�I020 H
!� H!

� �
¼ �2�u02 � 4

Ж
W311

� �
H
!� H!

� �
, (6.17)

�I111 H
!� ρ!

� �
¼ �4u0�u0 � 4

Ж
W220 � 6

Ж
W222

� �
H
!� ρ!

� �
, (6.18)

and

�I200 ρ!� ρ!
� �

¼ �2u02 � 4
Ж

W131

� �
ρ!� ρ!

� �
: (6.19)

If a lens system is free from coma aberration, W131 ¼ 0, and collimates light,
u0 ¼ 0, then the illumination at the exit pupil would be uniform. This comes
about because, for an axially symmetric object, the contributions of the term

�I111 H
!� ρ!

� �
will cancel, i.e., �I111 H

!� ρ!
� �

þ �I111 � H
!� ρ!

� �
¼ 0, the term

�I020 H
!� H!

� �
does not depend on the aperture vector, ρ!, at the exit pupil, and

the term �I200 ρ!� ρ!
� �

will vanish.
An aplanatic lens, as shown in Figure 6.9, will produce uniform illumi-

nation at the exit pupil when the object is a Lambertian source. If the lens
is aplanatic, but is imaging u0 6¼ 0, like a microscope objective used in
reverse, the irradiance at the exit pupil would follow a cosine4 law to
second-order.

Figure 6.8 Second-order terms of irradiance changes at the exit pupil of a lens
system.

Figure 6.9 An aplanatic lens can be used to produce uniform illumination from a
Lambertian source.
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6.7 Optical Étendue

The optical flux, ϕ, transferred from a source of radiance, L0 (here assumed
uniform), and area, As, to an optical component or lens system is given by,

ϕ ¼ L0
n2

ε, (6.20)

where ε is the optical étendue associated with the optical component or system.
Two first-order approximations to the étendue are ε ¼ πn2As sin 2 Uð Þ and

ε ¼ π2Ж2. The étendue gives further meaning to the Lagrange invariant, Ж,
and it is a measure of the capacity of an optical component or lens system to
transfer optical flux.

Every optical element or system has associated an étendue and, in order to
avoid loss of light, the étendue of all the components of a system must be equal
or greater than the étendue that defines the light gathering properties of the
system. For example, the pixel size of a sensor often defines the F/# of an
imaging system, and, given the sensor size area, the minimum étendue of the
system is established. Then all components in the system must have at least the
sensor’s étendue to avoid light loss and fully illuminate the sensor.

As another example, consider a sharp imaging fisheye lens with a semi-field
of view, θ, and with an entrance pupil radius, ye. The etendue, ε, of the system
in object space is ε ¼ π2y2e sin

2 θð Þ. Assuming telecentricity in image space,
�u0 ¼ 0, and the radius of the image to be �Yi, then we have that, whenever

sin U0ð Þ ffi 1
2F=#, the étendue in image space is ε0 ¼ π2�Y2

i y
2
e

f 02 , where f is the focal

length of the lens. If there is no light loss, we must have ε0 ¼ ε, which leads to
the lens mapping relationship, �Yi ¼ f sin θð Þ. This mapping differs from the
ideal, �Yi ¼ f tan θð Þ, mapping that many lenses produce.

Still another example of the use of étendue is in deriving the sine condition.
The optical flux emitted from a Lambertian source is given by,

ϕ ¼ L0πAs sin 2 Uð Þ. The flux forming a sharp image of the source is given
by, ϕ0 ¼ ϕ ¼ L00πAs

0 sin 2 U0ð Þ. Using the radiance theorem, we obtain,

n2As sin 2 Uð Þ ¼ n02As
0 sin 2 U0ð Þ, which, after using, n�you ¼ n0�yiu0, simplifies

into the sine condition, u0 sin Uð Þ ¼ u sin U0ð Þ. A discussion of the sine condi-
tion is given in Appendix 5.
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7

Achromatic and Athermal Lenses

The index of refraction of glass depends on the wavelength of light. For
N-BK7 glass from Schott Company, the index of refraction is shown in
Figure 7.1 for wavelengths ranging from 0.4 to 0.8 µm; shorter wavelengths
have a higher index of refraction than longer wavelengths. Since the angle of
refraction depends on the index of refraction, then the angle of refraction varies
as the wavelength changes. This results in chromatic aberration. Similarly, the
index of refraction and the radii of curvature and thickness of a lens vary with
changes in lens temperature. This results in thermal aberrations; thermal
change of focus, and thermal change of magnification. This chapter discusses
both types of aberrations and their correction.

7.1 Chromatic Change of Focus and Magnification

When the wavelength of light changes, the aberration function of a system also
changes and, to second-order, it can be written as,

W H
!
; ρ!

� �
¼ ∂λW000 þ ∂λW020 ρ!� ρ!

� �
þ ∂λW111 H

!� ρ!
� �

þ ∂λW200 H
!� H!

� �
,

(7.1)

where ∂λW020 is the coefficient for the chromatic change of focus and ∂λW111

is the coefficient for the chromatic change of magnification. These aberrations
are known in the lens design literature as axial/longitudinal and lateral/trans-
verse chromatic aberrations, respectively. The chromatic piston terms, ∂λW000

and ∂λW200, are neglected as they do not degrade the image quality. As shown
in Figure 7.2 (left), in the presence of chromatic change of focus, a marginal
ray is dispersed and intersects the optical axis at different distances along the
optical axis, and (right), in the presence of chromatic change of magnification
the chief ray is dispersed and intersects the image plane at the different heights.
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Optical glass is characterized in the visible spectrum by its index, nd, of
refraction at the Fraunhofer d-line, λ ¼ 587:6 nm, and by its v-number,
v ¼ nd � 1ð Þ= nF � nCð Þ, where nF and nC are the Fraunhofer F and C lines
at λ ¼ 486:1 nm and λ ¼ 656:2 nm, respectively.

For a system of surfaces, the chromatic coefficients are given by,

∂λW111 ¼
Xj

i¼1

�AΔ
∂n
n

� �
y

� �
i

, (7.2)

and

∂λW020 ¼ 1
2

Xj

i¼1

AΔ
∂n
n

� �
y

� �
i

, (7.3)

where Δ ∂n
n

� � ¼ ∂n0
n0 � ∂n

n , ∂n ¼ nF � nC, and n ¼ nd.
For a system of thin lenses, the chromatic coefficients are given by,

∂λW111 ¼
Xj

i¼1

ϕ
ν
y�y

� �
i

, (7.4)

and

∂λW020 ¼ 1
2

Xj

i¼1

ϕ
ν
y2

� �
i

, (7.5)

Figure 7.1 Change of index of refraction with wavelength, 0.4 to 0.8 µm, for
glass Schott N-BK7.

Figure 7.2 Left, a marginal ray is dispersed at a single surface producing chro-
matic change of focus, and, right, a chief ray is dispersed producing chromatic
change of magnification. Rays at the F, d, and C lines have been traced from the
refracting surface to the ideal image plane.
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where ϕ is the optical power of a thin lens. These second-order formulas are
simple and often useful, as they describe the behavior of the chromatic change
of focus and magnification. When the marginal ray height, y, at a thin lens is
zero, there is no contribution to the chromatic aberrations by that lens, and,
when the chief ray height, �y, is zero there is no contribution to the chromatic
change of magnification by that lens.

For a thin lens with the stop aperture at the lens, the chromatic coefficients in
terms of structural coefficients are,

∂λW020 ¼ 1
2
y2PϕσL, (7.6)

and

∂λW111 ¼ 2ЖσT , (7.7)

where the structural coefficients are σL ¼ 1
ν and σT ¼ 0. The change of

structural aberration coefficients with stop shifting are σ∗L ¼ σL and

σ∗T ¼ σT þ �SσσL, where the structural stop shifting parameter is �Sσ ¼ yP�yPϕ
2Ж .

A singlet lens with a focal length of 100 mm made out of glass BK7
contributes chromatic change of focus, as shown in Figure 7.3.

The plot in Figure 7.3 shows the change in focal length in the horizontal axis
vs. the wavelength in the vertical axis. For the primary wavelength which is the
d-line the focal length is 100 mm. This plot is called the chromatic focal shift
curve, and it is a useful plot to describe and understand chromatic aberration.

7.2 Optical Glass

Optical glass ismanufactured by companies such asCDGM,Hoya,Ohara,Nikon,
and Schott. Glass is made out of silica, soda-lime, and additives like lead oxide,
Barium (BA), Boron (B), Fluorine (F), Lanthanum (LA), and Phosphorous (P).

Figure 7.3 Chromatic focal shift curve for a singlet lens made out of BK7 glass.
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Glasses are divided into crown glasses and flint glasses at a ν-number of approxi-
mately 50. Except for a few glasses, crown glasses have a ν-number larger than
50, and flint glasses less than 50. As silica is replaced with lead-oxide, the glass
density and index of refraction increase, and the ν-number decreases. With the
increase of lead-oxide, glass properties change, and several glass families are
defined in the Schott catalog: K (crowns), KF (crown flints), LLF (very light
flints), F (flints), and SF (dense flints). With additives, other families are also
defined: FK (Fluorite crowns), PK (Phosphate crowns), BK (Boron crowns),
BAK (Barium crowns), BAF (Barium flints), LAK (Lanthanum crowns), and
LAF (Lanthanum flints). The glass families are shown in the Abbe diagram in
Figure 7.4, which is a plot of glass index of refraction vs. the ν-number.

7.3 Thin Achromatic Doublet

Chromatic aberration can be corrected in a combination of two thin lenses with
different ν-numbers and focal lengths. If ϕ ¼ ϕ1 þ ϕ2 is the power of the lens

Figure 7.4 Abbe diagram as a function of the index of refraction and ν-number for
the Schott catalog of glass families.
(Source: Schott)
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combination, ϕ1 the power of the first lens, and ϕ2 the power of the second
lens, then to correct for chromatic aberrations in a thin doublet lens we must
have,

ρ1 ¼
v1

v1 � v2
, (7.8)

and

ρ2 ¼ � v2
v1 � v2

, (7.9)

where ρ1 ¼ ϕ1=ϕ and ρ2 ¼ ϕ2=ϕ. These equations result in the ratio of the
optical powers needing to be equal to the negative of the ratio of the
ν-numbers,

ϕ1=ϕ2 ¼ �v1=v2: (7.10)

The individual thin lens optical power is inversely proportional to the ν-number
difference. To minimize monochromatic aberration, it is important to minimize
the optical power of the thin lens components, which requires using glasses with
a large ν-number difference. The chromatic focal shift for an achromatic doublet
made out for BK7 and F2 glasses is shown in Figure 7.5. The focal length of the
lens elements are 43.32 mm and �76.44 mm, respectively.

The two extreme wavelengths, λF and λC, focus at the same location, and all
other wavelengths focus shorter. The primary wavelength, λd, per design has
no focus error, and the maximum focal difference, this is the sag of the curve,
is 57 µm. The residual chromatic aberration of Figure 7.5 is called the
secondary spectrum and, for a third wavelength λ, it can be characterized by
the glass partial dispersion ratio, defined by Pλ ¼ nλ � nFð Þ= nF � nCð Þ, where
nλ is the index of refraction for a wavelength that might be brought to focus
with the λF and λC wavelengths.

Figure 7.5 Chromatic focal curve for an achromatic thin doublet with a focal
length of 100 mm. The maximum focal difference, this the sag of the curve, is 57
µm. Note that the extreme wavelengths focus at the same plane.
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The chromatic change of focus is normally calculated for the λF and λC
wavelengths. However, for λF and an intermediate wavelength, λ, the chro-
matic change of focus is,

∂λW020 ¼ 1
2

Xj

i¼1

ϕ
Pλ

ν
y2

� �
i

: (7.11)

The condition to make a thin achromatic doublet to provide the same focal
length for three wavelengths is,

∂λW020 ¼ 1
2
ϕy2

P1 � P2

ν1 � v2

� �
¼ 0, (7.12)

which requires that the partial dispersion ratio of the glasses for the third
wavelength be the same, P1 � P2 ¼ 0.

For most glasses the partial dispersion ratio as a function of the ν-number
follows the line P ¼ aþ bv, where a and b are coefficients. Then the partial
dispersion ratio difference for two glasses is P1 � P2 ¼ b v1 � v2ð Þ, and, there-
fore, there is no solution to bring a third wavelength to focus because the
ν-number difference must be finite for an achromat. Glasses that follow the line
P ¼ aþ bv are called normal glasses. Fluorite and phosphate glasses do not
follow the normal glass line, and can be used to bring three wavelengths to a
common focus. An example is a doublet made out of N-PSK57 and KZFS6
glasses from Schott, with element focal lengths of 29.078 mm and �41.0 mm
to provide a focal length of 100 mm. The chromatic focal shift is shown in
Figure 7.6. Note the reduction in the amount of secondary spectrum. When a
lens system focuses three wavelengths to a common focal point, it is referred to
as an apochromatic lens.

Figure 7.6 Chromatic focal shift curve for an apochromatic doublet made
out of N-PSK57 and KZFS6 glasses. The ν-number difference is v1 � v2 ¼
68:39� 48:51 ¼ 19:88.
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7.4 Apochromatic Triplet

The secondary spectrum of a thin achromat doublet depends on the focal
length and on the partial dispersion ratio difference of the glasses used. An
apochromatic thin triplet lens can be made out of two thin achromatic doublets
having a common glass. By the choice of glass and optical power of the
individual doublets then it is possible to bring three wavelengths to a
common focus.

A simple but powerful method to design an apochromatic objective lens is
to plot the chromatic focal shift for several doublets made out of different
glasses and with a focal length of 100 mm. If S1 and S2 are the sags of the
chromatic focal shift curves for those doublets, then changing the focal length
of one doublet by the ratio �S1=S2 would produce an apochromatic lens when
both doublets are combined. The sign of the ratio depends on the sign
difference of the sag of the chromatic focal shift curves.

For example, a first 100 mm focal length achromatic doublet made out of N-
FK51 and N-KZFS4 glasses has a sag in the chromatic focal shift curve of
�16.6 µm, and a second doublet made out of N-KZFS4 and N-SF15 glasses
has a sag of �89 µm. By changing the focal length of the second doublet by a
factor of �89/16.6 and then combining it with the first doublet, an apochro-
matic triplet is obtained. The chromatic focal shift curves are shown in
Figure 7.7. Since the chromatic correction does not depend on the element
shapes, the common glass lens elements can be combined into a single lens
element. This procedure is particularly useful for finding apochromatic object-
ives that operate in the infrared or UV regions of the spectrum where the
ν-number is not defined.

Figure 7.7 Chromatic focal shift curves. Left, for a N-KZFS4/N-SF15, f 0 =
100 mm thin doublet; middle, for a N-KZFS4/N-FK51, f 0 = 100 thin doublet;
and, right, for a thin apochromatic triplet combining doublets with focal lengths of
�536 mm and 100 mm. The focal shift curve for the apochromat triplet has been
scaled up by a factor of 25.
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The design of an achromatic or apochromatic lens objective also requires the
control of spherical aberration and its dependence with color, called
spherochromatism aberration, and also of the control of coma aberration. Thus,
an optimized design involves a balance of aberrations. An example of an
apochromatic and aplanatic objective is shown in Figure 7.8, and its construc-
tional data is given in Table 7.1.

7.5 Glass Selection

Optical glass catalogs describe more than 100 different glass types, and then
the question is how to select glasses. The selection depends on the application
and on the glass optical, thermal, mechanical, and environmental properties. In
addition to the index of refraction and ν-number, glasses for example also
differ in partial dispersion ratios, in optical transmission, in how the index of

Figure 7.8 Apochromatic and aplanatic triplet lens objective.

Table 7.1 Apochromatic and aplanatic objective, f = 1,000 mm, at F/6.7 0.425
µm to 0.75 µm

Surface Radius, mm Thickness, mm Glass

1 581.3493 10 N-KZFS11
2 167.8804 2
3 170.2867 18 N-BAF4
4 328.8949 2
5 290.9040 20 N-FK51A
6 �1,656.1579
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refraction changes with temperature, in coefficient of thermal expansion,
durability, hardness, and cost.

For an achromatic doublet the glass choice is often driven by having a large
ν-number difference to minimize aberrations such as spherochromatism. For
an apochromatic objective, fluorite glasses and short flint glasses which do not
follow the normal glass line are used. Glasses with opto-thermal coefficients
similar to aluminum, invar, or titanium may be chosen to athermalize a lens
system. Flint glasses absorb more light toward the UV, and fused silica may be
used instead of glass. The lanthanum glasses have a higher index of refraction
that reduces lens curvatures and aberration, and can provide a useful ν-number
difference. Glass density might be important to reduce lens weight. BK7 glass
is produced in large quantities, and serves as a useful reference, as the price of
other glasses per pound is compared to that of BK7 glass. In addition, BK7
glass can be obtained in relatively large sizes.

7.6 Thermal Change of Focus and Magnification

Let us consider a thin lens where the change of focus, W020, is measured with
respect to the exit pupil plane, and given by,

W020 ¼ y2

2
ϕ ¼ n� 1ð Þ 1

r1
� 1
r2

� �
y2

2
, (7.13)

where ϕ is the optical power of the thin lens.
The coefficient of thermal expansion, α, of the lens refracting material is,

α ¼ 1
r1

∂r1
∂t

¼ 1
r2

∂r2
∂t

: (7.14)

Then, assuming that the change of index of refraction of air with temperature is
negligible, the thermal change of focus is,

∂tW020 ¼ y2

2
ϕ

1
n� 1

∂n
∂t

� α

� �
¼ y2

2
ϕγ, (7.15)

where γ is the opto-thermal coefficient of the refracting material,

γ ¼ 1
n� 1

∂n
∂t

� α: (7.16)

For a system of thin lenses, the thermal change of focus can be written as,

∂tW020 ¼ 1
2

Xn
i¼1

y2ϕγ
� �

i, (7.17)
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and the thermal change of magnification as,

∂tW111 ¼
Xn
i¼1

y�yϕγð Þi: (7.18)

These thermal aberration formulas are similar to the chromatic aberration for-
mulas for a thin lens. The difference is that, instead of using the reciprocal of the
glass ν-number, the thermal aberration formulas use the opto-thermal coefficient
that is in the order of 10�5/K⁰. In comparison, the glass ν-number may range
from 20 to 90 and, thus, the change of focus due to temperature changes can be a
small effect. The opto-thermal coefficient, γ, can be positive or negative,
depending on the material, as shown in Table 7.2 for a few materials.

A lens system with a focal length, or other property, that is insensitive to
changes in temperature is called an athermal system. To have an achromatic
and athermal doublet, the additional requirement is,

∂tW020 ¼ y2

2
ϕ1γ1 þ ϕ2γ2ð Þ ¼ y2

2
ϕ

ν1 � ν2
v1γ1 � v2γ2ð Þ ¼ 0, (7.19)

or,

v1γ1 ¼ v2γ2: (7.20)

The equivalent opto-thermal coefficient for an achromatic doublet is,

γ ¼ v1γ1 � v2γ2
ν1 � ν2

: (7.21)

In the same way that an apochromatic triplet can be designed out of two
achromatic doublets sharing a common glass, an achromatic doublet that is
athermal can be designed. If γA is the equivalent opto-thermal of an achromatic
thin doublet, and γB is that of another doublet, then the ratio of the focal lengths
must be,

Table 7.2 Opto-thermal coefficients

Material γ 1
K=½ ��10�6

LITHOSIL-Q 21.89
N-ZK7 9.24
N-BAK4 0.07
N-BK7 �1.21
N-F2 �2.36
N-FK5 �10.83
N-FK51A �25.54
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f A
f B

¼ � γA
γB

, (7.22)

for the combination of both doublets to be athermal. The thermal change of
focal length can be weak, so it may not be necessary to exactly match the ratio
of the focal lengths to the ratio of the opto-thermal coefficients.

As an example, an achromatic and athermal triplet can be made out of thin
lenses with glasses N-BK7, N-F2, and N-ZK7 with focal lengths of 42.72 mm,
�76.24 mm, and �3,478.78 mm, respectively to yield a triplet lens with a
focal length of 100 mm. The combination of N-BK7 and N-F2 glass gives a
nearly achromatic and athermal doublet. The use of the N-ZK7 glass lens is to
help tune the aberrations to zero.

Because both the chromatic change of focus and the thermal change of focus
depend on the square of the aperture, it is best to correct for these aberrations at
locations in a lens system where the marginal ray height is maximum. The
thermal change of focus formula is based on a linear model and, for large
temperature ranges, the model may be in significant error.

7.7 Techniques for Correcting Chromatic Aberration

A favorite strategy to correct aberration in a lens system is to first do the
monochromatic aberration correction, and then do the chromatic aberration
correction. This separates the tasks and simplifies the design process.

The correction of chromatic aberration in a multi-lens system can be done
by making every lens an achromatic doublet or triplet. However, this proced-
ure adds cost and is often redundant.

To correct for the chromatic aberrations, two effective degrees of freedom
are needed. These can be two separated dispersive interfaces, or one dispersive
interface and its position in the lens system. The symmetry of the system about
the aperture stop may be used to correct the chromatic change of magnification
since it is an odd aberration. If the system is optically fast, more dispersive
interfaces can be added to avoid very strong surface curvatures.

A first technique is to design a lens monochromatically using a single glass
type with an index of refraction near nd ¼ 1:65. Near this index there are
several glasses that have different ν-numbers; for example, LAK21, LAK7,
LAK22, LAK5, BAF61, KZFSN5, and SF2 in the Schott glass catalog. Once
the monochromatic design is done, the glass of positive lenses is chosen to be a
crown, and the glass of negative lenses is chosen to be a flint. Since the index
for the nominal wavelength is roughly the same, the monochromatic correction
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will not change significantly. However, the chromatic aberrations will change,
and sometimes they can be corrected by a proper selection of the glass
ν-number for each lens element.

An optical surface, called a buried surface, is surrounded by two glasses
with the same index of refraction, nd ¼ nd 0, but with different ν-numbers,
v 6¼ v0. Thus, the rays of light for the λd wavelength do not refract at the buried
surface, but rays at other wavelengths do refract at the buried surface, as there
is an index difference for those wavelengths. The radius of curvature of the
buried surface and the ν-number difference serve as effective variables to
control chromatic aberration. The buried surface provides a degree of freedom
to control chromatic aberration.

A second technique is, again, to design the lens monochromatic first, and
then identify the position for the stop aperture that would correct the chromatic
change of magnification aberration. If that position coincides with a lens
element, then that lens can be split by a buried surface to correct for the
chromatic change of focus aberration. At this point both chromatic aberrations
would be corrected. Then the aperture stop can be returned to its original
position, where it is best for the monochromatic correction. The chromatic
correction will remain as stop shifting, σ∗L ¼ σL, and σ∗T ¼ σT þ �SσσL will not
change the chromatic change of magnification, since there is no chromatic
change of focus aberration, σL ¼ 0, and no chromatic change of magnification,
σT ¼ 0.

As an example, consider the monochromatic quartet from the lens design
problem of the 1990 International Lens Design Conference, as shown in
Figure 7.9 (top). The chromatic aberration for the on-axis field position and
for a field of 15� is shown in Figure 7.10 (top). To achromatize this lens
system, a buried surface was included in the third lens at a point where the

Figure 7.9 Top, monochromatic quartet; bottom, a buried surface was included in
the third lens to correct for chromatic aberration.
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chromatic change of magnification was canceled, and the radius of curvature of
the buried surface and the ν-number difference was used to correct for chro-
matic change of focus. Figure 7.9 (bottom) shows the chromatically corrected
lens, and Figure 7.10 (bottom) shows the aberration correction residual.

A third technique to correct for chromatic change of focus and chromatic
change of magnification is to introduce two buried surfaces in two different
lens elements. This technique is used in the double Gauss lens that is discussed
in Chapter 12.

7.8 Diffractive Optical Elements

Diffractive Optical Elements (DOE) change the path of light through the
phenomenon of diffraction. In particular, they can deviate light, converge or
diverge light, and introduce or correct aberration. Consider the grating
equation,

n0 sin I 0ð Þ � n sin Ið Þ ¼ mλ
d

, (7.23)

where m is the diffractive order, d is the grating period, and I and I0 are the
angles of incidence and diffraction. For the zero-order, m = 0, the grating
equation becomes Snell’s law.

Figure 7.11 (top) shows an amplitude grating where 50% of the light is lost
and 50% is diffracted into multiple orders, and where light modulation is
accomplished by a periodic variation of the light field amplitude. Figure 7.11

Figure 7.10 Top, wave fans for the monochromatic quartet with a scale of
50 waves showing both chromatic change of focus and chromatic change of
magnification aberration. Bottom, wave fans for the chromatically corrected lens
with a scale of one wave. The wave fans are for the field positions 0� and 15� and
for the λF, λd, and λC wavelengths.
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(middle) shows a phase grating where 100% of the light is diffracted into
multiple orders and where modulation is accomplished by a periodic variation
of the light field phase. Figure 7.11 (bottom) shows a phase and blazed grating
where 100% of the light is diffracted into a single order and light modulation is
accomplished by a periodic variation of the light field phase. The blaze of a
grating refers to the profile of the grating grooves and determines how light is
distributed among the diffracted orders.

Figure 7.12 shows two close and parallel meridional rays separated by a
distance, Δy, incident in a plane grating. The optical path difference, or phase
difference, Δϕ, between them after diffraction is,

Δϕ ¼ n0 sin I 0ð Þ � n sin Ið Þð ÞΔy ¼ mλ
d

Δy: (7.24)

In the limit of small Δy, we obtain the derivative of the phase with respect to
the ray intersection coordinate, y,

∂ϕ
∂y

¼ n0 sin I 0ð Þ � n sin Ið Þð Þ ¼ mλ
d

: (7.25)

This relationship represents a ray tracing equation whenever the phase function,
ϕ yð Þ, is known. A first conclusion is that a grating introduces a linear phase
change as a function of position, and deviates light. Then a grating that intro-
duces a quadratic phase would make light converge or diverge, and this is a
diffractive lens, as shown in Figure 7.13. A second conclusion is that the grating
geometry, when it is thought of as an interferogram, introduces a wavefront
deformation that corresponds to that represented by the interferogram.

Figure 7.11 Top, an amplitude grating; middle, a phase grating; bottom, a phase
and blazed grating.

n' sin (I') Δy

I'

nsin (I) Δy
Δy

I

Figure 7.12 Two close and parallel meridional rays are incident in a plane grating.
The angle of incidence is I, and the angle of diffraction is I 0.
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The ray deviation of a grating can be written to first-order as,

δ ¼ n0i0 � ni ¼ mλd
d

: (7.26)

The grating dispersion can be written as,

Δ ¼ δF � δC ¼ m λF � λCð Þ
d

: (7.27)

Therefore, the ν-number that corresponds to a grating or diffractive lens is,

νdiffractive ¼ δ
Δ
¼ λd

λF � λC
ffi �3:5: (7.28)

Two important features are: (1) diffractive optical elements are strongly
dispersive, much more than glass, and (2) there is more diffraction for longer
wavelengths than for short wavelengths. This is the opposite of refraction,
where there is more refraction for shorter wavelengths than for longer
wavelengths.

The chromatic change of focus of the combination of a refractive thin lens
and a diffractive lens in contact is,

∂λW020 ¼ 1
2

ϕrefractive
νrefarctive

þ ϕdiffractive
νdiffractive

� �
y2: (7.29)

Because of the negative ν-number of diffractive optical elements and their
strong dispersion, they can be used to correct for chromatic aberration using
elements with positive optical power. However, the amount of optical flux
directed to a given diffractive order depends also on the wavelength. The
amount of light that is not directed to the intended order becomes stray light
and decreases image contrast. This is a major problem of DOEs in broadband
applications.

Lens design programs model diffractive optical elements by specifying a
phase function. One example of an axially symmetric phase function is,

Figure 7.13 An amplitude diffractive lens.
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φ ¼ A
2π
λ

x2 þ y2
� �þ B

2π
λ

x2 þ y2
� �2 þ C

2π
λ

x2 þ y2
� �3

. . . , (7.30)

where A, B, and C are coefficients that define the diffractive optical element.
The derivative of the phase function and the shape of the substrate on which
the diffractive structure is made are used to calculate the direction of the
diffracted ray. The second-order term in the phase function introduces focus,
this is optical power. The fourth-order and higher-order terms allow us to
introduce spherical aberration.

By multiplying the grating equation by,

n0 cos I 0ð Þ � n cos Ið Þ
n0 cos I 0ð Þ � n cos Ið Þ ¼ 1, (7.31)

and defining,

tan αð Þ ¼ 1
n0 cos I 0ð Þ � n cos Ið Þ

mλ
d

, (7.32)

the grating equation can be re-arranged as

n0 sin I 0 � αð Þ ¼ n sin I � αð Þ: (7.33)

When the index of refraction is large, n = 10,000, then α becomes negligible
and the grating equation becomes nearly Snell’s law. The implication is that
light diffraction of a ray can be modeled by refraction. Thus, for a given optical
power, a plano convex lens with a very high index of refraction becomes
almost like a parallel plate of glass and models a diffractive lens of the same
optical power. This is known as the Sweatt model, and it is a simple way to
model a diffractive optical element. To model light dispersion, the index of
refraction can be set to be n ¼ λ�104 using the Schott dispersion formula.
Table 7.3 provides the prescription of an achromatic singlet lens that has a
diffractive rear surface, as modeled by the Sweatt model.

Table 7.3 Prescription for an achromatic lens using
the Sweatt model of a DOE. f 0 = 100 mm

Surface Radius Thickness Glass

1 54.6098 5 BK7
2 Plano 0 nF = 4,861.3

nd = 5,875.6
nC = 6,562.7

3 �1.013 � 107 96.565
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8

Combinations of Achromatic Doublets

The achromatic doublet is a fundamental building block in lens design because
it is corrected for chromatic aberrations, and can also be corrected for spherical
aberration and coma aberration. The early lens designers explored all combin-
ations of two achromatic doublets. This chapter discusses some of the solu-
tions found by those designers. In doing so, insight is gained into how simple
lens combinations are designed. Emphasis is given to how the primary aberra-
tions are controlled in doublet combinations, as this knowledge is important to
become skilled in lens design. Providing degrees of freedom to correct the
primary aberrations is a first step toward the optimization of a lens. In practice,
the primary aberrations may not be fully corrected so that higher order aberra-
tions might be balanced against the primary aberration residuals. Once a
primary aberration solution was reached in the examples given in this chapter,
then they were optimized with real rays in a lens design program by minimiz-
ing RMS spot size across the field of view. Thus, a lens design method is to
find a primary aberration solution and then optimize it with real ray tracing.

8.1 Structural Aberration Coefficients of a Thin
Achromatic Doublet

Table 8.1 provides the structural aberration coefficients for a thin achromatic
doublet with the stop aperture at the doublet. The surfaces are assumed to be
spherical in shape, and the ratios of the element optical power to the total
power are ρ1 ¼ ϕ1=ϕ and ρ2 ¼ ϕ2=ϕ.

In Table 8.1, σL and σT are the structural aberration coefficients for the
chromatic change of focus, ∂λW020 ¼ 1

2 y
2
PϕσL, and the chromatic change of

magnification, ∂λW111 ¼ 2ЖσT . If Y ¼ 1þm
1�m is the conjugate factor at which

the doublet works, then the individual conjugate factors for the elements are,
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Y1 ¼ Y � ρ2
ρ1

, (8.1)

and

Y2 ¼ Y � ρ1
ρ2

: (8.2)

For a given conjugate factor, Y, and as a function of the shape factors, X1 and
X2, the plot of spherical aberration is a hyperbola. Thus, there might be two
solutions that produce a given amount of spherical aberration, σI .

The plot of coma as a function of the shape factors X1 and X2 is a straight
line. Thus, there might be a solution that produces a given amount of coma
aberration, σII .

Astigmatism aberration, σIII , is fixed when the stop is at the doublet, as well
as Petzval field curvature, σIV . There is no chromatic change of magnification,
σL, or distortion aberration, σV .

Depending onwhether the crown glass or the flint glass is in front, there are four
solutions for a thin achromatic doublet that is aplanatic, as shown in Figure 8.1.

The fact that there are several solutions is important, because often one
solution performs best for a given application. In multi-lens systems the
individual doublet solutions give place to a plurality of lens system solutions
when these solutions are interchanged.

Table 8.1 Structural aberration coefficients of a thin doublet
Stop aperture at the doublet

σL ¼ ρ1
ν1

þ ρ2
ν2

σT ¼ 0
σI ¼ ρ1

3 A1X1
2 � B1X1Y1 þ C1Y1

2 þ D1
� �þ ρ2

3 A2X2
2 � B2X2Y2 þ C2Y2

2 þ D2
� �

σII ¼ ρ1
2 E1X1 � F1Y1ð Þ þ ρ2

2 E2X2 � F2Y2ð Þ
σIII ¼ ρ1 þ ρ2 ¼ 1

σIV ¼ ρ1
n1

þ ρ2
n2

σV ¼ 0

Figure 8.1 Left, crown glass in front solutions, and, right, flint glass in front
solutions shown as thick lenses.
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If there is no requirement for the control of coma aberration, then a doublet
lens can have the same radius of curvature but with opposite sign in two
contiguous surfaces that can be cemented to form a single lens. Lenses with a
diameter of less than 50 mm can be cemented with UV curing cement. Large
lenses, if cemented, may experience stress, which can alter the shape of the
lenses or introduce birefringence. For cemented doubles with strong curvatures
it is a good practice to avoid having ray total internal reflection if, for any
reason, air gets between the cement and the glass.

8.2 Field Curvature of a Thin Achromatic Doublet

The Petzval field curvature of a thin achromatic doublet in air is given by,

CPetzval ¼ 1
ρPetzval

¼ �ϕ�σIV ¼ � ϕ1
n1

þ ϕ2
n2

� �
¼ � ϕ

v1 � v2

v1
n1

� v2
n2

� �
: (8.3)

For a doublet with a focal length of 100 mm made of N-BK7 and N-F2 glasses,
the element focal lengths are 43.26 mm and �76.25 mm, respectively, and the
Petzval radius is, ρPetzval ¼ �139:99 mm. In comparison, a singlet lens with a
focal length of 100 mm and made out of N-BK7 glass has a Petzval radius of
�151.7 mm, which is longer than that of the doublet. Note that an achromatic
doublet with a negative focal length of �100 mm and using the same glasses,
has a Petzval radius of +139.99 mm.

With the advent of new glasses manufactured by Otto Schott and Ernst
Abbe, by 1886 a longer Petzval radius in a doublet was possible. The index of
refraction of the crown element is maximized to reduce its contribution to the
Petzval sum, and the index of refraction of the flint element is minimized
to increase its contribution, but opposite in sign, to the Petzval sum. For
example, with glasses N-BAK1 and N-LLF6, a Petzval radius of �185 mm
is achieved for a 100 mm focal length doublet lens. With the advent of the
lanthanum glasses in 1930, even a longer Petzval radius is possible. Using
glasses N-LAK34 and N-F2, a Petzval radius of �200 mm is obtained with a
ν-number difference of 18.06. As the ν-number difference of the glasses used
decreases, the Petzval radius also decreases. In addition, the lens curvatures
increase, and the amount of aberration contributed by the surfaces also
increases. The achromatic doublet made with glasses prior to the new glasses
developed by Schott and Abbe is called an old achromat. The achromat
doublet made with the new glasses and with an increased Petzval radius is
called the new achromat. Figure 8.2 compares the singlet lens, the old achro-
matic doublet, and the new achromat doublet. In a new achromatic cemented
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doublet, there may not be a solution for correcting spherical aberration, and it
may suffer from a strong amount of positive spherical aberration.

8.3 Lister Microscope Objective

Joseph Lister found out empirically that, by the proper placement of two achro-
matic doublets, coma aberration could be corrected in a microscope objective.
The chromatic aberrations and spherical aberration can be independently
corrected at each doublet. The coma aberration of one doublet can be corrected
by the other doublet, thus forming an achromatic and aplanatic objective.

The use of structural aberration coefficients is illustrated with the following
example. The achromatic doublets have optical powers, ϕAand ϕB, and can be
individually corrected for spherical aberration so that, σIA ¼ σIB ¼ 0. A first-
order model of an objective is illustrated in Figure 8.3. The system is normal-
ized by settingЖ ¼ 1, the total power is equal to one, ϕ ¼ 1, and the marginal
ray height at the first doublet is also equal to one, yA ¼ 1. The design is done in
reverse, with the object at infinity. The aperture stop is at the first doublet,
�yA ¼ 0, and telecentricity is required in image space, which results in the
following optical powers; ϕB ¼ 1, ϕA ¼ 1� yB, and �yB ¼ 1.

Using the structural coefficients for a system, see Table 7 in Appendix 3,
we can write for coma aberration of the combination,

Figure 8.2 A singlet lens, an old achromatic doublet, and a new achromatic
doublet. Note that the new achromat doublet has a decreased thickness variation
across its aperture; this explains its longer Petzval radius.

Marginal
ray

Chief
ray

A B

Figure 8.3 First-order layout of a two component, A and B, microscope objective.
The chief ray and the marginal ray are drawn.
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σII ¼ ϕ2Ay
2
AσIIA þ ϕ2By

2
BσIIB, (8.4)

where we have used the fact there is no spherical aberration from each of the
components, and in particular, σIB ¼ 0. Then a relationship between the
marginal ray height, yB, at the second component and the structural coefficients
of each component results,

σIIA ¼ � y2B
1� yBð Þ2 σIIB: (8.5)

If the marginal ray height is chosen to be yB ¼ 1=2, then the structural aberration
coefficients must be σIIA ¼ �σIIB.

Figure 8.4 shows a solution using thick and cemented doublets. If the
doublets are not cemented then there is more flexibility for correcting aberra-
tion. Requiring that the individual cemented doublets be corrected for spherical
aberration locks their optical shape, and the correction of coma aberration for
the combination depends on the doublet separation. This produces a near
telecentric solution, as is shown in Figure 8.4. The doublets are made out of
BK7 and F2 glasses and have focal lengths, f 10 ¼ 10 mm and f 2 0 ¼ 5 mm,
respectively.

Because the stop aperture has been set in contact with the first doublet, the
separation between doublets is relatively large. This reduces the unvignetted
semi-field of view to 2�. When the stop aperture is at each of the doublets, they
contribute positive astigmatism. However, the stop aperture for the second
doublet is remote and, because it contributes negative coma, it can contribute
negative astigmatism. Stop shifting formulas indicate that the astigmatism of
the doublet combination can be corrected whenever,

σIII ¼ 1� yBð Þ þ 1þ yBσIIBð Þ ¼ 0: (8.6)

A more practical solution for a microscope objective is shown in Figure 8.5,
where the doublet lenses, except for the diameter, are identical in construction
and are individually corrected for spherical aberration for an object at infinity.
The doublets separation is chosen to correct for coma aberration, and results in
little astigmatism. There is spherical aberration, but it is insignificant since the

Figure 8.4 Microscope objective with a focal length of f ¼ 5 mm and an optical
speed of F/2.5.
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scale of the objective is small; it has a focal length of f 0 ¼ 5 mm. There is also
field curvature aberration, which can be tolerated and mitigated, by refocusing
the objective. Distortion aberration is 1%. The RMS of the wavefront error
across a semi-field of view of 5� is shown in Figure 8.6. The objective is
diffraction limited over a semi-field of view of 3� at an optical speed of F/2.5.
The numerical aperture is NA = 0.2.

The stop aperture has been located in front of the doublets to make the
objective telecentric in image space. The doublet separation is not large, and an
unvignetted semi-field of 5� with good image quality is achieved.

The resolving power of a lens, this is the ability to discern detail,
depends on the numerical aperture. An increase in numerical aperture can
be obtained by adding a lens that operates on the aplanatic-concentric
principle. The first surface of the added lens satisfies, Δ u

n=ð Þ ¼ 0, and,
therefore, it does not introduce spherical, coma, or astigmatism aberrations.
It, however, increases the numerical aperture of the beams by a factor
equal to the index of refraction of the lens. The second surface is concentric
to the on-axis beam, so that there is no refraction of the marginal ray,
A ¼ 0, and, therefore, no spherical or coma aberrations are introduced.
Figure 8.7 shows application of the aplanatic–concentric principle to
increase the numerical aperture of a two-doublet microscope objective by
adding a third singlet lens.

Figure 8.5 Microscope objective with a focal length of f 0 ¼ 5 mm. The doublets
are made out of BK7 and F2 glasses, have the same radii of curvature, and have a
focal length of f 10 ¼ f 20 ¼ 8:3 mm.

Figure 8.6 RMS wavefront error across the field of view in waves units.
Image quality is limited by astigmatism aberration.
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8.4 Petzval Portrait Objective

After the public disclosure of the Daguerrotype process in 1839 there was a
need for objective lenses that could provide sharp images at a fast optical
speed. Daguerre’s cameras were equipped with an achromatic landscape lens
made by Chevalier in France and operated at speeds of about F/16. It took
approximately half an hour to make a photographic exposure. Joseph Petzval
tackled the problem and designed the lens shown in Figure 8.8, which made
portrait photography a practical reality.

Petzval used two doublet lenses, individually corrected for chromatic aber-
rations and spherical aberration. The first doublet was cemented and contrib-
uted positive coma and positive astigmatism. The rim of the first doublet
served as the aperture stop. The second doublet was split as to allow the
control of spherical aberration and coma aberration, and had the flint element
in front. Because of the negative coma contributed by the second doublet, and
since the stop aperture was remote, enough negative astigmatism was contrib-
uted to artificially flatten the field of view. Astigmatism aberration contributed
by the second doublet with a remote stop aperture is given by,

S∗III ¼ SIII þ 2��SSII þ �S2SI : (8.7)

Spherical aberration is zero, SI ¼ 0, and, with an increasing separation from the
stop, the stop shifting parameter, �S, and negative astigmatism, 2��SSII , increase,
overcoming positive astigmatism, SIII . The amount of negative astigmatism that

Figure 8.7 A third singlet lens increases the numerical aperture, from 0.2 to 0.3,
of a two doublet microscope objective by a factor equal to the index of refraction
of the singlet lens.

Figure 8.8 Petzval portrait objective. f 0 = 144 mm; F/3.7; FOV = �16.5�.
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Petzval chose to artificially flatten the field of view was similar to that of the
Chevalier lens. This was to minimize the rms spot size over the field of view by
satisfying the relationship, W222 ¼ �4=5W220P. The optical power of the doub-
lets was chosen to maximize the optical power of the combination, and to
minimize light vignetting by the second doublet. The first Peztval portrait lens
had a focal length of approximately 144 mm, worked at F/3.7, and had a semi-
field of view of �16.5�. The focal lengths of the doublets were approximately
200 mm and 300 mm, respectively. Since Petzval lenses are aplanatic, they
have excellent resolving power near the field center. Because of the negative
astigmatism and positive field curvature, image sharpness decreases towards
the field edge. Figure 8.9 shows the geometrical RMS spot size as a function
of the field of view. This indicates excellent image quality at the field center
when the grain of the photographic film is taken to be 25 µm.

The increase in optical power of the Petzval lens, while controlling aberration,
comes from splitting the task between two positive achromatic doublet lenses.
This, in turn, makes the lens less sensitive to manufacturing errors as compared
to other lenses that combine doublets with positive and negative optical power.
In his drawing for the mechanical lens barrel, Petzval provided a generous light
hood to avoid light from outside the field of view to enter the lens. He was
aware of Fresnel reflections produced by bare lens surfaces, and the number of
air-to-glass interfaces was a design concern. Figure 8.10 shows the relative
illumination of the Petzval lens, including the effect of light vignetting.

Figure 8.9 RMS spot size of the Petzval portrait objective.

1.0

0.0° 16.5°

Figure 8.10 Relative illumination of the Petzval portrait objective lens.
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8.5 Rapid Rectilinear Lens

There was a need for a lens that could provide a wider field of view than the
Petzval portrait lens, and that could be faster than the Wollanston landscape
lens. Several symmetrical doublet lens combinations were tried with crown-in-
front and flint-in-front glasses. However, because, to artificially flatten the
field, the doublets needed to be menisci, which conflicted with the correction
of spherical aberration, the image quality was not satisfactory.

In 1866, J. H. Dallmeyer and H. A. Steinheil independently came up with a
solution that became known as the rapid rectilinear lens. By decreasing the
ν-number difference of the glasses used, it was possible to control the spherical
aberration of a symmetrical combination of two doublets that artificially
flattened the field. A design with N-SSK5 and N-BK7 glasses is shown in
Figure 8.11. The semi-field of view is 24�, the F-number is F/8, the focal
length is 100 mm, and the Petzval radius is �121.2 mm. Figure 8.12 shows the

Figure 8.11 Rapid rectilinear lens with N-SSK5 and N-BK7 glasses. f 0 = 100
mm, FOV = �24�, F/8.

Figure 8.12 RMS spot size across the field of view. Bottom curve, rapid rectilin-
ear; middle curve, flint-in-front with N-F2 and N-BK7 glasses; and upper curve,
crown-in-front with N-BK7 and N-F2 glasses.
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RMS spot size for the rapid rectilinear, and for the crown-in-front, and flint-in-
front doublet solutions when N-BK7 and N-F2 glasses are used. The rapid
rectilinear is a symmetrical lens about the stop aperture.

The spherical aberration of the rapid rectilinear depends on the ν-number
difference, and it is possible to have this aberration positive, zero, or negative.
However, because the doublets are achromatic and the element power is
inversely proportional to the ν-number difference, the Petzval radius changes
proportionally with the ν-number difference. For a design with N-SSK5 and
N-BK7 glasses and a focal length of 100 mm, the Petzval radius is �122.2
mm. For a design with N-BK7 and N-F2 glasses and suffering from spherical
aberration, the Petzval radius is �147.9 mm.

8.6 Concentric Lens

Because lens design depends on the glass optical properties, lens designers are
attentive to new optical materials that can provide additional or enhanced
degrees of freedom to correct aberrations. With the advent of the new optical
glasses, in 1889 H. L. Schroder patented (U.S. Patent 404,506) a symmetrical
lens, as shown in Figure 8.13, that provided a nearly flat field and excellent
imaging at a speed of F/16 and a field of view of �30�. Coma aberration and
distortion were corrected by symmetry, astigmatism was controlled by the
doublet separation from the stop aperture, and the chromatic aberrations were

Figure 8.13 Schroder concentric lens using the new glasses developed by
Schott and Abbe. For a focal length of 100 mm, the Petzval radius is �333
mm. FOV = �30� at F/16.
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individually corrected at each doublet. For a focal length of 100 mm and using
modern glasses N-BAK1 and N-LLF6, the Petzval radius is �333 mm.
However, spherical aberration was not corrected, but mitigated by working
at F/12–F/16, becoming significantly objectionable at a speed of F/8, because
spherical aberration grows with the fourth power of the aperture. Figure 8.14
shows the RMS spot size as a function of the field of view and the optical
speed. Schroder’s design had the exterior surfaces of each doublet nearly
concentric, and was the first symmetrical objective using doublets to reduce
the Petzval sum with the new glasses.

Given that the Petzval radius is longer than in objectives using the old
glasses, little negative astigmatism needs to be introduced to arrive at an
optimized design by artificially flattening the field of view.

8.7 Anastigmatic Lens

A second objective lens that took advantage of the new glasses was the
anastigmatic lens of P. Rudolph (U.S. Patent 444,714). Instead of artificially
flattening the field of view, Rudolph corrected the astigmatism by canceling
the contribution of an old achromatic doublet with the opposite contribution of
a new achromatic doublet. The merit, in part, was that the Petzval sum was
nearly corrected, thus providing a substantially flat field. In addition, the
positive spherical aberration of the new achromatic doublet was corrected with
a negative contribution from the old achromatic doublet. The chromatic aber-
rations and coma aberration were also controlled. The lens is not symmetric
about the aperture stop, and there are no degrees of design freedom left to
correct for fourth-order distortion. However, it turned out that higher order
distortion tended to balance the fourth-order, yielding a small net amount of
distortion aberration. The second embodiment in Rudolph’s patent optimized
with modern glasses is shown in Figure 8.15. The front achromatic doublet

Figure 8.14 RMS spot size of the Schroder lens (f 0 = 100 mm) for speed F/8 top
curve, F/12 middle curve, and F/16 lower curve.
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uses old glasses, and it is designed as a thick meniscus lens, and the rear lens is
a new achromatic doublet. The focal length of the doublets are 262 mm and
128 mm, respectively, to provide a combination with a focal length of 100 mm.
The front doublet carries about half the optical power of the rear doublet.

A useful way to explain the anastigmatic lens is to realize that the new
achromatic doublet contributes a reduced amount of positive Petzval field
curvature aberration, and that the thick meniscus doublet provides minimal,
or negative Petzval field curvature to effectively help control the Petzval sum.
The separation from the stop aperture of the new achromat permits controlling
astigmatism. The use of a thick meniscus lens is one of the techniques in lens
design to control field curvature aberration.

Rudolph’s lens became known as the anastigmatic lens. It appears that
Rudolph, in his patent, coined the term “anastigmatic,” which means absence
of astigmatism for at least an off-axis field point. Thus, the term anastigmatic is
in the context of a lens that is substantially corrected for field curvature.
Figure 8.16 shows the field curves of the anastigmatic lens. Fourth-order
astigmatism balances higher order astigmatism, and there is a field point where
astigmatism is absent. The residual astigmatism shown in the field curves is
relatively small when it is compared to lenses that artificially flatten the field.
Distortion aberration is well controlled to less than 1.0%. The RMS spot size
across the field of view is shown in Figure 8.17, which represents a substantial
improvement over the rapid rectilinear lens. The Petzval radius is �257 mm
for a focal length of 100 mm, giving a ratio of about �2.6.

Figure 8.15 Anastigmatic lens using F2 and BK7 glasses for the front old achro-
matic doublet and using N-KF9 and N-SK16 glasses for the rear new achromatic
doublet. f 0 = 100 mm, F/8, FOV = �30�.
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8.8 Telephoto Lens

A telephoto lens has a focal length that is longer that the length of the lens.
The length, also known as the total track length (TTL), is measured from the
first surface to the image plane, along the optical axis. The ratio of the focal
length to the lens length is known as the telephoto ratio, and it is less than one.
To achieve this property, a positive and a negative lens are needed. Because of
the negative lens we have negative aberrations and, therefore, aberration
canceling becomes more favorable than when combining two positive lenses.
Then it is possible, with the combination of two achromatic doublets, one
positive and one negative, to correct for all the primary aberrations.

We select two thin achromatic doublets with the same glass choice and
opposite optical power, which results in σIVA ¼ �σIVB, and Petzval field
curvature is corrected. The aperture stop is set at the front positive doublet,
as shown in Figure 8.18, where lens thickness has been included. There is no
distortion aberration from the front doublet because the aperture stop coincides
with the doublet, and astigmatism aberration is fixed. The front doublet, if not
cemented, can be corrected for spherical aberration and coma aberration.

Figure 8.16 Field curves of the anastigmatic lens. f 0 = 100 mm, F/8, FOV =
�30�.

Figure 8.17 RMS spot size vs. field of view of the anastigmatic lens. f 0 =
100 mm, F/8, FOV = �30�.
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However, with the glass choice of BK5 and SF5, the front doublet can be
cemented and still be aplanatic. The rear doublet can also be cemented and
aplanatic. The astigmatism of the rear doublet with remote stop is given by,

S∗III ¼ SIII þ 2��SSII þ �S
2
SI , but since the doublet is aplanatic we have that,

S∗III ¼ SIII ¼ Ж2ϕBσIIIB ¼ Ж2ϕB. It follows then that, because both doublets
have opposite optical power, ϕA ¼ �ϕB, the total astigmatism is zero. In cases
where the rear doublet cannot be corrected for coma aberration, residual coma
in the front doublet can be used to make the combination aplanatic.
Some coma in the rear doublet can be used to correct astigmatism aberration.
Thus, we have a telephoto lens made out of two achromatic and aplanatic, or
nearly aplanatic, doublets that is anastigmatic. This, however, suffers from a
small amount of pincushion distortion.

In order to correct for distortion aberration, it is necessary to increase the
degrees of design freedom by not using cemented doublets. However, and
again by the proper choice of glass, BK7 and F6, it is possible to keep the front
doublet as cemented. The front doublet does not introduce distortion;
the contribution is from the rear doublet. Since distortion aberration is related
to pupil coma, �W131 ¼ W311 þ 1

2Ж�Δ �u2
� �

, we can understand that bending
the rear doublet provides a degree of freedom for correcting distortion, as pupil
coma is a linear function of lens bending. The change of coma in the image is
compensated by bending (or by the glass choice) the front doublet. The
airspace between doublets is used to restore the correction for astigmatism.
Astigmatism of the second doublet depends on the stop position, since this
doublet is no longer aplanatic.

Figure 8.19 shows a telephoto lens corrected for all primary aberrations
including distortion, and that was further optimized by minimizing the RMS
spot size across the field of view, as shown in Figure 8.20. There are several glass
choices of crown-in-front, or flint-in-front, for the doublets. The telephoto lens in
Figure 8.19 has crown in front in both doublets, providing the best performance
among other doublet combinations possible. Table 8.2 provides the construc-
tional data of the telephoto lens. Note that there is no lens spacing in the rear
doublet, and the lens elements have center contact. This is not good practice,

Figure 8.18 Telephoto lens with BK7 and SF5 glasses. f 0 = 100 mm, F/4,
FOV = �6.2�, TTL/F = 0.8.
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because the lenses can get damaged. The telephoto then would be re-optimized
with a 0.2 mm lens spacing in the rear doublet. The telephoto ratio is TTL/f 0 =
0.8. The field of view (FOV) is�6.2� and is small in comparison to the previous
lenses discussed, but the optical speed is F/4. There is room to trade-off field
of view vs. optical speed. However, light vignetting by the rear doublet can be of
concern. It is desirable to keep the stop aperture at the front doublet to minimize
its size and, thus, keep at a minimum the diameter of the telephoto. For the
optimized telephoto lens, the final doublet focal lengths are 70 mm and�56 mm
for a combined focal length of f 0 = 100 mm.

0.0°

20 µm

10 µm

2 µm

3.1° 6.2°

Figure 8.20 RMS spot size across the field of view of the optimized
telephoto lens.

Figure 8.19 Telephoto lens with BK7 and F6 glasses. f 0 = 100 mm, F/4,
FOV = �6.2�, TTL/F = 0.8.

Table 8.2 Data of the telephoto lens (mm). f 0 = 100 mm, F/4, FOV = �6.2�,
TTL/F = 0.8. Stop at first surface

Surface Radius Thickness Glass

1 30.8260 6 BK7
2 �37.0680 2 F6
3 �1,085.8357 47.8444
4 �16.0627 1.0648 BK7
5 143.4857 0
6 35.6724 2.6621 F6
7 3,254.9727 20.8462
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8.9 Reverse Telephoto Lens

As its name implies, a reverse telephoto lens has a negative lens followed by
a positive lens. This combination results in an increased distance between the
last lens surface, known as the back focal length (BFL), and the image plane,
as shown in Figure 8.21. The aberration correction rationale to design a
reverse telephoto lens out of two achromatic doublets is the same as for the
telephoto lens. Both doublets are chosen with opposite optical powers to
cancel the Petzval sum. The rear doublet works at nearly negative unit
magnification, m ¼ �1. In addition, both doublets are made aplanatic and
cemented by lens bending and by the choice of glass. Then astigmatism
aberration also cancels. Some barrel distortion of about �1.5% remains
uncorrected in such a simple combination that is not symmetrical about the
stop aperture. The stop is set at the positive doublet to help control aberration
and minimize lens diameter. The RMS spot size across the field of view is
shown in Figure 8.22.

The reverse telephoto lens in Figure 8.21 has a focal length of f 0 = 100 mm,
a total track of 324 mm, and back focal length of 192 mm, works at F/4,
and has a field of view of FOV = �12�. The focal lengths of the doublets are
�100 mm and 100 mm. The glass choice is BK7 and SF5 from Schott.
The feature of the reverse telephoto lens is the large back focal length at the
expense of a large total track length.

Figure 8.21 Reverse telephoto lens with BK7 and SF5 glasses. f 0 = 100 mm,
BFL = 200 mm, TTL = 324 mm, FOV = �12�, F/4.

Figure 8.22 Reverse telephoto lens rms spot size across the field of view.
f 0 = 100 mm, BFL = 200 mm, TTL = 324 mm, FOV = �12�, F/4.
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9

Image Evaluation

The quality of a lens system for a given application depends on several factors.
Among them are the choice of lens form that best suits the application, the
image quality provided by the lens, and how well the image quality can be
maintained under actual lens fabrication and assembly errors, environmental
conditions, and actual lens use. A starting point for a lens design is the lens
specifications, which includes first-order requirements, packaging constraints,
optical power-efficiency, and image quality requirements. Ultimately, lens cost
is often a major design driver.

It is of critical importance that the application for the lens is well under-
stood throughout, as much as possible, as the specifications for that lens
follow from that understanding. In some cases, the specification list is
wrong or incomplete, and this obviously impacts the lens design; it is
often up to the engineer to discuss the specifications with the customer to
correct any deficiency. The specifications may define the expected image
quality in terms of image evaluation metrics that depend on the system
application.

Once a lens form is chosen and the aberrations have been corrected,
minimized, or balanced, it is necessary to evaluate how good or bad the image
cast by that lens could be. This chapter discusses a variety of concepts and
tools in image evaluation that are essential in lens design.

There are several topics that are related and that are of interest to understand
and develop skill in their use as they relate to lens design. These topics can be
treated from a geometrical optics point of view or from a physical optics point
of view and are: image formation theory, image aberration theory, aberration
evaluation, and image evaluation.

This chapter first discusses the image evaluation of a point object, and
second the image evaluation of an extended object.
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9.1 Image Evaluation of a Point Object

The concept of a point object, or light source, is non-physical, as it does not
have an area. However, it is a useful concept, in that it defines where light rays
or waves depart from. Consequently, and geometrically, the ideal image of a
point object is a point image. The basic idea of image evaluation is that an
image is composed of the images of a plurality of object points and, by
assessing the individual point images, insight is obtained about the overall
image quality of an extended object.

Observation of the images of point objects produced by aberration free lens
systems with circular entrance pupils shows that the images are not pointy, but
have a light distribution known as the Airy pattern, shown in Figure 9.1.

This pattern, A ρð Þ, is described mathematically by the function,

A ρð Þ ¼ 2J1 πρð Þ
πρð Þ

� �2

, (9.1)

where J1 ρð Þ is a first-order Bessel function of the first kind. The radial
locations of the first three zeros in the Airy pattern take place at approximately
ρ ¼ 1:22, ρ ¼ 2:23, and ρ ¼ 3:24. The radius of the first zero as it relates to the
wavelength of light and to the F-number is given by ρ ¼ 1:22λF=#. Thus,
taking the F-number of the eye to be F/2.8 and for a wavelength of λ ¼
555 nm, the radius of the first dark ring in the Airy pattern is ρ ¼ 1:89 μm.
Figure 9.2 shows a cross-section of the Airy pattern, and Figure 9.3 shows
the encircled energy. About 83% of the energy is encircled within the first
dark ring, and 91% within the second dark ring.

The Airy pattern occurs because of the wave nature of light and the
phenomenon of diffraction. For many applications, the Airy pattern is con-
sidered as the ideal image of a point object that an aberration-free system can
produce. In practice, one requirement for a system to produce an image that is
substantially the Airy pattern is that the wavefront deformation across the exit
pupil must be small in comparison to the wavelength of light.

Figure 9.1 Enhanced Airy pattern produced by an aberration-free optical system.
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One major effect of aberration in the Airy pattern is to decrease the peak
irradiance, as shown for the case of 1λ of coma aberration in Figure 9.4.

The ratio of the peak irradiance of the diffraction pattern produced by an
aberrated beam to the peak irradiance of an un-aberrated beam was first
estimated by Lord Rayleigh, but is known as the Strehl ratio. This ratio, R,
was shown by A. Marechal to be related to the variance of the wavefront
deformation, σ2W , and can be approximated by the R. Shack relationship,

R ¼ exp � 2π
λ

� �2

σ2W

 !
, (9.2)

Figure 9.3 Normalized encircled energy in the Airy pattern as a function of the
radial distance for λ ¼ 1 μm and F/# = 1.

Figure 9.4 Cross-section of the diffraction pattern for the case of 1λ of coma
aberration, with a peak of 0.6 (left), and no aberration with a peak of 1.0 (right) for
λ ¼ 1 μm and F/# = 1.

Figure 9.2 Normalized cross-section of the Airy pattern for λ ¼ 1 μm and F/# = 1.
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whenever the ratio satisfies R � 0:1. An optical system where the ratio is larger
than 0.8 is considered to be very good, and is called diffraction limited. For
this the standard deviation, σW , of the wavefront must be less than 0.07λ.
Table 9.1 provides the amount of primary aberration that would produce a ratio
of R ¼ 0:8.

For the primary aberrations, the variance of the wavefront as a function of
the field of view is given by,

σ2W¼
1
12

W020þW040þ W220þ1
2
W222

� �
H
!�H!

� �2

þ 1
180

W2
040

þ 1
24

W2
222 H

!�H!
� �2

þ1
4

2
3
W131 H

!���
���þW311 H

!�H!
� �

H
!���
���

� �2

þ 1
72

W2
131H

!�H!

0
BBB@

1
CCCA:

(9.3)

The difference, E ¼ 1� R, can be considered the amount of energy that is
taken out of the Airy disk and redistributed among the diffraction rings.

The Airy pattern is considered an ideal image and serves as a benchmark for
comparison purposes. A useful analogy to keep in mind is that the diffraction
pattern produced by a lens system, or light spot, is like the point of a pencil; the
sharper it is, the finer the lines it can draw. Therefore, for actual systems it is
important to evaluate the sharpness of the light spots they can produce. There
are a variety of tools available to a lens designer to estimate how sharp the
image of a point can be. For example, ray fans, wave fans, spot diagrams, RMS
wavefront deformation plots, and encircled energy plots. These metrics do
depend on the wavelength(s) the lens system is intended to work and, there-
fore, it is important to include in any analysis the spectral bandwidth of the
system by weighting the contributions of a number of wavelengths.

9.1.1 Resolving Power and Depth of Focus

Two important attributes of an optical system are its resolving power and its
depth of focus. Resolving power (RP) refers to the ability to separate two
objects that are close to each other. Depth of focus (DOF) refers to the ability
to maintain spot size as the observation plane is moved along the optical axis.

Table 9.1 Primary aberration that produces a ratio of R ¼ 0:8 at the ideal
image plane, σW ffi 0:07λ

W020 ¼ 0:247λ W040 ¼ 0:239λ W131 ¼ 0:604λ W222 ¼ 0:319λ
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For a system that is diffraction limited, these can be expressed in the terms of
the wavelength, λ, and numerical aperture, NA, of the system as,

RP ¼ k1
λ
NA

, (9.4)

and

DOF ¼ �k2
nλ

NA2 , (9.5)

where k1 and k2 are parameters that depend on the application, and n is the
index of refraction in image space. As shown in Figure 9.5, Rayleigh’s
resolving power criterion refers to the ability to barely resolve the images of
two point objects of equal intensity, and sets k1 ¼ 0:61. This criterion has the
peak of the image of a first point falling on the first zero of the image of a
second point. A defocus amount of W020 ¼ λ=4 is considered tolerable and
sets k2 ¼ 0:5. For a diffraction limited system working at λ ¼ 0:5 μm, a rule of
thumb is that the DOF is equal to the square of the F/# in micrometers. Thus,
an F/10 system would have a DOF of �100 μm. For systems that are not
diffraction limited, both the resolving power and the depth of focus will
depend on the application.

9.1.2 Spot Diagram

Spot diagrams are computed by plotting the intersection point of rays with the
observation surface for a given field point, and, thus, they are a purely
geometrical optics construct. This is shown in Figure 9.6 (left) for the case
of five waves of coma aberration. Spot diagrams accompanied by a scale bar,
or compared to the Airy disk diameter, provide a first estimate of the image
size of a point. In addition, they can provide information about the symmetry
of the aberration in a light beam. However, they do not convey how the energy
is distributed spatially, unless the number of rays per bin is counted, and
plotted as shown in Figure 9.6 (center). Spot diagrams can also be computed

Figure 9.5 Images of two point objects. Left, not resolved; center, resolved
according to Rayleigh’s criterion; right, resolved.
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using light diffraction calculations, and then a more accurate representation of
the light distribution is obtained, as shown in Figure 9.6 (right). The rms spot
size across the field of view is also a first estimate of the image quality of a
system.

9.1.3 Encircled Energy

A plot of the encircled energy as a function of spot radius is an important tool
to evaluate the quality of the image of a point object. Direct comparison with
the encircled energy of a diffraction-limited beam provides objective infor-
mation. Figure 9.7 shows the encircled energy for the on-axis beam of the
Petzval portrait objective calculated for the F, d, and C wavelengths, and when
the objective is scaled to a focal length of 100 mm. About 85% of the energy is
encircled within a radius of 11.0 μm, while in the diffraction-limited beam
85% is encircled in a radius of about 3.0 μm.

The fact that the spot of light produced by the Petzval objective is much
larger, about four-times, than the diffraction limited spot, does not mean that it
is a poor lens. Considering that photographic film as a rough rule of thumb has
a grain size of 25.0 μm, then the on-axis spot of the Petzval objective is not a
limiting factor for image quality, Thus, the required image quality depends on
application.

Some applications may require plots of ensquared energy, or energy
enclosed in the meridional or sagittal directions, as a function of the field of

Figure 9.6 Spot diagrams for five waves of coma aberration. Left, standard spot;
center, binning and counting rays; right, diffraction calculated.

Figure 9.7 Encircled energy vs. radial distance for a diffraction limited system,
left, and for the on-axis beam of the Petzval portrait objective, right.
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view, as shown in Figure 9.8 for the Wollaston landscape lens. Figure 9.9 also
shows, for the Wollaston lens, the radius which encircles 80% of the energy
(geometrical) for the on-axis beam as a function of the axial position. This
provides information about the depth of focus.

9.2 Image Evaluation of an Extended Object

Application of linear shift invariant theory to model imaging by a lens system
resulted in an insightful and powerful way to evaluate images of extended
objects. In a linear shift invariant system (LSIS), the image, i x; yð Þ, is the
convolution of the object, o x; yð Þ, with the system point spread function,
h x; yð Þ, which is also called the impulse function. Mathematically this is
written as,

i x; yð Þ ¼ o x; yð Þ∗∗h x; yð Þ: (9.6)

An object can be analyzed and described as a superposition of a plurality
of spatial frequencies, exp �i2π ξxþ ηyð Þf g, and likewise the image can

200 µm

Sagittal

Meridional

100 µm

15.0° 30.0°0.0

Figure 9.8 Plots of distance in the meridional or sagittal directions to enclose 80%
of energy (geometrical) as a function of the field of view for the Wollaston
landscape lens, f 0 = 100 mm.

200 µm

100 µm

–5.0 mm 0.0 mm 5.0 mm

Figure 9.9 Radius that encircles 80% of the energy (geometrical) vs. axial
position for the on-axis beam of the Wollaston landscape lens.
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also be analyzed and described by a plurality of spatial frequencies,
exp �i2π ξxþ ηyð Þf g. For example, an object represented by a square wave
can be described by a superposition of cosine waves with different spatial
frequencies, amplitudes, and phase shifts.

By taking the Fourier transform of the image, i x; yð Þ ¼ o x; yð Þ∗∗h x; yð Þ, we
can write,

I ξ; ηð Þ ¼ O ξ; ηð Þ � H ξ; ηð Þ, (9.7)

where O ξ; ηð Þ represents the spatial frequency spectrum of the object, I ξ; ηð Þ is
the spatial frequency spectrum of the image, and H ξ; ηð Þ is the optical transfer
function (OTF) of the system.

In general, the optical transfer function is complex, and can be written as,

H ξ; ηð Þ ¼ MTF ξ; ηð Þ � exp �iφ ξ; ηð Þð Þ, (9.8)

where MTF ξ; ηð Þ is its modulus, and φ ξ; ηð Þ is the phase. The modulus,
MTF ξ; ηð Þ, is called the modulation transfer function, and provides the con-
trast with which a given spatial frequency is imaged. For a periodic function,
the contrast is given by,

C ξ; ηð Þ ¼ MTF ξ; ηð Þ ¼ MAX�MIN
MAXþMIN

, (9.9)

where MAX and MIN are the maximum and the minimum irradiances.
Figure 9.10 (left) shows one spatial frequency with which an object can be
represented. As it is imaged by an optical system, the contrast can be reduced,
as shown in Figure 9.10 (center and right). In addition, there can be a phase
shift, i.e. a lateral displacement of the frequency pattern, that, when it is 180�,
produces contrast reversal, as shown in Figure 9.10 (right). In contrast reversal,
the peak irradiance displaces by half a period so that peaks and valleys swap
location. Axially symmetric systems that are linear shift invariant can only
produce phase shifts of 0� or 180�.

Under incoherent object illumination and for an aberration free system that
has a circular entrance pupil, the point spread function, h x; yð Þ, is the Airy
pattern. Its Fourier transform represents an ideal optical transfer function and,
since for this case there is no phase shift, φ ξ; ηð Þ ¼ 0, we have H ξ; ηð Þ ¼
MTF ξ; ηð Þ and,

Figure 9.10 Spatial frequency pattern. Left, with full contrast; center and right,
with reduced contrast; right, with contrast reversal.

9.2 Image Evaluation of an Extended Object 105

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.010
https://www.cambridge.org/core


MTF ξ; ηð Þ ¼ 2
π

ψ � cos ψð Þ sin ψð Þð Þ, (9.10)

where

ψ ¼ ar cos
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

p
2NA

 !
¼ ar cos

f

f c

� �
: (9.11)

The MTF is a three-dimensional function as a function of the spatial frequen-
cies, ξ and η. However, for an aberration-free system that is axially symmetric,
the MTF is also axially symmetric, and a cross-section is sufficient to describe
it, as shown in Figure 9.11. There is no modulation after the cut-off frequency,
f c ¼ 2NA=λ; this is, the system cannot image spatial frequencies beyond this
frequency, f c. For a system in air working at F/2.8 and at λ = 555 nm, the cut-
off frequency is f c ffi 643:5 line-pairs per millimeter (lp/mm).

The MTF shows that only the zero spatial frequency is imaged with full
contrast, and that the contrast progressively decreases as the spatial frequency
increases. The MTF provides useful information about how an extended object
is imaged. It tells what frequencies can be imaged and with what contrast.
Clearly, this provides a different perspective about how to evaluate an image.

For off-axis field points, the MTF is no longer axially symmetric. Different
cross-sections of the three-dimensional MTF provide the contrast of spatial
frequencies that have different orientations with respect to the optical axis.
MTF cross-sections in the meridional and sagittal directions are often plotted
by lens design programs.

One can understand the OTF by imaging with a lens an object having a
single spatial frequency, such as in Figure 9.10 (left), and measuring the
contrast and phase shift in the image. By rotating the object and measuring
contrast and phase shift, the OTF for that frequency can be determined. The

Figure 9.11 Modulation transfer function of an aberration-free system with circu-
lar entrance pupil working at F/2.8 and at λ = 555 nm. The vertical axis is the
contrast, and the horizontal axis is the spatial frequency, f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

p
in lp/mm.
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process can be repeated for many more spatial frequencies to determine the
OTF of the lens more completely.

9.2.1 MTF Curves

Optical aberrations degrade the MTF, as shown in Figure 9.12, for example,
for the case of defocus:W020 = λ/4,W020 = λ/2, andW020 = λ. For 1λ of defocus
the phase (not shown) becomes negative after the modulation reaches zero and
contrast reversal takes place. Defocus has a severe and adverse effect on the
MTF, and about W020 = λ/4 can be tolerated in a diffraction-limited system.

The MTF is also plotted for the Wollaston landscape lens in Figure 9.13.
The diffraction-limited MTF is plotted for reference, then the MTF for the on-
axis field point, and finally two cross-sections in the meridional (tangential)
and sagittal direction are plotted for the 30� field of view. One must keep in
mind that the MTF is a three-dimensional function, and that plotting a few
cross-sections of it may not be sufficient. However, it is standard practice in
lens design to plot the S and T cross-sections. The Wollaston landscape lens is
far from performing at the diffraction limit, but is still a useful imaging lens.

A healthy human eye is said to have a resolving power of about 1 arc-
minute. But, in consideration of several degrading factors, an average

1.0

Diffraction limit0.5

0.0
W020=l

W020=l/2 W020=l/4

Figure 9.12 Diffraction-limited MTF and in the presence of defocus W020.
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Figure 9.13 MTF for the Wollaston landscape lens.
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resolving power can be set to 3 arc-minutes. Then, when looking at a photo-
graph at a distance of 250 mm, the eye can resolve two spots that are separated
by about 0.25 mm. This corresponds to an object spatial frequency of f = 4 lp/
mm.

For 35 mm film (24 mm � 36 mm) and assuming that the printed photo-
graph would be 8-times larger (192 mm � 288 mm), and viewed at a distance
of 250 mm, the requirement for spatial frequency would be 4 lp/mm in the
printed photograph and 32 lp/mm in the 35 mm film. Thus, a rule of thumb to
specify a lens for 35 mm film is a contrast larger than 50% at 32 lp/mm. For
high quality lenses the rule of thumb stiffens and becomes a contrast of 50% at
30 lp/mm and a contrast of 30% at 50 lp/mm. This is sometimes referred to as
the 30/50 rule. However, the specification for MTF is highly dependent on
application.

For the current CCD and CMOS image sensors with pixel sizes in the order
of a few micrometers, the spatial frequency requirements are even higher. For
example, to take advantage of a pixel size of 5 μm, the lens must be able to
produce spatial frequencies in the order of 100 lp/mm.

The MTF for a given spatial frequency and for a given field can be plotted as
a function of the axial position of the image plane. This is shown in Figure 9.14
for the Wollaston landscape lens for a spatial frequency of 10 lp/mm. Plots like
this provide information about the best imaging plane and the depth of focus.

9.2.2 Image Simulation

The irradiance of an image can be calculated, and an image simulation can be
produced in great detail under a number of variables, such as the illumination,
the system aberrations, and the nature of the object to be imaged. An equation
that describes the process of physical image formation was developed by H. H.
Hopkins and is,

I x; yð Þ ¼ 1
f λ

� �2

∬
∞
σ x0; y0ð Þ s x; yð Þt x; yð Þ∗∗psf x; yð Þj j2dx0dy0, (9.12)

Figure 9.14 MTF for a spatial frequency of 10 lp/mm vs. axial position for the
Wollaston landscape lens, f 0 = 100 mm. The zero position corresponds to the ideal
image plane location, as calculated with first-order ray tracing.
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where I x; yð Þ represents the irradiance of the image, σ x0; y0ð Þ represents the
illumination, s x; yð Þ is the optical field, t x; yð Þ represents the object transmit-
tance, and psf x; yð Þ is the point spread function of the system. For incoherent
illumination, the Hopkins equation simplifies to a convolution operation that
can be carried with the fast Fourier transform. For partial coherent illumin-
ation, the equation is no longer a convolution, and the equation would take
more time to be computed. Image simulation with the Hopkins equation can
take significant time. However, it is used to calculate fine details in the image
that an optical system could form.

As an example of image simulation, Figure 9.15 (left) shows a bar target as
an object. Figure 9.15 (right) shows the simulated image that a Petzval portrait
lens would produce. There is a decrease in relative illumination and in resolv-
ing power toward the corners of the image. Image simulations are helpful for a
variety of purposes, such as checking image orientation, the overall appearance
of the image, illumination, and resolving power.
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Figure 9.15 Left, bar target as an object. Right, image simulation using a Petzval
lens. Note the decrease in relative illumination toward the image corners, and the
pincushion distortion.
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10

Lens Tolerancing

A lens manufacturer requires tolerances in the dimensions of a lens to be able
to provide a cost estimate and be able to manufacture the lens. Further, for the
lens to meet the lens specifications after it is built, it is necessary that the actual
lens dimensions do not depart from the nominal design ones by some amounts
known as fabrication and assembly tolerances. Thus, the task of the lens
designer is not only to provide a lens design that meets image quality require-
ments, but to also provide tolerances, so that the as-built lens actually meets
the specifications and satisfies the needs of the application. Critical goals of the
lens tolerancing process are to provide tolerances to each of the constructional
parameters of the lens, and to find out the statistics of the as-built lens so that
the fabrication yield, and final cost, can be estimated. This chapter provides a
primer into the lens tolerancing process. Commercial lens design software
allows for the lens tolerancing analyses discussed below.

10.1 Lens Dimensions and Tolerances

A lens designer needs to develop an understanding of physical dimensions and
their measurement so that realistic tolerances can be assigned. He or she needs
to have insight into linear and angular dimensions, such as how big a microm-
eter is, or one-arc second is. In lens fabrication, both of these magnitudes often
separate what is very difficult to make from what is reasonable to make. One
must find out how a given lens dimension will be achieved and measured in the
optics shop. If it cannot be measured, it probably cannot be made to
specification.

Twenty-five micrometers (25 μm) is a useful reference. The minimum
measurement division of many instruments and machining tools is 0.00100, or
about 25 μm. Asking for an optical element to be made with a tolerance of
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25 μm is considered doable. Asking for that element to be made to 50 μm or
more is considered easy. However, asking for an optical part to be made to
12.5 μm starts to become difficult, to 2.5 μm becomes very difficult, and to
0.25 μm extremely difficult. Similarly, by dividing 25 μm over a lens diameter
of 25 mm, we get an angular tolerance of about 3.3 arc-minutes, which is
doable. One order of magnitude up or down makes the angular tolerance easy
or difficult to achieve.

Different optics shops can make a given lens dimension, such as lens
diameter, lens thickness, surface radius, or wedge between the lens surfaces,
with a tight tolerance for a given cost, or cannot achieve a given tolerance. The
lens designer needs to have effective communication with the lens manufac-
turers, to find out how well they can achieve lens tolerances, and their
associated cost. Lens manufacturers provide guidelines for the different lens
tolerances they can achieve under some assumptions. Generally, the tighter the
tolerances, the costlier the lens becomes. What a tight tolerance is also depends
on the manufacturing process. For example, state-of-the-art, mass produced
injection molded lenses for mobile phones routinely achieve micrometer level
tolerances. Table 10.1 provides some guidelines for the level of tolerances for
lenses with spherical surfaces in the order of 10–100 mm in diameter, made out
of glass, and which are not mass produced.

The lens diameter refers to the actual lens diameter, in comparison to the
clear aperture of the lens that performs the optical function of refracting or
reflecting light rays. A common surface polishing problem is to have the very
edge of the surface turned down. To overcome this figuring problem, there is a
tendency to specify a lens diameter larger, say 10–20% larger, than the clear
aperture. However, usually packaging requirements and lens cost win and the

Table 10.1 Tolerance guidelines for glass lenses, 10 mm to 100 mm
in diameter

Lens parameter
Low
precision Precise

High
precision

Requires
special process

Diameter (mm) +0.0
�0.25

+0.0
�0.1

+0.0
�0.025

+0.0
�0.005

Central thickness (mm) �0.12 �0.05 �0.012 �0.002
Edge thickness
difference (mm)

0.12 0.012 0.006 0.003

Surface radius (rings) 5% (10) 1% (3–5) 0.1% (1) 0.01% (0.25)
Wavefront error from
surface figure

0.5λ RMS 0.07λ RMS 0.04λ RMS 0.02λ RMS
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diameter of the lens is minimized to only allow for enough clearance to
properly mount the lens. It is imperative that a bevel, or protective chamfer,
is specified to avoid the lens edge easily chipping.

The central lens thickness is measured from surface center to surface center,
i.e. along the optical axis. Measuring central thickness requires finding the
central portion of the lens, and this contributes to making a precise measure-
ment difficult.

Edge thickness difference, or lens wedge, is measured by supporting the lens
in a kinematical mount so that its position is well-defined, and rotating the lens
while a micrometer measures the position of the lens edge as the lens rotates.
This produces the micrometer reading to oscillate between a minimum and a
maximum value, which is the edge thickness difference, called the total indicator
runoff. This difference, divided by the lens diameter, gives the lens wedge.

Measuring the radius of curvature of a surface requires an optical bench.
Alternatively, optics shops have a collection of test plates with radii of
curvature measured with accuracy in an optical bench. Then the lens designer,
in a final lens optimization run, fits the radii of curvature of the surfaces of the
lens to the radii of curvature of the optics shop test plates. The optics shop tests
for radii of curvature errors by observing the Newton rings formed by the test
plate and a given lens surface. In this method, the surface radius of curvature is
given a tolerance in Newton rings at a given wavelength of light. One Newton
ring represents 1/2λ of sag difference at the edge of the lens between the test
plate and the lens surface.

Surface figure, or irregularity, refers to the departure of a surface from the
spherical shape, or from the nominal designed aspheric shape. There are many
types of figure error, such as surface cylindrical deformation, which would
introduce astigmatism aberration, an axially symmetrical error, which would
introduce spherical aberration, such as turned down edge, periodic surface
errors, which could diffract light and introduce image artifacts, asymmetric
surface errors, and others. These figure errors depend on the lens manufactur-
ing method. For example, single point diamond turning produces periodic high
spatial frequency figure errors.

A change in the glass index of refraction of a lens element will change the
first-order properties of a lens system and will introduce wavefront changes.
A change in the glass ν-number of a lens element will change the chromatic
correction. To minimize errors, the index of refraction of the glass to be used in
the lens manufacture is measured, and the lens is re-optimized to reflect the
actual index of refraction. For optical systems with glass elements larger than
about 80 mm in diameter, and that are diffraction limited, index of refraction
homogeneity within the glass is also a concern.
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Each of the constructional parameters of a lens can have a given error
distribution. For example, the error in central lens thickness may be biased
to the thicker side to allow room for regrinding a lens in case the surface
becomes scratched. Some parameter error distributions are uniform, end-
limited, truncated normal, shifted-skewed, and parabolic, as shown in
Figure 10.1.

10.2 Worst Case

It is perhaps tempting to try to determine the worst case performance of a lens
that will be manufactured under a variety of fabrication errors. Determining the
worst case estimate is not practical, because it would require us to compute the
effects of all combinations of errors, and this can take an excessive amount of
time, even for simple systems.

Alternatively, if there are, say, n causes of errors, a worst case can be set by
adding all the effects of the errors in the same direction. However, this
approach is pessimistic.

Therefore, the approach that is taken in practice for tolerancing is statistical
in nature. Consequently, one goal in tolerancing a lens is to estimate the
statistics of the as-built lens.

10.3 Sensitivity Analysis

For tolerancing a lens it is necessary to define a criterion of performance such
as, for example, the error function used to optimize the lens. It is important to
properly reflect relevant aspects of the lens in the tolerancing criterion. An
insufficient criterion may lead to a faulty tolerancing analysis.

A sensitivity analysis uses a list of all the constructional parameters that can
have actual fabrication errors, such as lens thickness, lens spacing, surface
curvature, and index of refraction. Then, tolerances are assigned and used to
vary the constructional parameters of a lens, one at each time, and determine
how much the tolerancing criterion has changed. This is done for each of the

Figure 10.1 Parameter error distributions. From left to right, uniform, end limited,
truncated normal, skewed, parabolic.
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constructional parameters, and the changes in the criterion are ranked to
determine which parameters produce the larger changes in the criterion.
Table 10.2 provides an example of the data produced in a sensitivity analysis.

A sensitivity analysis produces two useful pieces of information: the lens
parameters that worst offend the performance of the lens, and the criterion
changes which can be used to estimate the statistics of the as-built lens.

10.4 Inverse Sensitivity Analysis

In an inverse sensitivity analysis, tolerances are determined that would produce
a given change in the tolerancing criterion. Table 10.3 provide an example of
the data produced in an inverse sensitivity analysis. Such analyses provide
information about the levels of tolerance needed for a given performance, and
indicate which parameters require loose or tight tolerances.

10.5 Compensators

In order to relax tolerances and reduce manufacturing cost, some compensators
such as an air-space, or a lens decenter, can be used to improve a lens system
after the lens elements have been made. For example, the back focal length is
used to best focus the image, and an airspace can be used to restore the focal
length or to correct for residual spherical aberration. However, for mass
produced lenses, it is desirable to not specify compensators, as their

Table 10.2 Sensitivity analysis

Surface Item Nominal value Tolerance Criterion change

1 Radius 50 mm 0.01 mm 0.3
2 Thickness 8 mm 0.1 mm 0.005
3 Index 1.51 0.001 0.001

Table 10.3 Inverse sensitivity analysis

Surface Item Nominal value Tolerance Criterion change

1 Radius 50 mm 0.003 mm 0.01
2 Thickness 8 mm 0.2 mm 0.01
3 Index 1.51 0.01 0.01
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implementation requires testing and time to fix the problem. Best focusing of
the lens by moving the lens assembly, or the image sensor, is most often
specified as a compensator.

10.6 Tolerancing Criterion Statistics

Often lenses are manufactured in bulk, and the quality of each lens differs
among the lenses because the manufacturing errors are not the same for all the
lenses. Or, even, a single lens system where the lens is disassembled and
reassembled, can result in a different lens because the lens element positions
and air spaces vary. Figure 10.2 shows twenty-four Cooke triplet lenses. If the
performance of these lenses were to be measured, one would find variation in
the focal length and in the image quality.

Theory shows that, when the manufacturing errors are very small, and for a
given tolerancing criterion such as the RMS spot size, or RMS wavefront error,
the histogram for a large number of lenses approaches a normal probability
distribution, as shown in Figure 10.3 (left). However, in practice, as the errors
are not very small, the histogram is skewed, as shown in Figure 10.3 (right).

A reason for why, under very small errors, the histogram tends to be
approached by a normal distribution is the central limit theorem. This theorem
states that, for a set of independent and random variables having a mean and a
variance, the probability density function of the sum of the variables
approaches a normal distribution as the number of variables increases.
A reason for why the histogram becomes skewed when the errors become
larger is that, as the lens has been optimized, most combinations of changes

Figure 10.2 Twenty-four Cooke triplet lenses
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will tend to degrade the performance, and very few, or none, will tend to
improve it.

For simplicity, a first estimate for the probability density function, p Sð Þ, of a
tolerancing criterion, S, is a normal distribution defined by,

p Sð Þ ¼ 1

σS
ffiffiffiffiffi
2π

p exp
� S� Sh ið Þ2

2σ2S

( )
, (10.1)

where Sh i is the mean, and σ2S is the variance. The mean can be estimated by,

Sh i ¼ S0 þ
Xj

i¼1

ΔSih i, (10.2)

where S0 is the nominal value for the criterion, ΔSih i is the mean of the change
of the criterion S, due to the error in the parameter i out of a number of j
parameters. For small errors, the mean would approach the nominal perform-
ance, Sh i ¼ S0. The variance can be estimated by,

σ2S ¼
Xj

i¼1

σ2i , (10.3)

where σ2i is the variance of the change of criterion S, due to the error in the
parameter i.

10.7 RSS Rule

Out of the variance, σ2S follows the Root Sum Square (RSS) rule. This
estimates the standard deviation of the probability density function of the
criterion. By using the square of the criterion change, ΔS2i , due to the param-
eter, i, instead of the variance, σ2i , the RSS rule is written as,

Figure 10.3 Left, histogram of RMS spot size for 1,000 Cooke triplets under very
small fabrication errors. Right, histogram of the Cooke triplets under large
fabrication errors. A best fit normal distribution has been overlaid with the
histograms.
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σS ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj

i¼1

ΔS2i

vuut : (10.4)

The RSS rule provides the following insights. First, the statistical worst case
estimate for n errors that produce the same criterion changes is

ffiffiffi
n

p
ΔSi; this is

not as pessimistic as adding all the changes as nΔSi. Second, it is the large
criterion changes that count much more as they enter as their squares. Thus, if
we have ten parameters that produce changes of 1, and one parameter that
produces a change of 10, the RSS rule indicates that the impact on the standard
deviation of the former parameters is

ffiffiffiffiffi
10

p
, while the impact of the latter

parameter is
ffiffiffiffiffiffiffiffi
100

p
.

The RSS rule also helps to allocate tolerance budgets to different aspects of
a lens system. For example, for a diffraction limited system, the total allowed
wavefront error budget might be set to 0.0707λ RMS. This budget is allocated
according to the RSS rule as 0.03λ RMS for the lens design, 0.04λ RMS for the
assembly, and 0.05λ RMS for the fabrication (0.032 + 0.042 + 0.052 =
0.07072).

10.8 Monte Carlo Simulation

In a Monte Carlo simulation the constructional parameters of a lens are chosen
randomly from ranges defined by the nominal parameter values and their error
probability distribution. The parameters in error are used to construct a lens trial,
compensators are applied, and the system tolerancing criterion change is deter-
mined. Many Monte Carlo trials are done to determine the statistics of the
tolerancing criterion change. The mean of the tolerancing criterion and its
standard deviation are determined from the list of criterion changes. Depending
on the application a Monte Carlo simulation may start with 100 trials to check
for the appropriateness of the lens modeling, then 1,000 trials, or more. As the
trials increase, it is expected that the mean and the standard deviation converge
as the square root of the number of trials,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#trials

p
. A rule of thumb is to

execute a number of trials in the order of the square of the number of parameters
under error. The modeling of a lens system for tolerancing can be an art and a
science, as it can be quite elaborated to properly reflect the environment,
materials, fabrication and assembly errors, and more. As the lens system must
be optimized for each trial using the compensators as variables, Monte Carlo
simulations may take long times to run. At the end, the goal is obtaining the
statistics of the as-built lens and to assign tolerances for fabrication.
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Each parameter error may have its own probability density function, such as
uniform, truncated normal, end-limited, and others. Once the lens trial is
constructed with the parameters in error, the lens is optimized using the
compensators. When lens decenters, or surface tilts, are lens errors, the lens
loses its axial symmetry and, therefore, it is important to properly sample the
field of view to determine correctly the tolerancing criterion such as RMS spot
size, or RMS wavefront error.

10.9 Monte Carlo Simulation Example

Consider a Cooke triplet lens, as shown in Figure 10.2. The focal length is f 0 =
50 mm, the field of view (FOV) is �24 degrees, and the optical speed is F/5.
The tolerances assigned are: thickness �0.1 mm, radius �2.5 fringes, index
�0.0005, surface figure �0.5 fringe, and surface tilt �1.5 arc-minutes.
A truncated normal distribution for these errors is assumed. The field of view
is sampled at the field center and four full field positions. The back focal length
was used as a compensator. A lens decenter can be decomposed as two surface
tilts and a thickness change. However, for small surface tilts the thickness
change is negligible. Thus, for simplicity and clarity, here only surface tilts in
two directions are allowed.

Table 10.4 shows the results of ten Monte Carlo runs, which give a mean
value of 0.421λ RMS, and a standard deviation of 0.047λ RMS. The nominal
wavefront error is 0.34λ RMS. Depending on the performance requirements,
on the parameters that most degrade the tolerancing criterion, the optics shop’s
ability to meet tolerances, and cost, the tolerances can be made tighter or looser

Table 10.4 Monte Carlo trials, nominal criterion 0.34λ
RMS, mean 0.421λ RMS, standard deviation 0.047λ RMS

Trial # Criterion Change

1 0.441 0.101
2 0.480 0.140
3 0.369 0.029
4 0.396 0.056
5 0.445 0.104
6 0.409 0.069
7 0.390 0.050
8 0.357 0.017
9 0.516 0.175
10 0.403 0.063
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to meet the requirements and cost. This is a simple example to illustrate how
the tolerancing criterion statistics are obtained. However, for a lens to be
manufactured the tolerancing process is often elaborated to properly model
the as-built lens.

Figure 10.4 shows the histogram of 1,000 Monte Carlo trials for the same
Cooke triplet lens, the mean value is 0.4λ RMS, and the standard deviation is
0.055λ RMS. Each histogram bin has trials with performance within about
0.04λ RMS. Thus, there are 408 lens trials with a tolerancing criterion between
0.33λ RMS and 0.37λ RMS. Therefore, under the tolerances specified there is
a percentage probability of about 40.8% that the lenses will perform within
11.8% from the nominal performance. Also, there is a probability of 71.7%
that the lenses will perform within 23.6% from the nominal performance. If
uniform distributions are chosen for the parameters then the mean would be
0.42λ RMS and the standard deviation would be 0.077λ RMS. Thus, properly
modeling the parameters error distribution provides a more accurate level of
tolerancing.

Because the errors in the fabrication of a lens can substantially degrade the
lens performance, it is important to minimize as much as possible the nominal
tolerancing criterion during the lens optimization, so that there is more room to
accommodate for such errors. However, different forms of optical systems that
satisfy the requirements for an application may have more or less sensitivity to
fabrication errors for the same level of nominal image quality.

Table 10.5 provides the mean and standard deviation when 1,000 trials at a
time were performed for a given category of error. The change in the mean of
the tolerancing criterion for errors in thickness, as well as its standard devi-
ation, are large. Clearly, and by far, the worst offender is the category of
thickness errors. Tightening the tolerance in thickness will be a choice. For
example, by decreasing the thickness tolerance to �0.05 mm, the criterion
mean would be 0.34λ RMS, and the standard deviation would be 0.016λ RMS.
This would make 81% of the lenses perform within 10% of the nominal

Figure 10.4 Histogram of 1,000 Monte Carlo runs for a Cooke triplet lens.
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criterion. However, lens manufacturers put a cost premium on tight tolerances
for thickness because of the risk of over-grinding the lens and the need to start
over with a new blank lens. A next step would be to explore using the airspaces
as compensators to avoid tightening the lens thickness tolerance. This might
result in a tedious and costly lens assembly. Table 10.6 provides the construc-
tional data of the Cooke triplet. Thus, increasing the lens production yield is
most often a trade-off with cost.

10.10 Behavior of a Lens under Manufacturing Errors

Under fabrication errors, that is under lens perturbation, a lens system suffers
from a number of optical effects. These can be divided as relating to axial
symmetry and not relating to axial symmetry. Errors in radii of curvature, lens
thickness, and index of refraction maintain the axial symmetry of a lens. Errors
in surface tilt break the axial symmetry.

The first-order effects to take place are that the focal length changes, and
that the image is displaced laterally. This lateral image displacement is known
as bore-sight error, or line of sight error, and arises from the lenses becoming

Table 10.5 Cooke triplet lens. Mean and standard deviation for categories of
errors, nominal mean 0.328λ RMS

Parameter category Mean λ RMS Standard deviation λ RMS

Radius 0.329 0.0038
Thickness 0.378 0.0520
Surface tilt 0.334 0.0056
Figure 0.328 0.0033
Index 0.328 0.0022

Table 10.6 Constructional data of the Cooke triplet lens, f = 50 mm, FOV =
�24�, F/5

Surface Radius (mm) Thickness (mm) Glass

1 26.6335 3.25 N-LAK33
2 426.1623 6.0
3 (Stop) �25.9915 1.0 TIF6
4 25.0718 4.75
5 169.8704 3.0 N-LAK33
6 �23.2263 42.3551
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wedged. In addition, for each wavelength, the image displacement might be
different. The second effects that take place are changes in the aberrations, and
that new aberrations appear. Table 10.7 provides a summary of these effects
according to the symmetry, and whether they are of first-order, or relate to
aberrations. In the same way that spherical aberration W040 is uniform over the
field of view, uniform coma and uniform astigmatism can now be present over
the field of view. Linear coma W131 grows linearly with the field of view; now
linear astigmatism and linear focus, this is field tilt, can take place.

The change in focal length of a thin lens is given by,

Δf ¼ Δn
n� 1

f : (10.5)

A change in the index of refraction of 0.001 results in a change of focal length
of approximately 0.2%. Index of refraction can be measured to 1�10–5, and is
usually sufficiently well known. Thus, system changes due to errors in the
index of refraction are expected to be very small. However, for diffraction
limited systems it is important to check the index of refraction of the materials
being used. The index of refraction homogeneity is also of concern, as a
difference in index of 0.0001 in a 10 mm glass blank produces an optical path
difference of 0.001 mm, or about two wavelengths in the visible spectrum.

Having an understanding of the effects that take place when a lens is
perturbed can allow a lens designer to control, or mitigate, them to avoid
specifying tight tolerances. For example, the tilt of an image sensor can be
used to match field tilt aberration, or some radial adjusting screws can be
designed into a lens barrel to laterally displace a lens and correct for uniform

Table 10.7 Changes that take place under perturbation according to symmetry
and to aberration order

Changes that relate to axial
symmetry

Changes that relate to lack of
axial symmetry

First-order Aberration First-order Aberration

Focal length Spherical
aberration

Image lateral displacement Uniform coma

Image size Linear coma
aberration

Anamorphic image
distortion

Uniform
astigmatism

Chromatic change of line
of sight

Linear
astigmatism

Field tilt
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coma. This has been done in adjusting microscope objectives. Alternatively, a
lens airspace can be adjusted to correct for residual spherical aberration.

Uniform astigmatism depends on the square of the surface tilt. Since the lens
tilts under consideration are small, uniform astigmatism is negligible. Thus, if
this aberration is detected in a nominally axially symmetric lens system, it is
likely due to surface figure error or to a lens being deformed due to improper
mounting. Table 1 in Appendix 4 summarizes the primary aberrations that can
take place in a plane symmetric system.

10.11 Desensitizing a Lens from Element Decenter,
Tilt, or Wedge

Lens design programs allow us to set multi-configurations for a lens system.
Each configuration may differ, for example, in constructional parameters, in
field of view, in relative aperture, and in wavelength choice. An opto-
mechanical engineer is concerned about lens decenter and tilt tolerances. To
desensitize a lens, say a Cooke triplet lens, seven configurations are defined.
One configuration is the nominal configuration; three configurations are for
lens element decenter, one for each lens; and three configurations are for lens
element tilt, one for each lens; this setting is shown in Table 10.8. The error
function for the nominal configuration has the first-order lens constraints and
may include image quality performance. The error function for the remaining
six configurations has only image quality performance.

Lens decenters and lens tilts are set only in one direction, so as to reduce the
lens system symmetry to plane symmetry. The field of view needs to be
properly sampled, as there is no longer axial symmetry for six configurations.
However, because the system becomes plane symmetric and the main effects

Table 10.8 Lens configuration setting for desensitizing a Cooke triplet lens for
lens element and tilt errors

Configuration 1 2 3 4 5 6 7

Focal length, mm 100
Lens #1 decenter, mm 0.025
Lens #2 decenter, mm 0.025
Lens #3 decenter, mm 0.025
Lens #1 tilt 0.05�

Lens #2 tilt 0.05�

Lens #3 tilt 0.05�
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of surface tilt are uniform coma and linear astigmatism, sampling three or five
fields in the plane of symmetry might be sufficient. Then optimizing such a
multi configuration lens system will tend to desensitize the lens system for lens
element decenter and tilt errors. Performance gains of 5%, 10%, or more are
often obtained. If the desensitizing is not sufficient, then a different lens
solution is desensitized and evaluated until the specified lens yield is achieved
for a given set of tolerances. In this desensitizing method, the lens optimizer
will change the lens to mitigate the worst offenders to performance first, due to
lens element decenter and tilt errors. Compensators can be added by releasing
as variables appropriate lens parameters, such as the back focal length, the
image plane tilt, or a lens decenter.

For spherical surfaces a lens decenter can be resolved as two surface tilts and
a thickness change; however, the thickness change is negligible.

The optics shop is concerned about lens wedge tolerances. Lens system
desensitizing for a lens wedge can be done by tilting each of the surfaces of a
lens system in a multi-configuration, as shown in Table 10.9 for a Cooke triplet
lens. Then optimization under surface tilt perturbation may provide a desensi-
tized lens. Figure 10.5 shows the form of a Cooke triplet lens that has been
desensitized to surface tilt. The main offender to the performance of the Cooke
triplet was sensitivity to linear astigmatism, which was mitigated. In this case it

Table 10.9 Lens configuration setting for desensitizing a Cooke triplet lens for
lens wedge

Configuration 1 2 3 4 5 6 7

Focal length, mm 100
Surface #1 tilt 0.1�

Surface #2 tilt 0.1�

Surface #3 tilt 0.1�

Surface #4 tilt 0.1�

Surface #5 tilt 0.1�

Surface #6 tilt 0.1�

Figure 10.5 Desensitized Cooke triplet lens. Left, standard lens solution; Right,
desensitized lens solution. The front positive lens takes a meniscus form, and the
rear positive lens takes a double convex form. Glasses are N-LAK33, TIF6, and
N-LAK33. FOV = �24� at F/5.
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was necessary to set each surface tilt first to 1.0� and then to 0.1� for the
optimizer to escape from a standard solution and find the less sensitive lens
solution.

10.12 Lens Drawings

Once a lens is designed and tolerances have been assigned for manufacturing,
lens drawings need to be produced. A lens drawing should provide sufficient
information so that the correct lens is made. It is important to have effective
communication with the lens manufacturer to reflect the shop fabrication skills
and to avoid mistakes.

Further, it is imperative that the lens designer checks, and double checks, a
lens design to make sure there are no errors. A lens designer needs to also have
effective communication with the opto-mechanical engineer who will design
the lens barrel, and the lens assembly engineer, to make sure the lens can be
made and be assembled and aligned.

There are a variety of lens formats for lens drawings according to organiza-
tion or company. However, a sample of the International Organization for
Standardization (ISO) standard for drawings for optical elements and systems,
ISO 10110-10, is shown in Figure 10.6.

In addition to the lens drawing in the top of Figure 10.6, the three boxes in
the bottom are for providing the following information, for each surface and
for the material: Material type, index of refraction, and ν-number; Radius of
curvature, convex CX, concave CC, and tolerance; Clear aperture or optically
effective diameter; Protective chamfer; Surface treatments and coatings; Stress

Figure 10.6 Lens drawing according to ISO 10110-10.
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birefringence; Permissible bubbles and other glass inclusions; Glass homogen-
eity; Surface irregularity; Centering tolerance, or wedge; Surface imperfections
allowance; Laser damage threshold indication; and Whether the surface is
cemented or optically contacted.
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11

Using Lens Design Software

There are a variety of lens design computer programs. Some of them
are CODE V, OpTaliX, OpticStudio, Oslo, and Synopsys. The costs of these
programs are two-fold, one for the license to use them, the other for the time
the engineer must spend learning to use them, which can be substantial.

Lens design software allows for the setting and analysis of a lens or lens
system, provides a variety of lens evaluation tools, permits the optimization
of a lens, allows the tolerancing of a lens system, and provides a variety of
other useful tools.

To acquire the skill of lens design one must become familiar with at least
one design program, develop some proficiency in its use, and become confi-
dent on the calculations produced by the program. Lens design software is not
necessarily correct, and a lens designer’s task is to double-check the results
of the program. On the other hand, the lens design program is expected to be
correct and the lens designer can be wrong on a given lens design issue.
Then there is the opportunity to learn.

There must be a turning point when the user is comfortable, and enjoys
using a lens design program. The user becomes excited about using the
software because current lens design programs are quite powerful in what they
can model, analyze, and optimize. Ultimately, lens design programs allow the
user to better understand optical systems, to provide solutions to optical
engineering problems, and to exercise creativity. These aspects make lens
design software quite appealing as professional tools.

A good way to start using a lens design program is asking for a demo and
help by someone who knows how to use the program. This may avoid
frustration, which may discourage an engineer from going forward in develop-
ing the skill of lens design. Lens design software companies offer short courses
on how to use their software.
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Using a lens design program is not about randomly, or unintelligently,
selecting optimization options, but intelligently using the program. This
requires planning and visualizing how the lens design problem will be tackled,
pausing, reflecting on the data the program displays, and rethinking the way to
proceed. Lens designers often optimize a lens system to extract the last bit of
good performance that the lens is capable of, given as a set of constraints such
as materials, packaging, and cost.

This chapter provides a discussion about using a lens design program, with
emphasis on lens optimization.

11.1 Utilities and Settings

Once the data of a lens has been input into a lens design program, there are a
variety of utilities and settings to help analyze, adjust, or optimize the lens.
These can help to save time and to decrease the computing overhead of the lens
optimizer, and to properly conduct a lens analysis and optimization.

Surface pickups refer to setting a given surface parameter, from a parameter,
not necessarily of the same type, of a preceding surface. If the lens is symmetrical
about the stop, then using pickups to set the rear part of the lens by copying, this is
by picking up, the parameters of the front part would be a choice.

Solves provide a surface curvature or a thickness using first-order calcula-
tions. A thickness solve will provide the distance to the next surface for a
given ray height at that next surface. A thickness solve is often used to find the
first-order distance to the ideal image plane. A curvature solve can set the
marginal ray slope equal to zero in image space, making the image be located
at infinity, or the lens afocal if the object is at infinity. Solves may reduce the
computational burden on the lens design optimization algorithm and save time.

Macros are programs that the lens designer writes to be executed by the lens
design program. Macros allow lens designers to implement customized calcu-
lations not provided by the lens design program as standard options, and they
are a powerful tool.

Variables are used by the optimization algorithm, or optimizer, to improve
the lens. Any constructional parameter of the lens can be a variable. The
number of lenses, lens element optical power, lens bending, lens separation,
lens surface asphericity, and lens material are variables frequently used in lens
optimization.

Weights are numerical values given to field points, wavelengths, and lens
configurations, to favor/disfavor their contribution in a given analysis, or to
aberrations during lens optimization.
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For the results of a program to properly reflect the status of correction of a
given lens system, it is necessary that proper sampling of the field of view, the
aperture, and the spectral bandwidth be defined for analysis and optimization.
If there are a few field points defined, then it is possible that the performance of
the lens would be acceptable for those points, but not acceptable for other field
points not included in the analysis or optimization. For axially symmetric
systems, three field points can be set to start an optimization, for example,

H ¼ 0, H ¼ ffiffiffi
2

p
=2, and H ¼ 1 are traditional field points. The number of field

points can be increased according to the extent of the field of view, and to the
number of aspheric surfaces in the system; it is not unusual to define twelve
field points. Field points can also be set to define circular regions covering
equal areas of the field of view.

If too few rays are defined to sample the pupil, then computations like RMS
spot size, RMS wavefront error, or MTF might be in meaningful error.
Figure 11.1 shows two ray grids, square and polar, that can be used to define
ray distributions at a pupil. For optimization of complex systems that are
intended to be diffraction-limited, and where computing time is important,
other more efficient grids are used.

To properly evaluate the point spread function, or any polychromatic system
performance metric, it is necessary to consider the spectral sensitivity of the
light sensor to be used, and the light transmission of the lens system, by
including enough wavelengths with appropriate weighting. For example, for
a visual system the design wavelengths can be given a weight based on the
spectral sensitivity of the eye, shown in Figure 11.2 and given in Table 11.1.
Figure 11.3 shows the relative sensitivity of the eye for photopic and scotopic
vision in logarithm scale vs. the wavelength, and by scaling up the scotopic
vision values to reflect that scotopic vision is sensitive to very low light levels.

Thus, a lens designer is concerned with setting the sampling options in the
different menus of a lens design program, to provide accurate results, and as
quickly as possible, to save time. One way to determine sampling size for a
given calculation is to start with the minimum sampling value and note the

Figure 11.1 Grids to define rays for analysis and optimization.
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results of that calculation. Then proceed to the next sampling value and note
the results of the calculation, and proceed, increasing the sampling, until there
is no meaningful change in the results of the calculation.

11.2 Merit Function

In order for a lens to be evaluated or improved, a merit function MF, also
called error function, must be constructed. This function conveys

Figure 11.2 Normalized spectral sensitivity of the human eye for photopic vision
(solid line) and for scotopic vision (dashed line). The peak for photopic vision is at
about 555 nm, and for scotopic vision is at about 507 nm.

Table 11.1 Normalized spectral sensitivity of a human eye for photopic (P)
and scotopic (S) vision

λ nm P S λ nm P S λ nm P S

400 0.00 0.01 500 0.32 0.98 600 0.63 0.03
410 0.00 0.03 510 0.50 0.99 610 0.50 0.01
420 0.00 0.09 520 0.71 0.93 620 0.38 0.01
430 0.01 0.20 530 0.86 0.81 630 0.27 0.00
440 0.02 0.33 540 0.95 0.65 640 0.18 0.00
450 0.04 0.46 550 0.99 0.48 650 0.11 0.00
460 0.06 0.57 560 0.99 0.33 660 0.06 0.00
470 0.09 0.69 570 0.95 0.20 670 0.03 0.00
480 0.13 0.79 580 0.87 0.12 680 0.02 0.00
490 0.21 0.90 590 0.76 0.07 690 0.01 0.00

Figure 11.3 Photopic (solid line) and scotopic (dashed line) vision in logarithm
scale vs. the wavelength of light.
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specifications of the lens system and serves as the input for the lens design
optimization algorithm. The merit function can be written in generic form as,

MF2 ¼
Pn
i¼1

W2
i T i � Aið Þ2

Pn
i¼1

W2
i

, (11.1)

where n is the number of lens performance metrics, Ai, that quantify the
system performance, Ti is the target value for metric Ai, and Wi is the weight
given to that metric i. For example, Ai can be a ray intercept error, the RMS
wavefront error for a given field point, distortion aberration, the focal length,
or any other measurable aspect of a lens. The merit function can also be
constructed as,

MF2 ¼ W2
iq�MF2

iq þW2
pkg�MF2

pkg þW2
dist�MF2

dist þW2
fo�MF2

first�order

W2
iq þW2

pkg þW2
dist þW2

fo

: (11.2)

This construction is a sum of sub-merit functions for the categories of image
quality, packaging constraints, distortion aberration, first-order constraints,
and/or other lens performance metrics. This form allows us to conduct
category trade-offs of performance through the weights, Wi, of the different
categories.

It is critical to be thoughtful on the merit function construction, as an
improper function is likely to yield improper results. Usually constructing the
merit function by constraining the focal length to a given value, and by
including the RMS spot size, or RMS wavefront error, is sufficient to
optimize many lens systems. If packaging problems arise during the opti-
mization, they can be dealt with, one by one, when they appear, by adding
constraints to control them. For example, the minimum central thickness of a
lens, or the minimum air space, are typical constraints to add to the merit
function.

Through weight selection, Wi, two items can be directed: one is the order in
which the optimization algorithm will address each performance metric, Ai,
also called the optimization operand, and the other is how well the metrics will
be optimized, or balanced, relative to each other. It is good practice to keep the
merit function as simple as possible to reduce computing time, to allow the
optimizer to find solutions, and to avoid conflicting requirements between
optimization operands. For example, optimizing simultaneously using aberra-
tion coefficients and RMS spot size in the merit function construction is often
conflicting. Other optimization problems can result from releasing too many
variables; for example, too many aspheric coefficients. Sometimes when the
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radius of curvature of a surface is large, the conic constant may take very large
values and can make the optimization unstable. In this case the conic constant
is frozen, so no longer set as a variable, and perhaps the fourth-order aspheric
coefficient is released instead as a variable.

11.3 Optimization Algorithm

There are two types of optimization algorithms, namely, local optimization
and global search. A goal of an optimization algorithm, or optimizer, is to
minimize the merit function. It is an automatic process once it is set and
started. Some optimization algorithms are: Damped Least Squares (DLS),
Simulating Annealing, Genetic Algorithms, Simplex Method, and Orthogonal
Descent. Perhaps the most used and proven is the DLS algorithm. In DLS,
derivatives of the merit function, as a function of the optimization variables,
are computed, and changes of the constructional parameters are determined
that may decrease the error function. It is an iterative process until a given
condition, such as how small the merit function is, or the number of iterations,
is reached. In minimizing the error function, a plurality of local performance
minima can be reached, and some other higher or lower minima may not
be reached. The optimization algorithms may suffer the common problem
of stagnation in which they stay on a local minimum without being capable
of escaping to a lower minimum. A task of the lens designer is to help the
optimizer finding a solution near, or at, the global minimum to a given lens
design problem.

The lens designer chooses the parameters, or variables, that the optimizer
will use to decrease the merit function. The goal is to allow the optimizer to
vary lens constructional parameters that effectively lead to a decrease in the
merit function. Lens curvatures and aspheric coefficients are usually effective
variables. Lens thickness is usually not an effective variable but in some cases
it can be. For example, a thick meniscus lens can be used to correct for Petzval
field curvature aberration. Aberration theory provides insight into what can be
an effective optimization variable. In addition, some physical constraints can
be set as part of the merit function, such as the focal length or the system total
track length. These constraints can be set as soft or hard. According to weight,
soft constraints may not be met perfectly, while hard constraints will be met
exactly by the optimizer.

There are also global search algorithms whose function is to find different
solutions and hopefully the global minimum to a given lens design problem
defined by specifications and constraints.
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11.4 Analyzing a Lens

The constructional data of a lens, the field of view, the spectral bandwidth, and
the F/# can be entered into a lens design program for analysis purposes. This
analysis, amongmany others, can include image quality assessment, determining
lens dimensions, determining the position of the pupils, determining light trans-
mission, or assessing how temperature changes affect the lens performance.

An analysis can also be conducted on combinations of several constituent
lens systems that form a complete system. For example, endoscope systems
may comprise a first objective lens, then one or more optical relays systems,
and a final imaging lens.

A problem that arises in lens design is that lens data can be incorrectly input
into the lens design program and errors can take place. For this reason,
checking that the lens program data editor or manager has correct information
is a task that lens designers often do. Sometimes the data input has been done
correctly but the data is faulty, and then it must be corrected.

11.5 Adjusting a Lens

A given lens that has been entered into a lens design program can be adjusted
for a variety of reasons. For example, the scale of a lens can be changed by
using the lens design program scaling function. Lens scaling makes it easy to
meet a given focal length or packaging requirement. While maintaining the
individual lens element optical powers, the surface curvatures can be varied to
adjust the lens for any data variation such as glass index of refraction, slight
errors in curvatures, or a different operating temperature. The aspheric surface
coefficients can also be adjusted to reflect any departure in lens use from the
nominal lens specification. It is not uncommon to adjust aspheric coefficients
to correct errors in the specified coefficients.

A lens can be adjusted to reflect the actual glass available for fabrication, or
to fit the surface curvatures to a manufacturer’s test plates list, or to meet the
lens thickness requirements needed for lens element mounting and fabrication.

A lens can be adjusted for a different field of view by trading-off its optical
speed. For example, a Cooke triplet lens can be nominally designed for a half-field
of view of 26� at F/5.6, and later adjusted for a HFOV of 31� at F/8, 16� at F/4, or
7� at F/2.8, while maintaining the same image quality. This adjustment requires
setting a merit function such as RMS spot size and re-optimizing the lens. The
lens thicknesses and diameters would be also adjusted to reflect the change in light
passage through the lens, and to avoid larger and thicker lenses than necessary.
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11.6 Modifying and Improving a Lens

There are many reasons to modify a lens, such as improving image quality,
improving resolving power and image brightness by decreasing the F/#,
improving relative illumination, increasing the field of view, changing the stop
position to satisfy first-order requirements such as telecentricity or to make the
lens more or less symmetrical about the stop, reducing tolerances, or reducing
lens size, weight, and volume. Some well-known techniques for modifying
and improving a lens are:

1. Determining the limiting aberrations from wave fans, ray fans, or aberra-
tion coefficients, and implementing effective design variables to correct,
balance, or mitigate those aberrations.

2. Scaling a lens.
3. Shifting the stop aperture.
4. Splitting a lens element optical power into two individually weaker lens

elements with the same total power as the un-split lens.
5. Bending a lens element.
6. Removing a lens element that has a relatively long focal length.
7. Allowing light vignetting.
8. Making one or more surfaces aspheric.
9. Reversing a lens element, a doublet, a group of lens elements, or the entire

lens system and re-optimizing.
10. Interchanging groups of lenses from different lens systems. For example, some

lens systems can be analyzed as having a front and a rear group. Then the front
and rear parts of two lens systems can be interchanged to create four lens
systems. Usually one lens system will perform best for a given application.

11. Temporarily setting a lens element as aspheric to find out if the lens
system improves. If so, then the aspheric lens can be replaced often by a
doublet lens with spherical surfaces.

12. Introducing in an airspace an aspheric optical element with very small, or
none at all, optical power and re-optimizing the lens.

13. Introducing a nearly concentric meniscus lens.
14. Increasing the index of refraction of the lens elements.
15. Selecting different lens materials.
16. Increasing the glass ν-number difference between elements where the

marginal ray height is the largest, to help correct chromatic aberration
and reduce lens curvatures.

17. Adding a field flattener lens.
18. Including diffractive optical elements, or gradient index materials.
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19. Reducing the RMS of the marginal ray angle of incidence in the lens
surfaces.

20. Trading-off image quality and packaging requirements such as lens
system length.

It is important to keep in mind that large changes to a lens may result in the
optimization algorithm failing to find a local minimum and the error function
diverging. Thus, during lens optimization the designer guides the optimizer to
find a minimum, and also helps the optimizer to walk through a number of
minima until an acceptable solution is reached. It is good practice to start an
optimization with a lens that is corrected for some of its primary aberrations, so
as to help the optimizer to find a merit function minimum. Then the lens
designer modifies the lens with small manual changes, and re-optimizes the
lens using the optimizer. This is repeated until a lens solution is reached.
Finding a lens solution and modifying it many, many times with the help of the
optimizer is typical of an optimization session. Tens or hundreds of lens files
can be generated in a few optimization sessions.

Global search optimizers that use artificial intelligence may require min-
imum attention from a lens designer to find solutions, though this does not
mean that such optimizers can automatically design lenses that solve a given
lens design problem. Intelligent and creative input from a lens designer is
indispensable for the design of state-of-the art lens systems.

11.7 Designing a Lens

A lens system can be designed from first principles by adding complexity to a
simple lens. This requires knowledge of first-order optics, aberration theory,
and lens design experience.

Alternatively, an existing lens from a data base or from the patent literature
can be used as a starting point. In this case the lens is first adjusted to meet the
necessary focal length, field of view, and f-number required. Then the lens is
optimized to find out how good its image quality can be, and further modified
until all the lens specifications are met. New materials can help to push the
level of performance of a lens system.

A lens design can also be carried out by combining different lens groups, or
parts, from different lens systems, or by combining or concatenating well
corrected lens systems.

A global search optimizer can be used to find many solutions to be analyzed,
adjusted, and fine optimized, including lens tolerancing considerations.
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11.8 Inventing a New Lens

Lens designers adjust and modify an existing lens on a routine basis to improve
it or set it for fabrication. This may not be considered as inventing a new lens,
unless the modifications rendered a substantial level of performance improve-
ment with respect to prior art. Clearly differentiating why a lens performance is
meaningfully superior, and showing why the lens is novel, and not merely a
trivial modification of an existing lens form, helps to support it as an invention.

A new lens form can evolve from existing lens forms by adding incremental
improvements over time, and taking advantage of new materials. Such is the
case of miniature lenses for mobile phones or lenses for micro-lithography.
Occasionally, new applications, or demands, result in lens forms that have not
been explored in the past, or in lenses that meaningfully exceed the perform-
ance of previous lens generations. The Petzval portrait objective was innova-
tive because of its superior image quality and fast optical speed. It is said that
the commercial success of the Petzval portrait lens was immediate and extra-
ordinary, and that it spread with unexpected rapidity.

There is plenty of opportunity to invent new useful lens systems. This
requires having lens design training, understating new demands and applica-
tions, being aware of new materials, being creative, and seizing opportunities.

11.9 Documenting a Lens

Once a lens design is considered completed, it is appropriate to document the
design, organize the lens files with useful file names that include the project
name and date of creation, and properly archive the documentation and lens
files. One compelling reason to create this documentation is to save time in the
future, as thousands of lens design files can be created over a year.
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12

Petzval Portrait Objective, Cooke Triplet,
and Double Gauss Lens

Three well-known and important classical lens forms are the Petzval objective,
the Cooke triplet lens, and the double Gauss lens. An understanding about
how these lens forms work, and how they are designed, provides a solid
background to push forward the skill of lens design. Many other lens forms
are derived from such classical lens forms by lens splitting and adding lens
complexity.

In this chapter we discuss the Petzval sum, the concept of stress and
relaxation in lens design, and those classical lenses.

12.1 Petzval Sum

The Petzval sum provides the vertex radius of curvature of the surface where
an image falls whenever there is no astigmatism aberration. The Petzval sum is

1
nk ′ρk′

� 1
n1ρ1

¼ �
Xk
i¼1

ni′� ni
nini′ri , (12.1)

where ρ1 is the vertex radius of the object surface, ρk′ is the Petzval radius, n is
the index of refraction, and k is the number of surfaces in the lens system. If the
Petzval radius is negative (positive), the center of curvature of the Petzval
surface is to the left (right) of the surface vertex. Notably, the Petzval sum does
not depend on lens thicknesses. For a system of thin lenses in air, and for a flat
object, the Petzval sum simplifies to,

1
ρPetzval

¼ �
Xk
i¼1

ϕi
ni
, (12.2)
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where ϕi is the optical power of the i thin lens. A thin lens of 100 mm focal
length made out of BK7 glass has a Petzval radius of ρPetzval ¼ �151:7 mm.

If we assume that a lens system in air is made out of the same glass, ρ1 ¼ ∞,
multiply the Petzval sum by the square of a given height, h, above the optical
axis, and divide by two, one obtains,

h2

2ρPetzval
¼ � n′� n

nn′
Xk
i¼1

h2

2ri
¼ � n′� n

nn′ Sag, (12.3)

where Sag stands for the cumulative sag of all the optical surfaces in the lens
system at the height h. This result indicates that, to have a flat field lens, there
must be no variation of thickness across the lens aperture.

Since the image displacement, Δs, by a parallel plate of thickness t is,

Δs ¼ n� 1
n

t, (12.4)

Petzval field curvature can be interpreted as the image displacement caused by
a plate of varying thickness, Sag, across the lens aperture.

Figure 12.1 (left) shows a parallel plate made out of a plano convex lens and
a plano concave lens, of the same but opposite optical power. The plate has no
optical power and has an infinite Petzval radius. When the lenses are separated
as in Figure 12.1 (right), the combination acquires optical power but maintains
an infinite Petzval radius. The positive Petzval field curvature contributed by
the positive lens is corrected by the contribution from the negative lens. When
a lens is located near an image and corrects for Petzval field curvature aberra-
tion, it is called a field flattener lens. In this case the marginal ray height is
nearly zero, and, therefore a field flattener lens does not contribute any
significant amount of spherical aberration, coma, or astigmatism.

Since the Petzval sum does not depend on lens thickness, a zero optical
power lens in the shape of a thick meniscus lens can have a positive Petzval
radius, to balance the contributions to the Petzval sum from lenses that have a
negative Petzval radius. For example, as shown in Figure 12.2, a meniscus lens
made out of BK7 glass with radii of curvature of 50 mm and 43.19 mm, and a

Figure 12.1 Left, a parallel glass plate made out of a plano convex and a plano
concave lens in contact. Right, lens separation results in optical power, but not in
Petzval field curvature.
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thickness of 20 mm, is afocal, but has a Petzval radius of ρPetzval ¼ þ930 mm.
This positive Petzval radius can be made smaller by decreasing the surface
radii of curvature, or by giving the meniscus lens a negative optical power.

Aspheric optical surfaces that do not have a quadratic term as a function of
the aperture, do not contribute to the Petzval sum, because they do not contrib-
ute optical power at their vertex. However, aspheric coefficients of an order
higher than second influence high orders of field curvature.

There are four classic ways to control field curvature aberration. First, using
high index glass for the positive lenses, and low index glass for the negative
lenses to minimize and maximize, respectively, their respective contributions
to the Petzval sum. Second, the use of a field flattener lens. Third, the use of a
thick meniscus lens. Fourth, creating beam constrictions where the marginal
ray height, y, is small and beam bulges where the marginal ray height, y,
is large.

12.2 Lens Stress and Relaxation

When optical power in a lens system is obtained by the combination of
positive lenses, the change of slope of the marginal ray from lens to lens is
gradual and distributed among the lenses, and the lens is said to be relaxed.
When the same amount of optical power is obtained by the combination of
positive and negative lenses, the change of slope of the marginal can be
increased from lens to lens, and in this case the lens is said to be stressed.
The weighted power, w, of a surface is defined as,

w ¼ ϕy ¼ n′u′� nu , (12.5)

where ϕ is the optical power of the surface, y is the first-order marginal ray
height at that surface, and u and u′ are the ray slopes before and after
refraction, respectively. The weighted power, w, is then a measure of the
change of slope of a ray as it is refracted or reflected by a surface or a lens.

Figure 12.2 An afocal thick meniscus lens has a positive Petzval radius.
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The structural aberration coefficients for a thin lens in air with the stop
aperture at the lens, and for spherical aberration, coma, and astigmatism are
proportional to w3, w2, and w, respectively. Thus, the weighted power is a
measure of aberration and of stress in a lens. If the optical power of a thin
singlet lens is split into two singlet lenses, each with half the optical power,
then spherical aberration and coma of the combination decreases. This is, the
lens system is relaxed.

For a system of k surfaces, a parameter, W, that quantifies how the optical
power is distributed in a lens can be written as,

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k 1� mð Þ2
Xk
i¼1

ϕy
nk′uk′
� �2

i

vuut , (12.6)

where the inclusion of the factor, nk ′uk′, and the transverse magnification, m,
makes W independent of the optical conjugate at which the lens system works,
and independent of scale.

When a surface is not concentric to the stop aperture, �A 6¼ 0, or the pupils, or
when it is not aplanatic, Δ u=nð Þ 6¼ 0, field aberrations are contributed. In a lens
system that has some symmetry about the aperture stop, the odd aberrations
tend to cancel. A parameter, S, that quantifies symmetry in a lens can then be
written as,

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k 1� mð Þ2
Xk
i¼1

�AΔ u=nð Þy
nk ′uk′�AStopyStop

 !2

i

vuut , (12.7)

where �AStop is the refraction invariant, and yStop is the marginal ray height at the
stop aperture. These factors make S independent of field of view, lens scaling,
and F/#.

The parametersW and S, thus quantify the power distribution and symmetry in
a lens system, and lens stress and relaxation. The smaller the parameters are, the
less aberration and stress is expected in a lens system. They also provide some
information about lens form. Table 12.1 providesW and S for some lens forms.

Large angles of ray incidence lead to increased higher orders of aberration.
Then a metric of lens stress/relaxation, R, is based on a real ray surface
refraction invariant, n sin Ið Þ, where I is the real angle of incidence on a
surface of the marginal, chief or other chosen ray, and is written as,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Xk
i¼1

n sin Ið Þð Þ2i

vuut : (12.8)
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Relaxed lenses mitigate higher order aberration by splitting the optical power
among several lenses. They tend to have wide tolerances. In contrast, stressed
lenses combine strong positive and negative optical power with the benefit of
creating degrees of freedom for correcting aberration, such as Petzval field
curvature, at the expense of introducing large amounts of higher order aberra-
tion, and narrow tolerances.

Figure 12.3 shows values for the surface refraction invariant, n sin Ið Þ, for a
Cooke triplet lens. Each line corresponds to a different meridional ray, the
marginal ray (Hy ¼ 0, ρy ¼ 1), the chief ray (Hy ¼ 1, ρy ¼ 0), and the rays
(Hy ¼ 1, ρy ¼ �1). Large values of n sin Ið Þ give place to higher order aberration
and, thus,measure lens stress. Surfaces 3 and 4 have the largest values of n sin Ið Þ.

The calculation of the W and S parameters, and the plots of n sin Ið Þ in
Figure 12.3, were done by writing a macro language program that was
executed within a lens design program.

Lenses that have degrees of freedom to correct for Petzval field curvature,
do not necessarily fully correct for it. A full correction would mean more lens

Table 12.1 Typical parameters W and S for some lens forms

Lens form W S

Cooke triplet 1.12 0.89
Petzval objective (stop at first doublet) 0.63 0.62
Double Gauss 1.01 0.16
Telephoto 0.72 1.30
Reversed telephoto 1.16 0.98
Fisheye 0.23 0.19
Micro-lithography relay 0.28 0.19
Microscope objective 0.23 0.11

Figure 12.3 Values of n sin Ið Þ on each surface of a Cooke triplet lens for the
marginal ray (Hy ¼ 0, ρy ¼ 1), the chief ray (Hy ¼ 1, ρy ¼ 0), and the rays
(Hy ¼ 1, ρy ¼ �1). The end points of each segment, in each line, indicate the
values n sin Ið Þ for each of the six surfaces in a Cooke triplet lens.
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stress, and larger higher order aberrations. By leaving the Petzval sum uncor-
rected and balancing aberration, an optimum status of correction can be
reached. In such lenses, like the Cooke triplet, the ratio of the Petzval radius
to the focal length, ρPetzval=f , provides a measure of the lens forms ability to
stand lens stress.

12.3 Petzval Portrait Objective

The Petzval portrait objective consists of two separated achromatic doublets.
Negative coma is contributed by the rear doublet, and, since the stop is located
at the front doublet, enough negative astigmatism can be produced to artifi-
cially flatten the field, or to correct for astigmatism. Positive coma aberration in
the front doublet corrects for negative coma in the rear doublet, and spherical
aberration is individually corrected at each doublet. There are no degrees of
freedom to correct for Petzval field curvature. However, by adding a field
flattener lens, a flat-field Petzval portrait objective can be obtained, as shown in
Figure 12.4, with f ′ = 100 mm, FOV = �12�, F/4.

The shape of the field flattener lens linearly influences pupil coma, �W131,
and, since pupil coma is related to image distortion, �W131 ¼ W311 þ 1

2Ж�Δ �u2ð Þ,
changing the shape of the field flattener lens can correct for image distortion,
W311. This correction results in a slightly concave image side surface of the
field flattener lens.

The starting lens for the design shown in Figure 12.4 was the prescription of
the original Petzval portrait objective, which was scaled to a focal length of
100 mm. The optimization was done by minimizing the RMS spot size for
three field points, 0�, 8�, and 12�, by targeting the focal length to 100 mm with
a weight of 100, and targeting distortion aberration with a weight of 1.
The stop position was initially left at the front doublet, and then it was allowed
to vary. Three wavelengths, F, d, and C, were used to optimize the lens.
No packaging constraints were set in the merit function, and lens thicknesses
were adjusted manually. The front doublet was separated into two singlet

Figure 12.4 Petzval portrait objective with a field flattener lens. f ′ = 100 mm,
FOV = �12�, F/4.
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lenses to allow for independent control of spherical aberration and coma. Glass
choice was selected by the optimizer, and is given along the lens constructional
data in Table 12.2. Except for the radius of curvature of the second surface of
the rear doublet, which is the smallest radius, all other radii were allowed to
vary. In addition, the doublet separation and the distance to the image plane
were allowed to vary. In the last optimization runs, all the radii of curvature,
and the stop position, were allowed to vary.

Figure 12.5 (top) shows the RMS spot size vs. field, field curves, plots of
n sin Ið Þ, and (bottom) wave fans for the 0�, 8�, and 12� field points. The wave
fans indicate that the design is limited by W131, W331, and W333 odd aberra-
tions, and other higher-order odd aberrations of the same type. The plots of
n sin Ið Þ show large values at the intermediate surface of the rear doublet,
which coincide with high values of W131, W331, and W333 aberrations.
A disadvantage of a field flattener lens is its relatively large size and small
back focal length. There is no light vignetting in this design.

Table 12.2 Constructional data of the flat field Petzval objective in mm.
f′ = 100 mm, FOV = �12�, F/4. W = 0.76, S = 0.94

Surface Radius Thickness Glass

1 54.0796 5.25 N-PSK58
2 529.0112 3 Air
3 �130.0950 3 N-KZFS8
4 �892.5498 9.884 Air
Stop 14.4743 Air
6 160.4580 3 N-KZFS5
7 33.2739 2 Air
8 37.6057 6 N-SK4
9 �104.4887 69.7654 Air
10 �56.7590 3 N-BK7
11 388.3197 3 Air

Figure 12.5 Flat field Petzval portrait objective. The RMS spot size vs. field,
field curves, and plots of n sin Ið Þ for upper and lower marginal rays at full
field (top). Meridional and sagittal wave fans for the 0�, 8�, and 12�, field points
for λ = 587 nm (bottom).
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The Petzval portrait objective is a relaxed lens form, and it is a good choice
for solving many imaging problems. Many variations of the Petzval lens are
possible by reversing the doublets and lens splitting to increase optical speed.

12.4 Cooke Triplet Lens

The Cooke triplet lens shown in Figure 12.6 was invented by H. D. Taylor,
who worked for T. Cooke & Sons of York, as described in US Patents 540,122
(1895) and 568,052 (1896). The essential design goal of the lens design was
to obtain a flat image substantially free from astigmatism, distortion, and
chromatic aberrations, with the minimum number of lenses possible.

Taylor reasoned that two lens elements of the same but opposite optical
power would be free from Petzval field curvature, and that separating them
would produce optical power, as showed in Figure 12.7. With the stop at the
negative lens and correcting for coma aberration at each lens, the combination
is almost free from astigmatism aberration. The astigmatism of the negative
lens is nearly corrected with the astigmatism of the positive lens. The positive
lens having the stop remote adds astigmatism due to its coma and spherical
aberration according to stop shifting,

S∗III ¼ SIII þ 2��SSII þ �S2SI : (12.9)

However, as the positive lens is corrected for coma, the additional astigmatism
is from spherical aberration. This is not large, as the lens shape for zero coma
nearly coincides with the lens shape for minimum spherical aberration.

Figure 12.6 Cooke triplet lens. f ′ = 50 mm, FOV = �24�, F/5.

Figure 12.7 A positive and a negative lens of equal but opposite optical power
independently corrected for coma aberration. The lens separation provides optical
power, and Petzval field curvature is corrected.
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By splitting the positive lens into two, and arranging them symmetrically
about the negative lens, a flat-field combination free from coma, distortion, and
Petzval field curvature results. The spherical aberration and residual astigma-
tism is then corrected by changing the lens shapes. The Cooke triplet lens was
the result of thinking “out-of-the-box.” Taylor stated that his lens did not use
diaphragm correction, i.e. artificially flattening the field, but that it achieved a
flat field with no astigmatism at the edge of the field. The Cooke triplet lens
provides enough degrees of freedom to correct for all the primary aberrations.
However, in practice, they are not fully corrected because they are balanced
against higher order aberrations. Petzval field curvature in the Cooke triplet
lens is controlled by creating a bean constriction on the negative lens, and two
bulges, one on each of the positive lenses.

Theoretically, to design a Cooke triplet, the following thin lens equations
need to be solved for the total power ϕ of the lens, for chromatic change of
focus, for chromatic change of magnification, and for Petzval field curvature,
respectively,

yaϕa þ ybϕb þ ycϕc ¼ yaϕ, (12.10)

y2a
va

ϕa þ
y2b
vb

ϕb þ
y2c
vc
ϕc ¼ 0, (12.11)

ya�ya
va

ϕa þ
yb�yb
vb

ϕb þ
yc�yc
vc

ϕc ¼ 0, (12.12)

ϕa
na

þ ϕb
nb

þ ϕc
nc

¼ 0: (12.13)

In practice, the design of a Cooke triplet takes advantage of the power of an
optimizer in a lens design program. For example, the index of refraction for the
lens elements is selected at about n = 1.6, as there are many glasses with this
index that have ν-numbers ranging from about 35 to about 68. This enables us,
later in the design, to choose different glasses for correcting chromatic aberra-
tion without disrupting the monochromic correction which is done first. Then
the positive lenses are set with half the power of the negative lens and arranged
symmetrically, and separated from the negative lens to achieve optical power.
The lens system is corrected for spherical aberration, coma, and astigmatism
using aberration coefficients in the merit function with weights of 1 each, while
targeting the focal length to, say, 50 mm with a weight of 100. The surface
curvatures are used as variables. This allows the optimizer to find a primary
aberration solution. This solution is then optimized for minimum spot size with
real rays. The solution is then further modified by incremental steps to meet the
specifications for the lens. An optimized solution may not correct exactly for
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Petzval field curvature. This is to minimize the optical power of the lens
elements, to reduce the lens system optical stress, and to provide less overall
aberration.

The chromatic correction is done at the end by changing the glass choice
among those glasses with about the same index. Crown glass is used for the
positive lenses, and flint glass is used for the negative lens. Since the Cooke
triplet is nearly symmetrical, little effort is required to correct for chromatic
change of magnification. The chromatic change of focus is corrected by
changing the glass ν-number difference between the positive and negative
lenses. By also allowing the relative air space between the lenses to change,
distortion aberration is corrected. There are two solutions to the Cooke triplet
according to the shape of the negative lens. One can be obtained from the other
by reversing all the elements of one solution and re-optimizing the lens.

A preliminary solution for a Cooke triplet lens can be obtained by following
the twelve steps given below. The method relies in the fact that spherical
aberration is mainly controlled by the focal length of the negative lens, coma
and astigmatism are controlled by the shapes of the positive lenses, and
distortion aberration is controlled by the relative airspace between lenses.
The chromatic aberrations are controlled by the glass ν-number choice, while
maintaining about the same nominal index of refraction.

1. Set the entrance pupil diameter to 25 units and the field of view to �24�.
Start the design monochromatically.

2. Choose a high index glass for the positive elements, such as N-LAK33.
Choose a glass for the negative element with about the same index of
refraction but different ν-number. For example, glass TIF6.

3. Set a positive lens with a focal length of 100 units and a concave-plano
lens with a focal length of �100 units. The stop aperture is set at the
negative lens. To obtain about half the optical power the airspace between
lenses is set to 12 units. Optimize for zero fourth-order astigmatism, W222,
using the radii of curvature as variables, but leaving the rear surface of the
negative lens as planar.

4. Correct for spherical aberration, W040, by changing the focal length of the
negative concave-plano lens, say to �153 units.

5. Add a rear positive lens with N-LAK33 glass with a focal length of
100 units and separated from the negative lens by 12 units. Lens thick-
nesses are, for example, 5, 2, and 5 units, respectively.

6. Using the rear curvature of the negative lens and the curvatures of the third
positive lens, correct for astigmatism, W222, aberration, and for a focal
length of the negative lens half as large, i.e. �76.5 units.
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7. Maintaining the focal length of the lenses, and using only the shapes of the
positive lenses, correct for astigmatism, W222, and coma, W131, aberration.

8. While maintaining the correction for coma and astigmatism, correct for
spherical aberration, W040, by changing the focal length of the positive
lenses from 100 units to, say, 120 units. The shape of the negative lens is
not changed.

9. While maintaining the correction for spherical aberration coma and astig-
matism, correct for distortion aberration, W311, by changing the second
airspace to, say, 13.5 units. The shape of the negative lens, and the lens
focal lengths are not changed.

10. While maintaining zero coma, and by changing only the shapes of the
positive lenses, introduce negative, or positive, astigmatism to flatten the
tangential field curve.

11. Add the desired wavelengths and change the glass of the negative element
to correct for chromatic change of focus, while maintaining the same
nominal index of refraction. Change the glass of one of the positive lens
elements to correct any chromatic change of magnification residual, while
maintaining the same nominal index of refraction.

12. Scale the lens system to the desired focal length, change the relative
aperture and field of view as desired. The lens is ready for real ray
optimization.

Alternatively, a Cooke triplet can be designed starting from parallel plates, or
with a global search optimizer, or starting from a lens in the patent literature.
However, a lens designer should know how to design a lens from first
principles.

The prescription for the lens in Figure 12.6 is given in Table 12.3, and the
performance curves are shown in Figure 12.8. In this lens, to reduce aberration
residuals, higher index glass, N-LAK33, was used for the positive elements.

Table 12.3 Constructional data of the Cooke triplet lens,
f′ = 50 mm, FOV = �24�, F/5

Surface Radius (mm) Thickness (mm) Glass

1 30.1516 3.25 N-LAK33
2 �677.4312 6.0 Air
3 (Stop) �23.3371 1.0 TIF6
4 29.3810 4.75 Air
5 5004.4670 3.0 N-LAK33
6 �20.7956 43.1266 Air
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The ratio of the Petzval radius to the focal length is, ρPetzval=f ′ ¼ �3:2,
W ¼ 0:99, and S ¼ 0:74. Keeping track of the lens elements focal length helps
to understand the structure of the lens system. For the Cooke triplet in
Table 12.3, the focal lengths are f1′ = 38.2 mm, f2′ = �20.8 mm, and f3′ =
27.36 mm. Thus, the lens elements have more optical power than the lens
system.

The lens was first optimized using RMS spot size for image quality. How-
ever, this metric is optimistic because the radius that encloses 80% of the
energy is larger than the RMS spot radius for the same field point.
The astigmatism field curves show the typical crossing indicating a good
balance of orders of astigmatism, field curvature, and focus. Further optimiza-
tion to approach meeting the 50/30 MTF rule of thumb was done by optimizing
with RMS wavefront error and targeting MTF values at 30 lines per millimeter.
The F, d, and C wavelengths were used for optimization and analysis.

As shown in Figure 12.9, the Cooke triplet lens can be modified so that it is
telecentric in image space. The field of view is reduced and the stop aperture
is moved to the front. This is done in several small steps, in which the lens is
re-optimized at each step to keep the local minimum within the reach of the
optimizer. The stop aperture is external to the lens, and this allows for
combining two such lenses to form an optical relay.

Figure 12.8 Cooke triplet lens. Top left, RMS spot size vs. field of field. Top
right, radius that encircles 80% of the energy vs. field of view. Bottom left, field
curves. Bottom right, MTF curves in lines/mm for fields 0�, 17�, and 24�. f ′ = 50
mm, FOV = �24�, F/5.

Figure 12.9 An external stop and telecentric Cooke triplet lens. f ′ = 50 mm,
FOV = �10�, F/5.
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12.5 Double Gauss Lens

Paul Rudolph, from the Zeiss Company in Germany, invented the planar lens,
as shown in Figure 12.10, US Patent 583,336, (1897). It is a symmetrical
lens about the stop aperture. Rudolph used the Gauss objective as a starting
point for designing the rear part of his planar lens. In order to control Petzval
field curvature, he thickened the negative meniscus lens of the Gauss objective,
and used the shape of the lenses and distance to the stop aperture to correct for
the even aberrations, spherical aberration, astigmatism, and field curvature.
To mitigate the odd aberrations, coma, and distortion, he used the technique of
doubling a lens about the stop aperture, making the lens symmetrical.

Finally, Rudolph came up with a novel technique to correct for the chro-
matic aberrations. He used a buried surface, one that has the same index of
refraction on both sides but different ν-numbers, on two lenses to create two
dispersive interfaces and to control chromatic change of focus and magnifica-
tion. The result was a lens capable of a high speed and a wide field of view,
with excellent imaging. The name double Gauss lens refers to lenses that have
been derived from the planar lens by splitting lens elements and by breaking
the symmetry about the stop aperture. At the time of the invention there were
no antireflection coatings, and the eight air-to-glass interfaces caused an
increased amount of light loss by Fresnel reflection, and a decreased image
contrast due to the Fresnel reflections reaching the image plane. Double Gauss
type lenses have been used widely for 35 mm photographic cameras.

Figure 12.11 shows a double Gauss lens design described as Example 1 in
US Patent 4,123,144 (1978). Of note is the significant light vignetting that
takes place which is used to help control oblique spherical aberration, W240,
and packaging constraints. One constraint in lenses for 35 mm Single Lens
Reflex cameras is the back focal length, which must be large enough to allow
for the folding mirror that is required. This constraint imposes a limit on how
well the aberrations can be controlled. Figure 12.12 shows the wave fans for
the 0�, 17�, and 22� field positions. The top row shows the wave fans for full
speed at F/2 with a scale of 10λ at 587 nm, and the bottom row for a speed of
F/5.6, with a scale of 2.5λ. There is a significant amount of oblique spherical

Figure 12.10 Planar lens from Paul Rudolph. US Patent 583,336, example 2.
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aberration at full speed, which in part is controlled by light vignetting. This
does not mean that the lens is not well designed. On the contrary, given the
packaging constraints and an understanding of the application, the designer
provided excellent imaging at F/5.6, knowing that a photographer would first
focus the lens at F/2 and then switch to F/5.6 for best image quality. Oblique
spherical aberration is a limiting aberration in double Gauss type lenses.
Figure 12.13 shows the relative illumination at F/2, which decreases to 0.3

Figure 12.12 Meridional and sagittal wave fans for double Gauss lens, US Patent
4,123,144, example 1. Top row, at full F/2 speed. Bottom row, at F/5.6 speed.
Field positions are 0�, 17�, and 22�.

Figure 12.11 Double Gauss lens, US Patent 4,123,144, example 1. f ′ = 50 mm,
FOV = �22�, F/2. Note the light vignetting which helps to clip aberrated rays and
to decrease the size of the rear lens elements.

Figure 12.13 Relative illumination for the double Gauss lens, US Patent
4,123,144, example 1.
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at the edge of the field. Usually for photography the relative illumination is
specified at full field to be 0.5 (50%) or larger.

The focal lengths of the external positive lenses and of the negative menisci
lenses are f1′ = 52.02 mm, f2′ = �58.73 mm, f3′ = �123.32 mm, and f4′ = 37.47
mm, and the focal length of the lens system is f ′ = 50 mm. The parameters are
W = 1.02 and S = 0.2, and the Petzval radius is �275.8 mm.

The prescription of the lens is given in Table 12.4. The buried surfaces were
left as plano surfaces. However, the radius of curvature of a buried surface is
an effective degree of freedom to control chromatic aberration. Alternatively,
the ν-number difference of the glasses surrounding the buried surface is also an
effective degree of freedom.

Further Reading
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Mandler, Walter. “Design of basic double gauss lenses,” Proceedings of SPIE 0237,
1980 International Lens Design Conference (1980), doi: 10.1117/12.959089.

Mandler, W., Edwards, G., Wagner, E. Four-member Gauss objective, US Patent
4,123,144 (1978).

Table 12.4 Prescription of the Double Gauss lens, US Patent
4,123,144, example 1. f ′ = 100 mm, FOV = �22�, F/2

Surface Radius Thickness Glass

1 48.88 8.89 1.62286/60.08
2 182.96 0.38 Air
3 36.92 15.11 1.58565/46.17
4 ∞ 2.31 1.67764/31.97
5 23.06 9.14 Air
Stop 13.36 Air
7 �23.91 1.92 1.57046/42.56
8 ∞ 7.77 1.64128/55.15
9 �36.92 0.38 Air
10 1063.24 6.73 1.62286/60.08
11 �43.88 59.18 Air
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13

Lens System Combinations

An optical engineer is not only concerned with the design of a single lens
system, but also in combining several lens systems. An optical system may
comprise several individual lens systems. These lens systems must be com-
bined to meet the overall optical system specifications. Often each lens system
serves to relay an image or a pupil of the previous system to a new location. In
combining lens systems, several effects can take place due to image and/or
pupil aberrations. Being aware of such effects is key to design, analyze, or
debug a combination of lens systems. For example, a telescope can be con-
sidered as the combination of an objective lens, an image erecting system, an
eyepiece, and the human eye. To properly form an image on the eye’s retina,
these subsystems must be properly combined. In this chapter we discuss
combining lens systems, pupil aberrations, and optical relays.

13.1 Image Aberrations

We assume that, in combining two lens systems, we maintain axial symmetry
and that both systems work at their designed optical conjugates. This situation
can be described as first-order image matching. If the image aberration func-

tions of those two systems, A and B, are WAðH
!
; ρ
!Þ and WBðH

!
; ρ
!Þ, then the

aberration function of the lens combination, WCðH
!
; ρ!Þ, is,

WC H
!
; ρ!

� �
¼ WA H

!
; ρ!

� �
þWB H

!
; ρ!

� �
þWAB H

!
; ρ!

� �
, (13.1)

where WABðH
!
; ρ!Þ are called extrinsic, or induced, aberrations. These aberra-

tions result from the synergy of the combination of the systems. If in the
aberration functions of systems, A and B, there are fourth-order aberration
terms, then the extrinsic aberrations are of sixth-order.
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In addition, if between systems A and B there is a displacement in the field,

H
!

0, or in the aperture, ρ!0, then the axial symmetry is broken, and the aberra-
tions of the combination can be written, neglecting extrinsic terms, as,

WC H
!
; ρ!

� �
¼ WA H

!
; ρ!

� �
þWB H

! þ H
!

0; ρ
! þρ!0

� �
: (13.2)

For simplicity, we will assume that first-order image matching takes place.
The aberrations of a lens system can be divided according to the algebraic

power of the aperture into even and odd aberrations. The odd aberrations tend to
cancel whenever there is some symmetry about the stop aperture in a lens
system. However, the even aberrations, or even aberration residuals, may add
and accumulate when combining several lens systems. In particular, secondary
chromatic change of focus is an even aberration, and any residual will likely add.
Thus, in combining several lens systems, one must minimize and be aware of the
image aberration residuals of the constituting lens systems.

13.2 Pupil Aberrations

In the same way the object and the image are optically conjugated, the entrance
and the exit pupil are also conjugated. Therefore, the pupils, one being the
image of the other, can suffer from aberration. The pupil aberration function,

�WðH!; ρ!Þ, to fourth order is,

�W H
!
; ρ!

� �
¼ �W000 þ �W200 ρ!� ρ!

� �
þ �W111 H

!� ρ!
� �

þ �W020 H
!� H!
� �

þ �W040 H
! � H!
� �2

þ �W131 H
!� H!
� �

H
!� ρ!
� �

þ �W222 H
! � ρ!
� �2

þ �W220 H
!� H!
� �

ρ!� ρ!
� �

þ �W311 ρ!� ρ!
� �

H
!� ρ!
� �

þ �W400 ρ
! � ρ!
� �2

: (13.3)

Table 13.1 Pupil aberration and image aberration
coefficient connections

�W040 ¼ W400 �W220 ¼ W220 þ 1
4
Ж�Δ u�uf g

�W131 ¼ W311 þ 1
2
Ж�Δ �u2

� �
�W311 ¼ W131 þ 1

2
Ж�Δ u2

� �

�W222 ¼ W222 þ 1
2
Ж�Δ u�uf g �W400 ¼ W040
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The primary pupil aberrations of concern are spherical aberration, coma,
astigmatism, field curvature, and distortion. The pupil aberration coefficients
are connected to the image aberration coefficients, as shown in Table 13.1.

Pupil aberrations are interpreted as a distortion of the cross-section of the
light beam from a field point, when the cross-section of the beam at the other
pupil is undistorted. Figure 13.1 shows the effects of pupil aberrations on the
cross-section of a beam at a pupil. The dashed line grid represents the ideal
undistorted first-order image of the pupil.

If two lens systems, A and B, are combined, the exit pupil of the first must be
coincident with the entrance pupil of the second. There are six first-order
degrees of freedom in connecting two systems; three translations, X, Y, and
Z, and three rotations, α, β, and γ. If the lens system combination preserves
axial symmetry, and if the location of the exit pupil of system A coincides with
the location of the entrance pupil of system B, we have pupil matching to first-
order. Any departure from this situation can cause light loss by vignetting, or
reduce the field of view, or cause image aberration. For simplicity, we assume
there is pupil matching to first-order.

If system A suffers from image primary aberrations, WAðH
!
; ρ!Þ, and system

B suffers from pupil primary aberrations, �WBðH
!
; ρ!Þ, then the extrinsic aberra-

tions, WABðH
!
; ρ!Þ, of sixth-order are given by,

WAB H
!
; ρ
!� �

¼ � 1
Ж

r!ρWA H
!
; ρ
!� �

�r!H �WB H
!
; ρ
!� �

, (13.4)

where r!ρWAðH
!
; ρ
!Þ is the gradient of the image aberration function and

r!H �WBðH
!
; ρ!Þ is the gradient of the pupil aberration function. Despite there

Figure 13.1 Pupil grid mapping effects due to pupil aberrations in relation to the ideal
first-order pupil (dashed line grid). There is no effect from pupil piston aberration.
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being pupil matching to first-order, the presence of image aberrations in system
A and pupil aberrations in system B produces extrinsic aberration. For
example, if system A has chromatic aberrations, ∂λW020ðρ! � ρ!Þ and

∂λW111ðH
! � ρ!Þ, and system B has pupil distortion, �W311ðH

! � ρ!Þðρ! � ρ!Þ, then
the extrinsic terms are,

WAB H
!
; ρ!

� �
¼ � 1

Ж
∂λW020 �W311 ρ! � ρ!

� �2
þ ∂λW111 �W311 H

!� ρ!
� �

ρ
!� ρ!
� �� �

:

(13.5)

The first term, ∂λW020 �W311ðρ! � ρ!Þ2, is spherochromatism, and the second

term, ∂λW111 �W311ðH
! � ρ!Þðρ! � ρ!Þ, is variation of coma with the wavelength,

which can be called comachromatism. Thus, in combining lens systems, it is
important to have them individually corrected for the chromatic aberrations.
Table 6 in Appendix 1 provides extrinsic aberrations in the presence of the
primary monochromatic aberrations.

13.3 Pupil Spherical Aberration

Pupil spherical aberration, �W040, causes the beam from a given field point at a
pupil to translate perpendicularly to the optical axis. This effect depends on the
cube of the field of view. In combining two lens systems under the presence of
pupil spherical aberration, some light vignetting can take place. Figure 13.2
(top) shows light beams from different field points converging to the exit pupil
of a lens, but suffering from pupil spherical aberration. These beams might
pass through the entrance pupil of the subsequent lens system and illuminate

Figure 13.2 Top row, light beams converging to a lens exit pupil suffer from
pupil spherical aberration; ray detail (right). The beams are vignetted differently
according to the position and size of the entrance pupil of a lens system. Bottom
row, obscuration of the field of view. Left, no obscuration. Center, annular
obscuration (caused by axial displacement). Right, kidney bean obscuration
(caused by lateral displacement).
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completely the field of view. However, if the entrance pupil of the subsequent
lens system is moved along the optical axis, light from some field points may
miss passing through the entrance pupil, and the field of view would be
obscured annularly, as also shown in Figure 13.2. If, in addition, the entrance
pupil of the following system is laterally moved, the field of view would be
obscured in the form of a kidney bean, as also shown in Figure 13.2. This
kidney bean effect is often observed in visual optical systems that provide a
large apparent field of view, that suffer from pupil spherical aberration, and
when the observer shifts viewing location.

Wide angle lenses, such as fisheye lenses, suffer from spherical aberration of
the entrance pupil, as illustrated in Figure 13.3. The entrance pupil for different
field points changes size and position. The phenomenon is known as pupil
walking, and it enables a lens to accept light for fields of view beyond 90�.
While pupil walking is an extreme effect in fisheye lenses, it draws attention to
matching pupils when combining a wide angle lens system.

Figure 13.4 shows a lens with the stop in front and five principal rays. The
stop aperture is located at the front focal point of the lens and, to first-order, the
lens is telecentric in image space. Because of pupil spherical aberration, the
slope of the rays in image space changes as a function of the lens aperture. This
change of slope represents loss of telecentricity, and can result in light loss or
aberrations when combining lens systems.

In photographic lenses, pupil spherical aberration can help to reduce the
angle of incidence of the chief ray in the image plane to meet lens specifica-
tions. For example, lenses for mobile phones, as shown in Figure 13.5, use

Figure 13.3 A fisheye lens system covering a field of view of �90� at F/2. The
entrance pupil for each field point changes size and position along the external
caustic sheet for spherical aberration, as shown by the double arrowhead lines on
the caustic line.
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aspheric surfaces. The position of the stop near the front of the lens, and the
last strongly aspheric lens element, which turns from negative to positive
power at the lens edge, helps to reduce the chief ray angle of incidence in
the image plane. An aspheric surface near the image plane is an effective
degree of freedom to control pupil spherical aberration.

13.4 Pupil Coma

Pupil coma, �W131, causes the cross-section of a beam at a pupil to change size
and to be anamorphically distorted. Figure 13.6 shows two afocal optical
relays using ideal lenses and a plano-convex field lens to control the path of
rays. The difference between the two relays is the shape of the plano-convex
lens, X =�1 or X = 1, and the slightly different path for the rays for the off-axis
field point. Pupil coma depends linearly on the lens shape, X, and in this case it
is positive for X = �1, and negative for X = 1. For reference, the footprint of
the on-axis beam is shown in Figure 13.6 (bottom-center). If pupil coma is
positive, the cross-section of the off-axis beam expands, as shown in
Figure 13.6 (bottom-right), and if it is negative it contracts, as also shown in
Figure 13.6 (bottom-left). In addition, the field lens contributes pupil spherical
aberration; this aberration makes the real chief ray cross the optical axis ahead
of the second ideal lens, and displaces the beam laterally.

Figure 13.5 Three lens element and infrared filter lens system for a mobile phone.
The chief ray decreases in slope after being refracted by the aspheric third lens
element.

Stop

Figure 13.4 A lens with the stop aperture located at the front focal point is to first-
order telecentric in image space, and principal rays should be parallel to the
optical axis after they refract through the lens. Due to spherical aberration of the
pupil, the principal rays, as a function of the aperture, progressively acquire a non-
zero slope with respect to the optical axis.
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The fact that the footprint for off-axis beams expands or contracts can result
in light vignetting and image aberration, when light is directed to the entrance
pupil of a lens system that follows the lens system suffering from pupil coma.

The relative illumination, RIðH!Þ, of a lens also depends on pupil coma,

RI H
!� �

¼ 1� 2�u02 � 4
Ж

�W131

� �
H
!� H!
� �

: (13.6)

As a result of pupil coma, off-axis beams change size and are anamorphically
distorted, as shown in Figure 13.7. This beam expansion or contraction
changes the convergence of the beam at the focal plane of a lens system,
and, therefore, also changes the theoretical resolution and MTF cut-off spatial
frequency. Figure 13.8 shows a singlet lens with a strong amount of pupil
coma. The off-axis beam shows a significant increase in its optical speed in
comparison to the on-axis beam.

13.5 Pupil Distortion

Pupil distortion, �W311, causes the image of the pupil to be barrel or pincushion
distorted, as shown in Figure 13.9. Because the image of the pupil can be

Figure 13.6 Two afocal optical relays with a plano-convex field lens and two
ideal lenses. The stop aperture is at the first ideal lens. Light rays are shown for on-
axis and off-axis field points. Off-axis beam footprints at the second ideal lens are
shown at the bottom.

Figure 13.7 When the stop aperture coincides with the entrance pupil of a lens, or
is buried in the lens, the exit pupil can change size and be anamorphically
distorted due to pupil coma. As shown, from left to right, this effect increases
with the square of the field of view.
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larger than the entrance pupil of a system, light loss by ray vignetting may
take place.

In a lens system, pupil distortion and image coma are related by,

�W311 ¼ W131 þ 1
2
Ж�Δ u2

� �
: (13.7)

Therefore, in a lens system that is corrected for image coma aberration, there
may necessarily be some amount of pupil distortion whenever u02 � u2 6¼ 0. In
addition, since the exit pupil may become larger or smaller than the first-order
pupil size, the optical speed of the lens may slightly change from that predicted
by first-order optics.

13.6 Chromatic Vignetting

Some lens systems require an intermediate image where a field stop must be
located. In the case of visual instruments, the intermediate image must be
corrected for chromatic change of magnification to avoid chromatic vignetting.
In this effect, light from field points at the edge of the field is vignetted for
some wavelengths and not vignetted for others. Then, when light is relayed to
form a final image, the edge of the field can appear bluish, yellowish, or
reddish due to the chromatic vignetting. This is an undesirable effect in a

Figure 13.8 Singlet lens with a strong amount of pupil coma. The off-axis beam
focuses with a higher optical speed than the on-axis beam.

Figure 13.9 Distortion aberration represented by imaging a square grid. Top row,
barrel distortion, bottom row pincushion distortion, ranging from left to right, 0%,
1%, 3%, 5%, and 10%.
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visual instrument. The presence of other aberrations in an intermediate image
where there is a field stop can also produce undesirable effects.

13.7 Optical Relays

Lens optical relays transfer an image, or a pupil, from one location to another
location. At the same time lens relays can provide a change of magnification,
or satisfy some first-order lens specifications like telecentricity. Lens relays are
important in optical engineering, and familiarly with their design and proper-
ties should be gained by an optical engineer.

A starting point for the design of an optical relay can be the design of some
external stop, telecentric lenses, as shown in Figure 13.10.

Because the lenses shown in Figure 13.10 have their stop aperture external
to the lens, and they are telecentric in image space, they can be combined to
form afocal relay systems to relay and image or a pupil, as shown in
Figure 13.11. By scaling in size one relay, the overall system afocal magnifi-
cation can be set. Lenses with the stop external to the lens are useful in optical
engineering, and creating a collection of such lenses becomes useful over time.
Lenses with an external stop allow placement of beam splitters to create two
imaging channels.

Some problems in combing lenses to form optical relays are that the aberra-
tion residuals may add to degrade the final image. A re-optimization of the
complete relay system can restore, or improve, the image quality at the
expense of losing lens modularity. Pupil spherical aberration, and pupil coma
may create problems in matching the exit and entrance pupils of the lenses that

Figure 13.10 External stop and telecentric lenses, f 0 = 100 mm at F/4: Petzval
objective FOV = �5�, Cooke triplet lens FOV = �10�, and double Gauss lens
FOV = �10�. Note that the double Gauss lens is the shortest one in total length.
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are combined. For double telecentric relays we have, �u0 ¼ �u ¼ 0, and by way
of equations in Table 13.1 we also have the identities, �W131 ¼ W311,
�W222 ¼ W222, and �W220 ¼ W220.
Sometimes it is necessary to add a field lens to control the path of rays so that

there is no light vignetting. The field lens may introduce field curvature aberra-
tion that will degrade the image quality. A Cooke triplet lens can be designed as
a field lens to maintain a flat field. Or the field curvature of the field lens can be
corrected elsewhere, at the expense of adding optical stress to the lens system.

Figure 13.12 (top) shows an imaging double relay system working at F/4.
The first element on the left is an ideal lens that forms a first image. Then there
is a field lens made out of high index glass to minimize its Petzval field
curvature, which is followed by a plano-parallel glass plate that represents an
optical filter. Two afocal relays, shown in Figure 13.12 (middle and bottom),
are set one after the other to relay the first image twice. Secondary spectrum
aberration from each relay normally adds rather than cancels, but in this design
a group of lenses with anomalous dispersion in the second relay helps to
mitigate this aberration. Fluorite (FPL53) type and short flint (KZFS1) glasses
were used in this group of lenses, which have strong optical power. Both relays
were designed as independent well corrected lens subsystems for modularity,
alignment, and debugging reasons.

Figure 13.11 Top, pupil relay using Cooke triplet lenses. Bottom, image relay
using a Cooke triplet lens and a double Gauss lens. Both relays are afocal and use
lenses with f 0 = 100 mm at F/4.

Figure 13.12 Top, double relay system with field lens. There are three images that
are represented by vertical straight lines. The first vertical line on the left is an
ideal lens forming the first image. The second image is at the center of the relay,
and the third image is at the end of the relay at the right. Middle, the first relay;
and, bottom, the second relay; these two relays form the complete double relay
shown at the top.
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The first attempt to design this relay was using four well corrected and
telecentric objective lenses. However, the number of lens elements was exces-
sive and then the relay was simplified by reducing the number of lenses and
designed as the combination of two well corrected relays. The menisci thick
negative lenses in the first relay help to correct for Petzval field curvature,
including that of the first field lens. There are two other field lenses next to the
intermediate image. These lenses make the relays telecentric in the space of the
center image.

Further Reading

Fallah, Hamid R., Maxwell, Jonathan. “Higher-order pupil aberrations in wide-angle
and panoramic optical systems,” Proceedings of SPIE 2774, Design and Engineer-
ing of Optical Systems (1996); doi: 10.1117/12.246677.

Hoogland, J. Flat field lenses, US Patent 4,575,195 (1986).
Hopkins, H. H. Optical systems, US Patent 4,168,882 (1979).
Lerner, S. A., Kelly, C. D. Optical relay, US Patent 7,175,289 (2007).
Sasián, J. Introduction to Aberrations in Optical Imaging Systems (Cambridge, UK:

Cambridge University Press, 2013).
Tesar, J. Highly corrected relay system, US Patent 9,918,619 (2018).
Wakimoto, Z., Hayashi, T. Telecentric, image-forming optical system for large image

size, US Patent 4,929,066 (1990).
Wetherell, W. B. “Afocal lenses,” in Applied Optics and Optical Engineering, Vol X,

(New York: Academic Press, 1992).
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14

Ghost Image Analysis

Lens systems are designed to form an image according to an ideal model. Light
that passes through the stop aperture forms the image. However, some light
may not contribute to the formation of the intended image, and reaches the
image plane to degrade the image. This light is known as stray light, flare,
veiling glare, and ghost images.

Ghost images are formed when light is reflected from one or more optical
surfaces in a lens system. The number of light reflections, or light bounces,
determines the relative amount of optical flux in a ghost image. The light
flux depends on the surface reflectivity and decreases roughly in alge-
braic power as the number of light bounces increases. The light reflection
is due to Fresnel reflections or total internal reflection. There are odd
ghosts created by an odd number of light reflections that travel back to
the object, and even ghosts created by an even number of reflections
that travel toward the nominal image plane. A ghost can be an image of the
object, an image of the aperture stop, i.e. a pupil, or an image of the light
sensor. Veiling glare is contributed by ghost images that are not in focus with
the nominal image, and it is often non-uniformly distributed on the
image plane.

A singlet lens can have a single two-bounce ghost, a two lens system can
have six two-bounce ghosts, a three lens system can have 15 two-bounce
ghosts, and the number of two-bounce ghosts increases as k k � 1ð Þ=2, where
k is the number of optical surfaces. Figure 14.1 shows a double convex lens
forming an on-axis image of an object at infinity, a single bounce odd ghost,
and a two bounce even ghost. When the ghosts images are near the nominal
image plane they can result in significant image artifacts. Ghost images usually
suffer from high amounts of optical aberration. We are mainly concerned here
with two-bounce ghost images. This chapter presents a basic discussion about
ghost image analysis.
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14.1 Surface Reflectivity

At normal incidence and for an air-to-glass interface, the surface reflectance,
R, is,

R ¼ n� 1
nþ 1

� �2

: (14.1)

If the glass index of refraction is n = 1.5, then the reflectance is 0.04 or 4%.
For a Cooke triplet lens that has three singlet lenses and six air-to-glass
interfaces, then the amount of light reflected is roughly 24%. This is a
substantial amount of light. Since there are 15 two-bounce reflections, then
the amount of light traveling toward the image plane from these reflections is
roughly 0.042 � 15 = 0.024 or 2.4%. This amount of light contributes to
veiling glare and ghost images. Veiling glare reduces the image contrast.

To reduce the amount of light reflected by a surface, optical thin film
coatings are deposited on the optical surfaces of a lens. Depending on the
wavelength range, the angle of incidence, the state of light polarization, and the
thin film coating, the surface reflectivity can be decreased. There are single
layer and multi-layer thin film coatings that provide different reflectivity, as
shown in Figure 14.2. In practice, a single layer thin film coating can reduce
the reflectivity to about 1%. Then the amount of light in a double bounce
reflection is 0.01%. This amount can be negligible; however, if a ghost image
of a bright object such as the sun focuses at the nominal image plane, the ghost
can be bright and objectionable. For lens systems used in high power applica-
tions, a detailed ghost image analysis must be done to find ghost images that
focus in the lenses.

Figure 14.1 A double convex lens forming an image of an object at infinity and
two ghost images that are not close to the nominal image plane.
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14.2 First-Order Analysis

Due to the large number of ghost images a first-order analysis is done first.
This analysis traces first-order marginal and chief rays, forward and back-
wards, to determine the ghost image location, its F/#, and the ray height at the
nominal image plane for both object and aperture stop ghosts. If a ghost image
is deemed to be close to the nominal image plane, then further analysis is done
by real ray tracing. Table 14.1 presents a first-order analysis for the Cooke
triplet lens of Chapter 12.

On the first column the reflection surfaces are listed, including the image
plane as a reflection surface. The closest ghost pupil to the nominal image
plane is due to reflection on surfaces seven then five and at a distance of �27.9
mm. The closest ghost image is also due to surfaces seven then five and is at a
distance of �23.4 mm. Note the relatively low F/# for most of the light beams.

14.3 Real Ray Tracing Analysis

Real ray tracing analysis can be done with sequential and non-sequential ray
tracing. Here we used sequential ray tracing, and this required preparing a lens
file so that the forward ray tracing proceeds until the first Fresnel reflecting
surface is reached, then reverse ray tracing proceeds until the second Fresnel
reflecting surface is reached, and then forward ray tracing proceeds until the
image plane is reached.

Figure 14.3 shows sequential real ray tracing of ghost images from reflec-
tion on the image plane, and from surface five of a Cooke triplet lens. The top
layout is for the on-axis light beam, and the bottom layout is for an off-axis
light beam at 2 degrees.

Figure 14.2 Reflectivity at normal incidence of BK7 glass for different anti-
reflection coatings: Uncoated, V-coating, W-coating, and single layer AR-coating.
The wavelength ranges from 0.4 µm to 1.0 μm.
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Since the light from the ghost is substantially out of focus from the nominal
image plane, it will not create an image artifact. However, the light distributed
over a relatively large area at the image plane will contribute to veiling glare. If
a ghost image is in focus with the nominal image, it might be possible to

Table 14.1 First-order ghost analysis for a Cooke triplet lens

Reflection surfaces Distance to ghost pupil, mm Distance to ghost, mm F/#

2-1 �53.6 �54.7 0.98
3-2 �73.8 �58.9 1.42
3-1 �276.9 �65.63 1.32
4-3 �54.5 �61.1 0.75
4-2 �75.8 �87.5 1.23
4-1 160.1 �34.7 1.43
5-4 49.9 �34.9 1.4
5-3 �60.6 �64.8 0.98
5-2 �86.1 �101.4 2.26
5-1 �32.6 �43.6 1.25
6-5 �28.3 �40.4 0.66
6-4 �40.1 �51.6 0.97
6-3 �70.5 �53.7 0.91
6-2 �180.2 �74.9 0.95
6-1 �49.8 1556.9 103.8
7-6 �52.5 �51.4 0.97
7-5 �27.9 �23.4 2.4
7-4 �34.9 �38.4 1.28
7-3 �70.1 �67.6 1.43
7-2 �166.7 �122.4 4.7
7-1 �49.5 �47.2 1.45

Figure 14.3 Ghost images for an on-axis beam and an off-axis beam at 2� caused
by reflection on the image plane and on surface five of a Cooke triplet lens. Note
the strong amount of aberration in the ghost images. The primary beam to the
image plane is also shown.
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change the curvatures of the optical surfaces responsible for the ghost to
defocus the ghost. Otherwise a different lens configuration, or lens shape
change, would need to be tried.

14.4 Thin Lens Ghost Images

Let us consider a thin lens in air and the surfaces contributing a two-bounce
ghost image by Fresnel reflections. For an object at infinity, the slope of the
marginal ray after passing through the lens including the two surface reflec-
tions is,

u0 ¼ �ϕy 3þ 2
n� 1

� �
� �7ϕy: (14.2)

The marginal ray slop, u0, is independent of lens shape, and is seven times
larger, for n = 1.5, than for the nominal lens, which is u0 ¼ �ϕy. Thus, the
ghost of a thin lens takes place near the lens, and has a low F/# in comparison
to the nominal lens F/#. Figure 14.4 shows ghost images for three shapes of a
positive lens.

14.5 Total Internal Reflection Ghost

We have considered two-bounce ghost images with Fresnel surface reflections.
It is also possible to have ghost images that take place with a single Fresnel
reflection and a total internal reflection (TIR), as shown in Figure 14.5.

Images that result from TIR and Fresnel reflections can be bright because
there is only light loss from the single Fresnel reflection. Such ghost images
result from bright objects, often outside the field of view of the lens system,
and can be avoided by including lens hoods.

Figure 14.4 For a thin lens the ghost image position due to a two-bounce
reflection is nearly independent of lens shape. The focal length of the ghost layout
is about seven times smaller than that of the nominal lens.

168 Ghost Image Analysis

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.015
https://www.cambridge.org/core


14.6 Narcissus Retro-Reflections

As shown in Figure 14.6, light that is reflected from the image plane where
there is a light sensor can be reflected back to the image plane to create a ghost
image that is in focus with the nominal image. This ghost image effect is
known as a narcissus retro-reflection. A metric for narcissus retro-reflections is
the first-order product, niy. Whenever there is a surface at an image, y = 0, or
the marginal ray is concentric with a surface, i = 0, a narcissus ghost can take
place. This effect increases as the lens system becomes telecentric in image
space. For infrared systems, narcissus ghosts are a significant problem.

14.7 Parallel and Concentric Surfaces

A source of ghost images are contiguous surfaces that are concentric, or flat, as
in an optical window or beam splitter. Light reflected from the rear surface is

Figure 14.5 Ghost formed with light from an off-axis object entering a lens and
being totally internally reflected by the lens second surface and Fresnel reflected
by the lens first surface.

Figure 14.6 Telecentric lens suffering from narcissus, due to the front lens surface
being concentric with the on-axis light beam. The off-axis beam at 5� is focused in
the image plane, then cat’s-eye reflected back to the lens where the lens front
surface retro-reflects it toward the image plane, creating a ghost image.

Figure 14.7 Left, ghost images from a parallel plate; right, ghost images from
concentric surfaces.
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reflected by the front surface to follow the path of the nominal light beam and
create a ghost image that is nearly in focus with the nominal image. Some
cases are illustrated in Figure 14.7.

Further Reading

Abd El-Maksoud, Rania H., Sasián, José. “Modeling and analyzing ghost images for
incoherent optical systems,” Applied Optics, 50 (2011), 2305–15.
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15

Designing with Off-the-Shelf Lenses

Fabrication of a lens system may take several weeks or months. This can be
objectionable in a project. Sometimes it is possible to design a lens system out
of off-the-shelf single lens elements. For sharp imaging, this might be possible
if the lens system is slower than about F/6 and the field of view is less than
about �12�.

There are several companies that offer singlet lenses of different focal
lengths, shapes, and diameters. However, lens diameters of more than
75 mm progressively become harder to find. Lenses with diameters of
25 mm or 50 mm are common. Most of the lenses are positive in optical
power, but a few are negative. In addition, the glass selection of these lenses is
limited; for example to BK7 and SF11 glasses.

For designing a lens system with off-the-shelf singlet lenses, one must be
familiar with the lenses available in several lens catalogs. If all the lenses have
the same diameter, it might be possible to assemble them in a drop-in lens
barrel. It is also possible to integrate, in an off-the-shelf design, lenses that are
already well corrected. This chapter provides some examples of lens design
with off-the-shelf lenses.

15.1 Cooke Triplet Lens

A choice for designing a lens system with off-the-shelf lens elements can be a
Cooke triplet lens. The starting point is then a Cooke triplet lens that meets the
lens specifications. Then each of the lenses in the Cooke triplet is divided into
two plano lenses, either plano-concave and/or plano-convex. If the radii of
curvature of a lens element in the Cooke triplet lens system are similar, then
the lens might be adjusted to have both radii the same, and have a double equi-
convex or double equi-concave lens, so that there is no need to split the lens.
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The next step is to substitute with an off-the-shelf lens, the lens element that
has the strongest optical power. The lens system is re-optimized to restore
image quality. The variables used are the curvatures and air spaces of the
remaining unfitted lenses. Then the next lens with the strongest optical power
is substituted, and the lens system is re-optimized again. This process is
repeated until all the plano lenses have been replaced with off-the-shelf lens
elements. Airspaces and lens scaling can help to adjust or re-optimize the lens.

Figure 15.1 shows a lens system designed with off-the-shelf lens elements. The
first three lenses are plano convex/concave, and the fourth lens is equi-convex.
The starting designwas a Cooke triplet with glassesN-BK7,N-SF11, andN-BK7.
However, to obtain a sharp image and to accommodate for off-the-shelf lenses, the
first lens was split into two lens elements. The prescription is given in Table 15.1
using lenses from Edmund Optics. The optimization was done in the visible, F, d,
and C wavelengths, and the RMS wavefront is 0.07λ over the field of view.

15.2 UV Lens

Lenses for UV applications are generally expensive. Usually fused silica SiO2

and calcium fluoride CaF2 are the materials used because they have high light

Figure 15.1 Off-the-shelf lens system designed from a Cooke triplet lens. f 0 =
71.47 mm, FOV = �12�, F/7

Table 15.1 Lens prescription for off-the-shelf lens, f0 = 71.47 mm, FOV =
�12�, F/7 (mm)

Surface Radius Thickness Glass Catalog #

1 18.11 7.01 N-BK7 EO 45146
2 Plano 1
3 Plano 2.5 C79–80 EO 48322
4 34.38 6.2611
Stop Plano 3.5 N-SF11 EO 45020
6 23.54 14.142
7 40.42 5.3 N-BK7 EO 45296
8 �40.42 46.86
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transmission at the UV wavelengths. Calcium fluoride is a delicate material
and is difficult to polish well. To reduce cost, the design approach in the design
of Figure 15.2 was to use calcium fluoride, off-the-shelf lenses, for the positive
elements, and use fused silica, custom made lenses for the negative elements.
The lens uses three equi-convex lenses of the same focal length. The construc-
tional data is given in Table 15.2. The field of view (FOV) is �7�, the speed is
F/8, and the focal length is f 0 = 105 mm. The design wavelengths are 300 nm,
400 nm, and 500 nm. The UV lens performance is near diffraction limited.

15.3 Telecentric Lenses

Image space, telecentric lenses with an external stop are useful in optical
engineering. They can be combined into optical relays, and they allow for
the placement of cube beam splitters and folding mirrors.

Figure 15.3 shows two telecentric lens systems based on an achromatic
doublet lens that is off-the-shelf from Edmund Optics, as part EO-45180, f 0 =
250 mm. The doublet specifications are given in Table 15.3. The lens system at
the bottom adds a field lens, EO-08074, f 0 = �250 mm, to improve perform-
ance over the field of view.

Figure 15.2 UV lens using CaF2 and SiO2 materials. f 0 = 105 mm, FOV = �7�,
F/8.

Table 15.2 Lens prescription for UV lens, f 0 = 105 mm, FOV = �7�, F/8 (mm)

Surface Radius Thickness Glass Catalog #

1 �36.0533 7.0 Silica Custom
2 33.2023 1.5
3 51.46 5.4 CaF2 EO 47311
4 �51.46 0.5
5 51.46 5.4 CaF2 EO 47311
6 �51.46 1
Stop 14.3058
7 51.46 5.3 CaF2 EO 47311
8 �51.46 1.7328
9 �91.3901 7.0 Silica Custom
10 25.2843 79.2136
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The doublet lens is used three times in each telecentric lens. The focal length of
the lens system in Figure 15.3 (top) is f 0 = 100 mm, FOV = �7�, F/8. The RMS
wavefront error is 0.25λ over the field of view. The focal length of the lens system
in Figure 15.3 (bottom) is f 0 = 91.2 mm, FOV =�12�, F/8. The RMS wavefront
error is 0.2λ over the field of view. The use of a field flattener lens improves the
image quality at the expense of substantially reducing the working distance.

15.4 Relay Systems

Optical relays are often needed in optical engineering. Using twice, front to
front and back to back, the telecentric lens system of Figure 15.3 (bottom), two
optical relays were designed. Figure 15.4 (top) shows an imaging relay, and
Figure 15.4 (bottom) shows a pupil relay system.

Figure 15.3 (Top) Telecentric lens systems using an off-the-shelf achromatic
doublet, EO-45180. (Bottom) The lens system adds a field flattener lens, EO-
08074, f 0 = �250 mm.

Table 15.3 Lens prescription for Edmund Optics doublet lens, f 0 = 250 mm

Surface Radius Thickness Glass Catalog #

1 162.59 9.75 N-BAK4 45180
2 �123.82 3.5 N-SF10
3 �402.58

Figure 15.4 Top, image relay lens system. Bottom, pupil relay lens system. Both
relays are based on the Edmund Optics achromatic doublet part EO-45180 and a
plano concave lens part EO-08074.
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15.5 Off-the-Shelf Lens Suppliers

Some suppliers of off-the-shelf lenses are:

1. Edmund Optics, https://www.edmundoptics.com/
2. Ross Optical, http://catalog.rossoptical.com/
3. ThorLabs, https://www.thorlabs.com/
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16

Mirror Systems

An important class of optical systems are those that use mirrors. For a mirror,
the ray angle of incidence equals the ray angle of reflection, and there is no
light dispersion. Using mirrors for imaging has the advantages of allowing for
large element diameters, no intrinsic chromatic aberrations, lesser surface
curvature for a given optical power, and potential compactness as the beam
of light can be folded. The disadvantages are a central obscuration, more
sensitivity to surface errors, the need to include baffles to control stray light,
and sometimes fewer degrees of freedom to control aberration. Mirror systems,
however, use aspheric surfaces to help control aberration. Lenses can be used
in conjunction with mirrors to enhance performance. Optical systems that use
both mirrors and lenses are known as catadioptric. This chapter discusses
some basic mirror systems. The discussion uses aberration coefficients to
determine primary aberrations and to find solutions that can later be optimized
with real ray tracing.

16.1 Single Mirrors

The design of mirror systems requires finding a mirror layout that meets first-
order requirements and that corrects imaging aberrations. To develop the skill
of mirror design one first needs to understand simple mirror systems. The use
of structural aberration coefficients simplifies aberration assessment and per-
mits trade-off studies; for a single mirror these coefficients are given in
Table 16.1.

For an object at infinity, Y ¼ 1, and for a parabolic mirror, K ¼ �1, of
vertex radius, r, with the stop aperture at the mirror, there is no spherical
aberration, but there is coma, astigmatism, distortion, and field curvature
aberration. A parabolic mirror, as illustrated in Figure 16.1, is used in
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Newtonian telescopes, where the field of view is mainly limited by coma
aberration given by,

W131 ¼ � y3

r2
�u: (16.1)

In considering the location of the stop, a conic mirror is free from astigma-
tism aberration if,

σIII ¼ 1� �SσYð Þ2 þ �S2σ�K ¼ 0, (16.2)

which requires to have, 1 ¼ �Sσ Y þ εð Þ. Since the structural stop shifting
parameter is,

�Sσ ¼ yP�yPϕ
2Ж

¼ ϕ��s
Y � 1ð Þ�ϕ��s� 2n

¼ ϕ��s0
Y þ 1ð Þ�ϕ��s0 � 2n0

, (16.3)

then the entrance pupil location, �s, for a single mirror of radius, r, with the
object at infinity, is given by,

�s ¼ r

1þ εð Þ : (16.4)

Table 16.1 Structural aberration coefficients of a mirror.

K ¼ �ε2 is the conic constant and ε is the eccentricity

Stop at surface With stop shift

σI ¼ Y2 þ K σI ¼ Y2 þ K
σII ¼ �Y σII ¼ �Y 1� �SσYð Þ þ �Sσ �K
σIII ¼ 1 σIII ¼ 1� �SσYð Þ2 þ �S2σ �K
σIV ¼ �1 σIV ¼ �1
σV ¼ 0 σV ¼ �Sσ � 1� �SσYð Þ� 2� �SσYð Þ þ �S3σ �K

Figure 16.1 Left, a parabolic mirror focusing light from a point object at infinity.
The incident beam overlaps with the reflected beam. Right, spot diagrams at the
ideal image plane showing coma aberration over a 2� circular field of view.
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In this case, the entrance pupil coincides with the near focal point of the conic
mirror. The structural aberration coefficient for coma aberration is given by,

σII ¼ �ε, (16.5)

and the structural coefficient for spherical aberration is,

σI ¼ 1� ε2: (16.6)

Thus, a parabolic mirror, ε ¼ 1, with the stop aperture at its front focal point,
does not contribute spherical aberration or astigmatism aberration.

For a spherical mirror, K ¼ 0, it is possible to avoid coma and astigmatism
aberration if the stop is placed at the center of curvature of the mirror,
1� �SσY ¼ 0, as shown in Figure 16.2. In this case, the image is limited by
spherical aberration and field curvature. A single spherical mirror with the stop
at the center of curvature is a highly symmetrical optical system. An optical
system where the centers of curvature of all the surfaces are coincident in a
point, and the stop aperture is at this point, is called concentric. Such a system
has a reduced number of aberrations.

One way to correct for spherical aberration is to include an aspheric plate at
the center of curvature of the spherical mirror, as shown in Figure. 16.3. This
system is known as the Schmidt camera, which is capable of imaging relatively
large fields of view at a fast optical speed. However, the Schmidt camera
suffers from field curvature aberration and from obscuration after an image
sensor is placed at the focal surface.

Figure 16.2 A spherical mirror with the stop aperture at its center of curvature.
The image surface is spherical.

Figure 16.3 Schmidt camera layout. The front refractive element is an aspheric
plate that corrects for spherical aberration and that includes curvature to minimize
chromatic aberration. The mirror is spherical in shape. To make obvious the
aspheric plate curve, an index of refraction of 1.002 was used.
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Since fourth-order spherical aberration of a spherical mirror is,

W040 ¼ � 1
4
y4

r3
, (16.7)

and the spherical aberration of an aspheric plate in air is, W040 ¼ n� 1ð ÞA4y4,
then the fourth-order aspheric coefficient of the Schmidt correcting plate is
given by,

A4 ¼ � 1
4 n� 1ð Þ

1
r3
: (16.8)

A radius of curvature is also specified as part of the aspheric surface to
minimize chromatic aberration from the plate, and to reduce the slope of the
surface near its edge.

16.2 Two-Mirror Systems

Two-mirror combinations allow us to have easier access to the image and
provide more degrees of freedom to satisfy first-order requirements and to
correct aberrations. Two classical configurations are the Cassegrain and the
Gregorian telescopes shown in Figure 16.4.

Table 16.2 provides the structural aberration coefficients of a two-mirror
system with the stop at the primary mirror. The parameter, L, is the ratio of the
mirror separation to the back focal length (distance from the secondary vertex to
the image plane). Structural aberration coefficients allow us to perform paramet-
ric studies, and provide clues into what to change to control aberration. However,
once a solution is known to exist, it is convenient tofind it using the optimizer in a
lens design program by targeting fourth-order aberration coefficients to zero.

As shown in Table 16.3, depending on the mirror conic constant, there are
several solutions for a Cassegrain type configuration free from spherical
aberration. In the Cassegrain configuration, both mirrors are independently
corrected for spherical aberration; the primary mirror is parabolic, and the

Figure 16.4 Left, The Cassegrain configuration has a convex secondary mirror.
Right, The Gregorian configuration has a concave secondary mirror and provides
an erect image.
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secondary mirror is hyperbolic. For ease of manufacturing, the secondary
mirror can be made spherical, which requires an elliptical primary mirror; this
solution is known as Dall-Kirkham. The Ritchey-Chretien system uses hyper-
bolic mirrors, and corrects for spherical aberration and coma aberration.
Indeed, there is a family of solutions depending on the mirrors conic constants,
and one member is aplanatic. The Pressman-Carmichel system uses a spherical
primary mirror and has a large amount of coma aberration.

Table 16.2 Structural coefficients of a two-mirror system. Stop at primary
mirror. Object at infinity; m is the transverse magnification of the
secondary mirror, and L is the ratio of the mirror separation to the back
focal distance

σI ¼ m3 1þ K1ð Þ þ 1� mð Þ3
1þ mL

1þ m

1� m

� �2

þ K2

 !

σII ¼ �m2 þ 1� mð Þ2 � 1þ m

1� m

� �
1� 1

2
1� mð ÞL
1þ mL

1þ m

1� m

� �� �
þ 1
2

1� mð ÞL
1þ mL

K2

� �

σIII ¼ �1þ 1� mð Þ 1þ mLð Þ 1� 1
2

1� mð ÞL
1þ mL

1þ m

1� m

� �� �2

þ 1
2

1� mð ÞL
1þ mL

� �2

K2

 !

σIV ¼ �m� 1� mð Þ 1þ mLð Þ
σV ¼ 1

1þmLð Þ2
1
2

1�mð ÞL
1þmL

� �
1�1

2
1�mð ÞL
1þmL

1þm
1�m

� �
2�1

2
1�mð ÞL
1þmL

1þm

1�m
� �

þ 1
2

1�mð ÞL
1þmL

� �3
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 !

Table 16.3 Conic constants of two-mirror configurations corrected for
spherical aberration

Configuration Primary mirror Secondary mirror

Cassegrain K1 ¼ �1
K2 ¼ � 1þ m

1� m

� �2

Dall-Kirkham
K1 ¼ �1� 1� mð Þ 1þ mð Þ2

m3 1þ mLð Þ
K2 ¼ 0

Pressman-
Carmichel

K1 ¼ 0
K2 ¼ � 1þ m

1� m

� �2

� m3 1þ mLð Þ
1� mð Þ3

Ritchey-
Chretien
(aplanatic)

K1 ¼ �1� 2

Lm3 K2 ¼ � 1þ m

1� m

� �2

� 2 1þ mLð Þ
L 1� mð Þ3

180 Mirror Systems

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.017
https://www.cambridge.org/core


For a Cassegrain or Gregorian configuration, the structural coefficient for
coma becomes, σII ¼ �1. Since this coincides with the structural coefficient of
a single mirror, such as a paraboloid, then the coma of a Cassegrain or Gregorian
system is the same as the coma of a paraboloid mirror of the same focal length.

16.3 Spherical Mirror Solutions

If both mirrors are spherical and the magnification of the secondary is

m ¼ �1� ffiffi
5

p
2 , then spherical aberration, coma, and astigmatism are corrected.

The first solution, m ¼ �1þ ffiffi
5

p
2 , has the primary mirror concave, the secondary

mirror convex, and a virtual image. The second solution, m ¼ �1� ffiffi
5

p
2 , has a

convex primary mirror, a concave secondary mirror, and a real image, as
shown in Figure 16.5. In this solution, both mirrors are concentric. Some
microscope objectives for use in the UV region of the spectrum have been
designed and built using this two-mirror concentric solution.

16.4 Schwarzschild Flat-Field, Anastigmatic Solution

When both mirrors have the same but opposite vertex radius of curvature, there
is a solution free form spherical aberration, coma, astigmatism, and field
curvature, as shown in Figure 16.6. The primary mirror is convex, and the

Figure 16.5 Concentric spheres, free from spherical aberration, coma, and
astigmatism.

Figure 16.6 Schwarzschild flat-field anastigmatic two-mirror solution.
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secondary mirror is concave. However, this configuration is not very practical
because of the large mirror perforations, beam obscuration, and stray light
reaching the image plane directly.

16.5 Mersenne Telescopes

For two mirrors that are arranged to be afocal, as shown if Figure 16.7, the
Seidel sums are given in Table 16.4. If both mirrors are paraboloids, then the
combination is free from spherical aberration, coma, and astigmatism. These
solutions are known as the Mersenne telescopes.

16.6 Paul and Paul–Baker Systems

Design flexibility for correcting aberration to achieve large fields of view at a
fast optical speed can be gained by adding more mirrors to a system.

Figure 16.7 Two Mersenne telescopes using parabolic mirrors. They are free
from spherical aberration, coma, and astigmatism.

Table 16.4 Seidel sums for two-mirror afocal
systems. Stop aperture at primary mirror.
Ж ¼ 1, ϕ1 ¼ 1, y1 ¼ 1, �y1 ¼ 0, y2 ¼ m

SI ¼ 1
4

1þ K1ð Þ � m 1þ K2ð Þð Þ

SII ¼ 1
4

m� 1ð Þ 1þ K2ð Þ

SIII ¼ � 1
4

m� 1ð Þ2
m

1þ K2ð Þ

SIV ¼ �m� 1
m

SV ¼ 1
4
m� 1
m2

8þ 6 m� 1ð Þ þ m� 1ð Þ2 1þ K2ð Þ
� �
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The Mersenne telescope can be made focal by adding a third spherical mirror,
as shown in Figure 16.8 (left). The stop aperture is located at the secondary
mirror, as well as the center of curvature of the tertiary spherical mirror.
The tertiary mirror has the same radius of curvature as the secondary mirror,
but opposite in sign, and contributes spherical aberration and field curvature.
The spherical aberration contributed by the tertiary mirror is,

W040 ¼ � 1
4
y4

r3
, (16.9)

and can be corrected with an aspheric reflecting plate of asphericity,

A4 ¼ 1
8
y4

r3
: (16.10)

If this plate is combined with the parabolic secondary mirror of the Mersenne
telescope, which has the opposite asphericity, the secondary mirror becomes
spherical. Effectively, the Mersenne telescope acts as a corrector for the
spherical tertiary mirror. The result is a system that has a parabolic primary
mirror, spherical secondary and tertiary mirrors, and that is free from spherical
aberration, coma, and astigmatism.

The radius of curvature of the tertiary spherical mirror can be chosen to
correct for Petzval field curvature of the Mersenne telescope, and, by making
the secondary mirror elliptical in shape, the system becomes flat-field and
anastigmatic, as shown in Figure 16.8 (right).

16.7 Offner Unit Magnification Relay

Optical imaging relays are an important class of systems. Three spherical
concentric mirrors, as shown in Figure 16.9, provide telecentricity in object
and image spaces at unit negative magnification, and are free from the five
monochromatic aberrations. In practice, this imaging relay is used as a ring, or
annular, field system in that the usable field portion is off-axis and annular.

Figure 16.8 Left, Paul three-mirror system. Right, Baker-Paul three-mirror
system.
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The primary and tertiary mirrors can be portions of a single large mirror, and
the system is then a two mirror, three reflection one. The stop aperture is placed
at the convex secondary mirror, and odd aberrations are corrected by sym-
metry. Since the radius of curvature of the primary and tertiary mirrors is twice
that of the secondary, but opposite in sign, Petzval field curvature is corrected.
None of the mirrors contributes spherical aberration, because the refraction
invariant, A ¼ ni ¼ n0i0 ¼ 0, is zero for the three mirrors. Finally, in a doubly
telecentric system, the pupil astigmatism equals the image astigmatism,
�W222 ¼ W222, and, since the pupil astigmatism is zero because A ¼ 0 for the
three mirrors, then the image astigmatism is also zero.

16.8 Meinel Two-Stage Telescope

In order to correct for aberrations caused by errors in a large space-deployable
telescope, a four-mirror configuration, known as a Meinel two-stage telescope,
can be designed, as shown in Figure 16.10. The first two-mirror stage is
formed by a Cassegrain type telescope. The second two-mirror stage relays
the image formed by the first stage to the final location. The second stage has

Figure 16.9 Offner unit magnification relay with two concentric spherical mirrors
and three light reflections.

Figure 16.10 Meinel two-stage configuration for a large deployable telescope.
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the quaternary mirror coinciding with the exit pupil of the system. The tertiary
mirror makes an image of the exit pupil of the first stage on the quaternary
mirror. Optically, the quaternarymirror is equivalent to the large primarymirror,
in that field independent aberrations from the primary mirror can be corrected at
the quaternary mirror.

If the primary mirror is spherical, then the quaternary mirror is strongly
aspheric to correct for spherical aberration. Because coma aberration, W131,
contributed by an aspheric surface depends on the ratio, �y=y, at the quaternary
mirror, and on the amount of asphericity,

W131 ¼ 4
�y

y

� �
A4y

4Δ nð Þ, (16.11)

then a slight axial repositioning of the quaternary mirror can be used to
generate positive or negative coma and make the system aplanatic, as shown
in Figure 16.11. Thus, a two-stage mirror configuration can be aplanatic with
only one strongly aspheric mirror. If more mirrors are made aspheric, all five
monochromatic aberrations can be corrected. A prescription for a flat-field and
anastigmatic solution to fourth-order is given in Table 16.5. Note that, after
reflection, the sign of the distance to the next mirror and the sign of the index
of refraction changes.

Figure 16.11 Flat-field, aplanatic/anastigmatic four-mirror configuration for large
telescopes.

Table 16.5 Prescription for a four-mirror telescope with spherical primary
and secondary mirrors. The stop aperture is at the primary mirror and 5.0
meters in diameter. f 0 = 59,310 mm; F/12

Mirror Radius, mm Thickness, mm Index A4

1 �18,000.00 �7,500.00 �1
2 �4,500.00 9,080.00 1
3 �6,932.98 �4,960.00 �1 7.9501 � 10�14

4 44,575.77 6,560.00 1 �1.15 � 10�10
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17

Miniature Lenses

There are a number of technological applications that use miniature lenses in
which the lens diameter is a few millimeters, and typically smaller than 10 mm.
For lens systems that employ such miniature lenses, several advantages result
because of the scale. For a given lens form and, except for distortion, the
aberrations scale down, while the wavelength of light remains the same. Given
that lens volume is small, a wider possibility of lens materials becomes
possible due to cost or material limitations. Lens weight is reduced, as well
as dimensional changes due to temperature. Further, very thick lenses can be
used in some applications. However, lens tolerances for lens thickness and
decenter become tighter. Many microscope objectives, lenses for endoscopes,
and lenses for mobile phones are in the category of miniature lenses. This
chapter provides a discussion about lens design for mobile phones lenses.

17.1 Lens Specifications

Lenses for mobile phones, as illustrated in Figure 17.1, have been developed
over the last two decades. Lens designs have evolved from having one or two
lens elements, to three and four elements, to five-to-eight lens elements. Some
of the lens elements have been made by glass molding, but currently they are
made by plastic injection molding. To aid in the correction of aberration,
highly aspheric surfaces are used. Table 17.1 provides typical lens specifica-
tions for field of view (FOV), focal length, F-number, total track length (TTL)
from the vertex of the first surface of the lens to the image plane, chief ray
angle of incidence at image sensor (CRA), relative illumination (RI), and
number of lens elements.

Like any other photographic lens, the design of a mobile phone lens is
driven by the light sensor; for example, a Charge Coupled Device (CCD) or
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Complementary Metal Oxide Semiconductor (CMOS) image sensor. The
diagonal of the active area of the sensor defines the minimum image circle
diameter; some allowance in this diameter is given to allow for some lens/
sensor decenter. There are many format sizes for an image sensor that are
given in inches, such as 1/300. This format has a diagonal of 6 mm, a width of
4.8 mm, and a height of 3.6 mm. The inch designation of image sensors is an
arcane reference to the vidicon tubes used in early video cameras. It is best to
look up the actual digital image sensor dimensions for a given sensor
specification.

The lens design is also driven by the specified total track length, which is
often required to be less than 6 mm, so that the lens can be integrated in a thin
mobile phone. Although most designs for mobile phone lenses are not tele-
photos, the ratio of the total track lens to the focal length, the telephoto ratio, is
still used. A typical value for this ratio is 1.2.

Figure 17.1 Mobile phone lens forms with two, three, four, and five lens elem-
ents. The plane parallel plate next to the image plane represents an infrared filter.

Table 17.1 Typical mobile phone lens specifications

Year 2006 2012 2018

Focal length 3–6 mm 3–5 mm 3–5 mm
FOV 66� 72� 78�

F/# 2.8 2.2–2.4 2.0–1.4
TTL <5.0 mm <5.0 mm <6.0 mm
Distortion <1–2% <1–2% <1–2%
CRA <24� <30� <33�

RI >50% >50% >32%
# lens elements 3–5 4–6 5–8
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Given the focal length and the image circle diameter, and assuming no
distortion, the field of view can be calculated. Thus, for a focal length of 4.8
mm and an image circle diameter of 6 mm, the field of view is �32�.

Electronic sensors have pixels sensitive to the light incident on them.
Typical pixel sizes for CMOS sensors vary in the range of 0.001 mm to
0.008 mm. A given spatial frequency can be recovered whenever it is sampled
with twice that frequency. This sampling frequency is known as the Nyquist
frequency, NQ. An image sensor can sample an image at a spatial frequency of
1/(pixel size). It follows that the sensor can recover a spatial frequency, NQ =
1/(2 � pixel size). If the pixel size is 1.5 µm, then NQ = 333 cycles/mm (also
line pairs per mm; lp/mm). The maximum frequency that a lens with a circular
aperture can image is NC = 1/(λF/#). Using λ = 0.5 µm and F/2.2 yields NC =
909 cycles/mm. Thus, a diffraction limited lens at F/2.2 would not limit the
sensor spatial frequency sampling. The image quality for a lens can then be
specified in terms of the Nyquist frequency, for different fields and object
distances, as shown in Table 17.2.

The design of a mobile phone lens also requires consideration of the spectral
bandwidth to be used, for example, the visible spectrum from 400 nm to
700 nm. A filter is used in mobile phone lenses to suppress infrared radiation
(IR). This filter is modeled as a parallel plate of BK7 glass as the last element
of the lens system. The filter introduces spherical aberration that must be
compensated by a lens element near the stop aperture. In addition, the spectral
response of the sensor is used to weight the wavelengths used by the lens
optimizer to reflect the sensor’s sensitivity to wavelength.

A CMOS sensor includes an array of micro-lenses, also called lenslets,
placed on top of the light sensitive pixels. As shown in Figure 17.2, the
function of each micro-lens is that of a field lens that forms an image of the
exit pupil of the mobile phone lens onto the surface of each light sensitive
element of a pixel. In this way, light is redirected to the active areas in each
pixel, as not all the area of a pixel is light sensitive. The array of micro-lenses

Table 17.2 Example of MTF specifications in fractions of the Nyquist
frequency and in cycles/mm for an object at infinity

NQ NQ/2 NQ/4

MTF On-axis >40% >60% >80%

MTF Off-axis @ 0.7 field S>30%
T>20%

S>50%
T>40%

S>70%
T>60%

MTF Off-axis @ 1.0 field S>20%
T>10%

S>30%
T>20%

S>40%
T>30%
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requires a specific chief ray angle (CRA) of incidence as a function of the ray
height on the sensor. The specification can be simply to match a given CRA at
the corner of the sensor, or to match within one or two degrees a table of angles
of incidence as a function of the radial position on the sensor.

There must be enough back focal length (BFL) to allow placement of the
image sensor and any clearances required by opto-mechanical considerations.

17.2 Lens Design Considerations

Mobile phone lenses have been evolutionary, in that every generation
increased complexity from the previous one. The first-order layout in practice
is usually taken from an existing lens design form. Given that lens element
axial thickness can be substantial, thick lenses can be used, and more design
forms are possible whenever the lens system has two or three lens elements, or
when the total track length is not a concern. Many combinations of optical
power for the lens elements are possible, for example PNPN, PNNP, NPPN
for a four-lens element system. The patent literature has hundreds of lens

Figure 17.2 Model of array of micro-lenses to improve light coupling efficiency.
The micro-lenses act as field lenses, forming a pupil at the CMOS light sensitive
elements.
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design examples for mobile phone lenses and their forerunners, personal
digital assistants.

Figure 17.3 shows a four-element mobile phone lens divided into two
groups, G1 and G2. The stop aperture is placed in front to reduce the chief
ray angle of incidence at the image sensor, or slightly inside the lens to help
provide some lens symmetry and to reduce odd aberrations. However, pro-
vided the relative illumination specification is met, the stop aperture can be
placed in front, and some vignetting by an aperture inside the lens can be
allowed. This vignetting has the effect of making the stop aperture appear
inside the lens for off-axis field points. For stray light control, several apertures
are usually specified within the mobile phone lens assembly.

Significant optical power of the lens system is in the front lens group, which
must provide the majority of the correction for chromatic aberration, spherical
aberration, and coma. The rear group corrects for Petzval field curvature,
astigmatism, and distortion aberration. This group usually has highly aspheric
surfaces. In particular, the last aspheric surface changes the optical power,
from negative near the optical axis to positive near the edge of the lens. This
positive power helps to decrease the CRA and introduces positive pupil coma,
which helps to increase the relative illumination. Pupil spherical aberration is
also present due to the positive power of the last lens near the edge.

The total track of the lens system has a strong impact on imaging quality.
The smaller the telephoto ratio is, the more difficult it becomes to meet image
quality requirements, in part because the lens is optically stressed and higher
order aberrations become larger.

It is good practice not to specify unnecessary aspheric terms and to keep
them at a minimum number. If many aspheric terms are used, the lens
optimizer may create surface features in one lens that are canceled in another
lens. Under lens decenter, the features can partially add rather than cancel, with
the result that the as-built-lens becomes more sensitive to manufacturing

Figure 17.3 Four-lens element mobile phone lens. The first and second lens
elements form the front group, and the third and fourth lens elements form the
rear group.
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errors. Lens elements near the stop aperture may need only two or three
aspheric terms, as their function is mainly to correct for spherical aberration.

As mentioned before, one problem with the small scale of miniature lenses
is that lens element thickness and decenter errors can have a large impact by
decreasing performance. For example, a thickness error of 0.1 mm can be
tolerable in a 50 mm focal length lens, but not at all in a miniature lens with a
focal length of 5 mm. Therefore, an important part of the lens design is to
desensitize as much as possible a given design. The wavefront and distortion
correction should not have rapid changes at the edge of the aperture or field, or
slightly beyond the image circle, that could substantially decrease the perform-
ance of the as-built lens. Minimizing ray angle of incidence over all the lens
surfaces helps to make the lens system less sensitive to errors.

The first and second lens elements in the front group usually have strong
optical power to correct for chromatic aberration and provide most of the
system’s optical power. Any manufacturing or assembling errors in these lens
elements can introduce significant aberration that would degrade the image
sharpness. Field correcting elements in the rear group have a small beam
footprint and a large chief ray height, and, under manufacturing errors, they
can introduce asymmetrical image distortion.

During the early stages of the design of a mobile phone lens, and to explore
possible lens forms, the surface conic constant and the fourth order aspheric
coefficients can be released as variables for optimization. Once a promising
design form is found, more aspheric terms can be added, provided they
contribute to improve performance. It is important that, for optimization and
evaluation, sufficient pupil and field sampling points be specified. Typically,
the field is sampled with at least ten field points.

The optimization of a mobile phone lens can start with minimizing RMS
spot size, then minimizing RMS wavefront error, and finally adjusting the lens
to meet MTF requirements. If a given design form cannot meet image quality
specifications, then a lens designer may consider changing lens materials or
adding one more lens element. To add a lens element, a parallel plate of zero
thickness is inserted in an air space, or a thick lens is split into two lenses with
no air space between them. Fourth-order aspheric terms are included in the
new surfaces, and the system is re-optimized, not necessarily allowing the radii
of the new surfaces to vary. Then thickness is added to the new surfaces by
small increments until a lens that is physically possible, this is with positive
thicknesses and non-overlapping lenses, is obtained. As lens complexity is
added, more design forms are possible, and lens image quality is expected to
improve. The lens form of Figure 17.3 has been used as a starting point in
many patented lenses to develop designs with more lenses. Parallel plates of
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glass have been added and then optimized to obtain five, six, and seven
element designs.

Lens desensitizing to manufacturing errors is still an important requirement,
so that the as-built lens meets fabrication yield specifications. Figure 17.4
shows exaggerated lens decenter and tilt, which can happen during lens
assembly. Under lens element decenter and tilt, the axial symmetry is broken,
and new aberration forms can appear. For example, in addition to uniform
spherical aberration, uniform coma and uniform astigmatism can take place. In
addition to linear coma, linear astigmatism and field tilt can also take place.
Further, in addition to cubic distortion, asymmetric quadratic distortion can
take place. Here uniform refers to the aberration being independent of the field
of view, linear as dependent linearly with the field, and so forth. Appendix 4
provides a table of aberrations that can happen when the lens symmetry is
reduced from axial to plane symmetry.

An example of a four-lens element design is given in Table 17.3 and
shown in Figure 17.1 (bottom left). In this design, only conic constants and

Figure 17.4 Example of a lens system with exaggerated lens element decenter
and tilt.

Table 17.3 Example of a four-lens element design for a mobile phone lens.
f0 = 5.0 mm, FOV = �32�, TTL/f = 1.4, F/2.8, CRA = 30.6�

Surface Radius Thickness Plastic K A4

STOP
2 3.5432.72 0.87 E48R �3.2457
3 �4.57977 0.1 �11.7213
4 126.2449 0.6 OKP4 0.0
5 3.013807 0.8 �0.9977 �2.533 � 10�3

6 �8.81693 1.61 E48R 0.0 4.161 � 10�3

7 �1.61409 1.0 �2.2699 �0.0126713
8 72.73421 0.7 OKP4 0.0 �0.0100888
9 2.101288 0.7 �6.3020 �6.073 � 10�3

10 Plano 0.3 BK7
11 Plano 0.4
Image
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fourth-order coefficients of asphericity were used. This is to emphasize that the
use of many higher order aspheric coefficients, such as up to sixteenth order,
may not be necessary as they can be redundant.

It is common to have errors in the aspheric coefficients due to truncating
numbers, incorrect algebraic signs, neglecting numbers, or swapping coefficients.
Thus, typically a lens, say from the patent literature, would need to be re-
optimized to correct errors, to reflect actual indices of refraction, to adjust focal
length, field of view, optical speed, MTF performance, and to reflect current
manufacturing requirements such as minimum central and edge thicknesses.

17.3 Lens Manufacturing Considerations

Early lens systems used glass for the first lens element to provide a large
ν-number difference for the correction of chromatic aberration, and for making
the lens system less sensitive to environmental changes such as temperature
and humidity variations. However, with the development of plastic materials
with low ν-numbers, low birefringence, low water absorption, and the intro-
duction of auto-focus, lens systems with all the lens elements made by plastic
injection molding have been realized.

Under large volume production, lenses made by plastic injection are pre-
ferred to lenses made by glass molding, because of cost. Some advantages of
plastic lens molding are the freedom to specify aspheric surfaces, and the
choice to specify a lens flange to help precisely position a lens element with
respect to other lens elements, thereby simplifying the lens system assembly.

For proper plastic flow and cooling, plastic lens manufacturers have some
requirements for the aspect ratio of positive and negative lenses. Some guide-
lines are as follows: for positive lenses the ratio of lens central thickness to
edge thickness should not be more than 3.2, and the edge thickness should not
be less than 0.32 mm; for negative lenses the ratio of the maximum thickness
to the central thickness should not be larger than 2.7, and the central thickness
should not be less than 0.27 mm. These requirements are over the clear
aperture of the lens and do not consider the lens flange; they are intended for
the lens designer. Further, they also depend on the capabilities of the manufac-
turer. The ideal lens for injection molding approaches a lens with parallel
surfaces so that plastic flow, cooling, and shrinkage are uniform. For miniature
lenses, tolerances of 10 µm for thickness, decenter, total indicator runoff, and
lens tilt are low; tolerances between 2 µm and 5 µm are medium and feasible to
achieve in manufacturing, and tolerances between 0.5 µm and 2 µm are
challenging to achieve, and are met for some miniature optics.
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The optical and mechanical properties of some plastics used in miniature lens
systems are shown in Table 17.4. Some advantages of plastics over glass are that
they are moldable at a lower temperature, have lower cost for large volumes, with
lower weight, and aspheric and diffractive surfaces can be specified. Some
disadvantages are the greater sensitivity to temperature changes, increased sensi-
tivity to water absorption, internal light scattering or haze, reduced light transmis-
sion below 450 nm and above 1,000 nm, and a low resistance to abrasion.

Further Reading

Bareau, Jane, Clark, Peter P. “The optics of miniature digital camera modules,”
Proceedings of SPIE 6342, International Optical Design Conference 2006,
63421F (2006), doi: 10.1117/12.692291.

Clark, P. “Lens design and advanced function for mobile cameras,” Chapter 1, in Smart
Mini-Cameras, Galstian, T. V., ed. (Boca Raton, FL: CRC Press, 2014).

Clark, Peter P. “Mobile platform optical design,” Proceedings of SPIE 9293, Inter-
national Optical Design Conference 2014, 92931M (2014), doi: 10.1117/
12.2076395.

Reshidko, D., Sasián, J. “Optical analysis of miniature lenses with curved imaging
surfaces,” Applied Optics, 54(28) (2015), E216–23.

Schaub, M. The Design of Plastic Optical Systems (Bellingham, WA: SPIE Press, Vol.
TT80, 2009).

Sure, Thomas, Danner, Lambert, Euteneuer, Peter, Hoppen, Gerhard, Pausch, Armin,
Vollrath, Wolfgang. “Ultra-high-performance microscope objectives: the state of the
art in design, manufacturing, and testing,” Proceedings of SPIE 6342, International
Optical Design Conference 2006, 63420E (2006), doi: 10.1117/12.692202.

Yan, Yufeng, Sasián, José. “Miniature camera lens design with a freeform surface,”
Proceedings of SPIE 10590, International Optical Design Conference 2017,
1059012 (2017), doi: 10.1117/12.2292653.

Links to optical plastics vendors:
http://www.ogc.co.jp/e/products/fluorene/okp.html
https://www.zeonex.com/Optics.aspx.html#glass-like

Table 17.4 Properties of some plastics used in mobile phone lenses

Code nd ν γ ρ

480R 1.525 55.95 +1.44 � 10–4 1.01
E48R 1.531 56.04 �2.62 � 10–4 1.02
F52R 1.534 57.09 �2.21 � 10–4 1.01
OKP4 1.607 26.90 �3.44 � 10–4 1.20
OKP4HT 1.632 23.33 �2.72 � 10–4 1.24

nd, index of refraction; ν, ν-number; γ, opto-thermal coefficient; ρ, specific gravity.
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18

Zoom Lenses

By moving groups of lenses along the optical axis of a lens system, it is
possible to continuously vary the focal length of the system, which results in a
varifocal system. A zoom lens results whenever the position of the image plane
remains stationary. As the focal length of the lens changes, the field of view
also changes. The focal length is varied by moving axially at least one group of
lenses, called the variator. To maintain the image plane position as stationary,
another group of lenses is required, which is called the compensator. The axial
movement of the variator and the compensator are usually different in nature.
The variator might be moved in a linear manner, and the compensator in a non-
linear manner by using a mechanical cam. As shown in Figure 18.1, zoom
lenses that maintain the image position by moving the variator and the
compensator equally are referred to as having optical compensation. Zoom
lenses that require different movements for the variator and the compensator
are referred to as mechanically compensated. The variator and the compensator
constitute the lens kernel of the zoom lens. Mechanically compensated lenses
have more optical design freedom than optically compensated lenses, and most
modern zoom lenses are of the former class.

The ratio γ of the maximum focal length to the minimum focal length
achieved by a zoom lens is known as the zoom ratio or range. A small zoom
ratio is in the range of 1–3, a medium zoom ratio is between 3 and 12, and a
large zoom ratio is larger than 12. The zoom ratio is an important zoom lens
parameter because the larger it is the more complex the zoom lens becomes for a
given performance. In the context of zoom lenses, a lens group, sometimes also
referred to as a lens unit, consists of consecutive lenses with their respective
distances fixed. Thus, for example, there are fixed groups, moving groups,
focusing groups, variator groups, and compensator groups. In other lens design
contexts a lens group is defined according to the main optical function it
performs. For example, a focusing group and a field correcting group.
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Some earlier zoom lenses consisted of an afocal lens capable of changing its
transverse magnification, followed by a standard imaging lens known as the
prime lens. The aperture stop was located at the prime lens, or after the last
moving group, and, as the magnification of the afocal lens was changed, the
F/# of the combination remained the same. This was a desirable feature for
film exposure. With the advent of automatic exposure, where the stop diameter
was varied to maintain the exposure while zooming, the position of the stop
was no longer required to be after the last moving group, and it could be part of
the variator or compensator lens groups. However, the stop position in a zoom
lens plays a role in controlling the overall lens diameter and light vignetting.

The aberration function WðH!; ρ!; γÞof a zoom lens can be written as

W H
!
; ρ!; γ

� �
¼ WP H

!
; ρ!

� �
þWK H

!
; ρ!

� �
þWK H

!
; ρ!; γ

� �
, (18.1)

whereWPðH
!
; ρ!Þ is the aberration function of the prime lens, or of non-moving

lens groups,WKðH
!
; ρ
!Þ is the aberration function of the kernel that is independ-

ent of the zoom ratio γ, andWKðH
!
; ρ!; γÞ is the aberration function of the kernel

that depends on the zoom ratio. In part, the design of the kernel involves

finding a variator and a compensator that renders WKðH
!
; ρ!; γÞ tolerable, or

negligible, over the zooming range. In simple lenses, WKðH
!
; ρ!; γÞ is made

negligible at an intermediate zoom position and tolerable at the zoom range

extremes. In other zoom lenses,WKðH
!
; ρ!; γÞ is made negligible at two or more

positions of the zooming range, and tolerable at the remaining positions. The

kernel aberrations, WKðH
!
; ρ!Þ, that are independent of the zoom ratio, are

balanced or corrected by the aberrations, WPðH
!
; ρ!Þ, of the non-moving lens

groups. By breaking the aberration function of a zoom lens into aberrations
that depend, or do not depend, on the zoom ratio γ, the design task is
conceptually and practically simplified. The lens design of zoom systems is
quite interesting, and notably zoom kernels can be quite simple.

Figure 18.1 Left, Optically compensated zoom lens. The compensator and var-
iator (first and third lenses) are mechanically coupled and move in a single
movement. Right, Mechanically compensated zoom lens. The compensator and
variator (first and second lenses) move differently.
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18.1 Two-Group Zoom

The optical power, ϕ, of the combination of two optical systems, A and B, in air
is given by,

ϕ ¼ ϕA þ ϕB � tϕAϕB: (18.2)

By changing the spacing, t, between the systems, the optical power of the
combination can be changed. There are four possibilities for the optical power
of the individual lens systems, or groups, and these are positive-positive (PP),
negative-negative (NN), positive-negative (PN), and negative-positive (NP).
Figure 18.2 shows how the groups move as a function of the focal length for
the reverse telephoto (NP) and for the telephoto (PN) cases. Across the
zooming range, the variator moves nearly linearly, while the compensator
moves non-linearly.

The telephoto PN zoom lens has the advantage of compactness, but the
disadvantages of limited field of view and zoom ratio. The reverse telephoto
PN zoom lens has the advantages of providing a large field of view, favorable
aberration compensation, a large zoom ratio, and a large back focal length.
However, the reverse telephoto length is larger than the length of the
telephoto lens.

Two-group zoom lenses have restricted design freedom because, for an
object at infinity, they must operate with collimated incident light, and they
must also provide focused light. Thus, the choice of optical power of the
variator and compensator is restricted. In contrast, zoom lenses with lens
groups before and after the zoom kernel allow the variator and compensator
groups to receive and deliver either convergent or divergent light. It is,

Figure 18.2 Left, Two-group reverse telephoto zoom. Right, Two-group tele-
photo zoom. The focal length of the groups is �100.
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however, quite notable that two-group zoom lenses can meet first-order
requirements and provide sharp images.

The design of a zoom lens may start by a first-order layout to determine
group optical power and to allow for enough clearance so that the variator and
the compensator do not overlap with themselves or overlap with other lens
groups. The first-order layout should satisfy first-order requirements, including
the zooming range.

18.2 Example

Figure 18.3 (left) shows a two-group zoom lens corrected for fourth-order
spherical aberration, astigmatism, and field curvature at the extremes of the
zooming range The zoom focal length ranges from 36 mm to 72 mm, the zoom
ratio is γ = 2, the F/# is 4, the image height is 14 mm, and the focal lengths of
the groups are �66 mm and 42 mm. The design is monochromatic, using glass
LAK9 for both lenses, which are aspheric. Fourth-order coma and distortion
remain uncorrected, in part because this simple zoom lens lacks symmetry
about the stop aperture.

Figure 18.3 (right) shows a two-group zoom where two more lenses, one
aspheric, have been added to the variator to help correct for coma and mitigate
distortion aberration. The compensator is the negative single lens in front. This
zoom lens is now monochromatically corrected for the primary aberrations at
zoom range extremes, except distortion, which is about �5% in the wide angle
position. The focal lengths of the groups are �67 mm and 37 mm.

Figure 18.4 shows the zoom lens optimized with real rays and achromatized
in part by converting the central positive lens into a doublet. The prescription is
given in Table 18.1. Only one aspheric surface was used in the zoom lens, and

Figure 18.3 Left, Two-group zoom lens partially corrected for fourth-order aber-
rations at the zooming range extremes. Right, two-group, four-lens zoom lens
corrected for fourth-order aberrations at the zoom range extremes.
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is located in the doublet. The field of view was increased to �30� (21 mm
image height) at the wide angle position. Figure 18.5 provides the RMS spot
size across the field of view for three zoom positions; other zoom positions
have comparable performance.

Figure 18.4 Zoom lens real ray optimized and achromatized for the F and C
wavelengths. f 0 = 36 mm to 72 mm, FOV = 15� to 30�, F/4.

Table 18.1 Zoom lens prescription, f 0 = 36–72, FOV = �30� to �15�, F/4,
Conic constant surface 3, K = �1.7892

Surface Radius (mm) Thickness (mm) Glass

1 Plano 2.0 LAK34
2 48.7647 5.4–39.8
3 47.0311 15.0 LAK33
4 �45.0391 4.0 LASF35
5 �88.8387 26.7700
Stop 10.6901
7 44.7092 5.0 SK4
8 �37.4045 7.0
9 �23.3034 3.0 F14
10 73.9289 12.7–32.6
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By adding lens complexity, different zoom forms become possible; some
with substantial improvement in performance. Figure 18.6 shows a two-group
(NP) zoom lens from the patent literature. The back focal distance allows for a
folding mirror for a single lens reflex (SLR) camera.

18.3 Three-Group Zoom

Zoom lenses with three groups have more design flexibility than two-group
zoom lenses, and the zooming range can be larger. With three groups, several
arrangements are possible. Two of them are the PNP and the NPN shown in
Figure 18.7 and arranged as afocal systems with varying magnification; these

Figure 18.5 RMS spot size for three zoom positions: f 0 = 36 mm, f 0 = 54 mm,
and f 0 = 72 mm.

Figure 18.6 Two-group (NP) zoom lens by S. Sato, US Patent 4,792,215,
Example 1. f 0 = 36–68.5 mm, FOV = �32.2� to �17.3�, F/4.1.
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are known as the Donders type telescopes. A prime lens can be added at the
rear end of the afocal zoom to form an image. The prime lens is also known as
a relay lens, as it changes the location of the image.

Using individual lenses for each group, the three-group zoom lens system
has enough degrees of freedom to correct for fourth-order spherical aberration,
coma, and astigmatism at the extremes of the zoom range. In addition, one lens
can be stationary and the zoom can be afocal, provide negative power, or
provide positive power, as shown in Figure 18.8 (left). To achieve this
correction, the degrees of freedom are the individual lenses optical power,
the lens asphericity, and the lens air spaces. The use of an aspheric surface in
each lens is temporary. Once the aberrations are corrected at two zoom
positions, each of the lenses is split into a doublet or a triplet and, by bending
the lenses, the aspheric surface is replaced with a spherical surface. Each group
is also achromatized individually, as shown in Figure 18.8 (right).

Since the starting zoom lens is corrected for primary aberrations, an
improved solution with real ray optimization often becomes feasible. Petzval
field curvature is initially not corrected, but it can be corrected or balanced
during real ray optimization by adding complexity to the stationary third

Figure 18.7 Donders type zoom telescopes; left, PNP; right, NPN.

Figure 18.8 Left, Three-group zoom lens using individual aspheric lenses for
each group. Spherical aberration, coma, and astigmatism have been corrected at
the extremes of the zoom range, γ = 3. Right, Achromatic doublet and triplet
lenses with spherical surfaces form the groups of a three-group zoom lens, γ = 3.
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group. Distortion aberration is corrected for an intermediate zoom position,
also adding complexity in the third group, or by making the overall zoom lens
more symmetrical about the aperture stop. However, the location of the stop
affects lens diameter and light vignetting. Depending on the overall zoom lens,
configuration distortion aberration might be tolerable at the zoom range
extremes.

There is no need to make fourth-order spherical aberration, coma, and
astigmatism equal to zero in the initial zoom kernel layout. Instead, these
aberrations can be made to have the same value at either extreme of the zoom
range, and later corrected by adding complexity to a stationary lens group.
A zoom lens kernel can provide uniform aberration across the zooming range.
This uniform aberration can often be corrected in a stationary lens group. As
each lens group is further split, more degrees of freedom are gained to control
aberration at the expense of lens complexity. Then, as each group becomes
thicker, lens overlapping must be avoided.

The position of the compensator across the zooming range is known as the
cam curve. Some attention must be given to how the moving groups change
position; steep changes in the cam curves can be problematic for the zooming
mechanism and for the user.

18.4 Four-Group Zoom

Further design flexibility is gained by adding a fourth lens group. There are
many combinations for the sign of optical power and moving groups that can
result from having four groups. For example, PNNP, PNPP, NPNP, NPPN. An
additional group can be used to improve image quality, to extend the zooming
range, or to meet additional requirements such as focusing. The zoom kernel
typically works for one object position, and the image must be maintained in
focus whenever the object distance changes. To compensate for this change, a
first lens group, or focusing group, can help to maintain the conjugate distance
at which the kernel groups work. However, focusing lens groups often change
the field of view of a lens, resulting in an unnatural movement of objects in the
field of view. This effect is known as breathing, and it may be objectionable in
some applications.

An example of a four-group zoom lens is shown in Figure 18.9, which is
from US Patent application 20090086321 by Keiko Mizuguchi. It is a PNPP
zoom lens where the first and fourth groups do not move along the optical axis.
The second and third groups form the zoom kernel. Seven spherical lenses
make up the variator and compensator. The compensator also provides the
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focusing function. The rear fourth group includes at least one lens that moves
perpendicularly to the optical axis to compensate for vibration. The fourth
group has enough complexity to control the aberrations that are independent of
zooming. In addition, vignetting is used to control the overall lens diameter
and aberration.

18.5 Zoom Lens Kernel

As discussed above, the use of aberration coefficients is helpful to analyze and
design a zoom lens kernel. Another way to analyze, or optimize, a zoom lens
kernel is by using reverse ray tracing. A given zoom lens is reversed and added
to the rear end of the original zoom lens, as shown in Figure 18.10. A flat
mirror is added at the original lens focal plane. The reversed lens has only one
zoom position, say an intermediate position in the zooming range. Light rays

Figure 18.9 Four-group zoom lens from US Patent application 20090086321 by
Keiko Mizuguchi. The first, second, and third groups form a Donders type
telescope.

Figure 18.10 Forward and reverse ray tracing method to cancel aberrations from
the intermediate zoom position. The aberrations from the kernel that depend on
zoom position become obvious at the extreme positions of the zoom.
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will travel in the original zoom lens, and retrace their path in the reversed lens,
to yield exactly zero aberration for the intermediate zoom position. At other
zoom positions, the aberration is the difference of aberration of the zoom
position in question and the intermediate zoom position. This difference in
aberration must then be corrected. Light is collimated after it goes forward and
backward through the zoom lens. The aberration analysis can be done in afocal
mode. For this method to work it is required that the exit pupil remains
stationary across the zooming range. Figure 18.11 shows zooming dependent
aberrations, WKðH

!
ρ! γÞ, for three positions of a zoom lens using the reverse

tracing method.

18.6 Aberration Considerations

There are several aberration considerations in the design of a zoom lens.
According to stop shifting formulae, the chromatic change of magnification
upon stop shifting, �S, depends on the chromatic change of focus,

δλW
∗
111 ¼ ∂λW111 þ 2�S∂λW020: (18.3)

Because in a zoom lens the pupils may shift with respect to each group, then
any group residual primary or secondary chromatic change of focus will
generate chromatic change of magnification. This calls for at least making
each group independently corrected for chromatic aberration.

Further, the chromatic change of magnification upon object shifting, S,
depends on the chromatic change of focus of the pupil,

Figure 18.11 Wave fans for three zoom positions and three wavelengths. Top
row, residual kernel aberrations at one zoom range extreme. Middle row, perfect
cancelation of kernel aberrations. Bottom row, residual kernel aberrations at the
other zoom range extreme.
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∂λW
∗
111 ¼ ∂λW111 þ 2S∂λ �W020: (18.4)

As the object position for each zoom group can change according to zoom lens
position, chromatic change of magnification can be generated.

The chromatic change of focus upon object shifting also depends on image
and pupil chromatic aberrations,

∂λW
∗
020 ¼ ∂λW020 þ 1

2
∂λW111 þ ∂λ �W111ð ÞSþ S2∂λ �W020: (18.5)

Thus, it is necessary in the design of a zoom lens to consider pupil aberrations.
The change of astigmatism aberration upon object shifting is given by,

W∗
222 ¼ W222 þ 2W311 þЖΔ �u2

� �
=2

� �
Sþ 4 �W040S

2: (18.6)

If a lens group is free from pupil spherical aberration, �W040 ¼ 0, is corrected
for image distortion, W311 ¼ 0, and does not deviate the chief ray, Δ �u2ð Þ ¼ 0,
then there is no change of astigmatism upon object shifting. Some zoom
variators work near unit magnification, are symmetrical, and fulfil these
conditions to some extent. Then such variators minimize the change of astig-
matism aberration, and help to keep the zoom lens compact.

In combining a zoom lens with other lenses, one must keep in mind that the
entrance and exit pupils of a zoom lens may change axial position, and then
care must be paid to provide means for proper pupil matching.
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Appendix 1

Imaging Aberrations
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(A1.1)

Table A1.1 Primary aberration coefficients in terms of Seidel sums

Coefficient Seidel sum

W040 ¼ 1
8
SI SI ¼ �Pj

i¼1 A2yΔ
u

n

� �� �
i

W131 ¼ 1
2
SII SII ¼ �Pj

i¼1 A�AyΔ
u

n

� �� �
i

W222 ¼ 1
2
SIII SIII ¼ �Pj

i¼1
�A2yΔ

u

n

� �� �
i

W220 ¼ 1
4

SIV þ SIIIð Þ SIV ¼ �Ж2Pj
i¼1Pi

W311 ¼ 1
2
SV SV ¼ �Pj

i¼1
�A �A

2Δ
1
n2

� �
y� Ж þ �Ayð Þ�yP
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i

δλW020 ¼ 1
2
CL CL ¼ Pj

i¼1 AyΔ
δn

n

� �� �
i

δλW111 ¼ CT CT ¼ Pj
i¼1

�AyΔ
δn
n

� �� �
i

Table A1.2 Quantities derived from first-order marginal and chief ray data
used in computing the aberration coefficients

Refraction invariant
marginal ray

Refraction invariant
chief ray

Lagrange
invariant

Surface
curvature

Petzval sum
term

A ¼ ni ¼ nuþ nyc �A ¼ n�i ¼ n�uþ n�yc Ж ¼ n�uy� nu�y
¼ �Ay� A�y

c ¼ 1
r

P ¼ c�Δ 1
n

� �
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Table A1.3 Contributions to Seidel sums from an aspheric surface

δSI ¼ a

δSII ¼ �y

y

� �
a

δSIII ¼ �y

y

� �2

a

δSIV ¼ 0

δSV ¼ �y

y

� �3

a

δCL ¼ 0
δCT ¼ 0
a ¼ �ε2c3y4Δ nð Þ þ 8A4y4Δ nð Þ
For a conic surface of eccentricity, ε, and an aspheric fourth-order coefficient, A4

Table A1.4 Stop-shifting formulas

�S ¼ �unew � �uold
u

¼ �ynew � �yold
y

¼
�Anew � �Aold

A
S∗I ¼ SI
S∗II ¼ SII þ �SSI

S∗III ¼ SIII þ 2��SSII þ �S
2
SI

S∗IV ¼ SIV

S∗V ¼ SV þ �S SIV þ 3�SIIIð Þ þ 3��S2SII þ �S
3
SI

C∗
L ¼ CL

C∗
T ¼ CT þ �SCL

Table A1.5 Object-shifting equations

S ¼ u∗ � u

�u
¼ y∗ � y

�y
¼ A∗ � A

�A

W∗
040 ¼ W040 þ W131 þ 1

8
ЖΔ u2

� 	� �
Sþ 3

2
W222 þ 3

8
ЖΔ u�uð Þ þW220P

� �
S2

þ W311 þ 3
8
ЖΔ �u2

� 	� �
S3 þ �W040S

4

W∗
131 ¼ W131 þ 3W222 þ 1

2
ЖΔ u�uð Þ þ 2W220P

� �
S

þ 3W311 þЖΔ �u2
� 	� 	

S2 þ 4 �W040S
3

W∗
220P ¼ W220P

W∗
222 ¼ W222 þ 2W311 þЖΔ �u2ð Þ=2ð ÞSþ 4 �W040S

2

W∗
311 ¼ W311 þ 4 �W040S

∂λW∗
111 ¼ ∂λW111 þ 2∂λ �W020S

∂λW∗
020 ¼ ∂λW020 þ 1

2
∂λW111 þ ∂λ �W111ð ÞSþ ∂λ �W020S

2
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Table A1.6 Extrinsic coefficients from combining systems A and B

W060E ¼� 1
Ж 4WA

040
�W

B
311

� �
W331E ¼� 1

Ж

5WA
131

�WB
131þ4WA

220
�W
B

220

þ4WA
220

�WB
222þ4WA

222
�W
B

220

þ311A
W

�WB
311þ16WA

040
�W

B

040

0
BBB@

1
CCCA

W151E ¼� 1
Ж

3WA
131

�WB
311þ8WA

040
�W
B

220

þ8WA
040

�WB
222

0
@

1
A W422E ¼� 1

Ж

2WA
311

�WB
222þ4WA

220
�W
B

131

þ6WA
222

�WB
131þ8WA

131
�W
B

040

0
@

1
A

W242E ¼� 1
Ж

2WA
222

�WB
311þ4WA

131
�W
B

220

þ6WA
131

�WB
222þ8WA

040
�W
B

131

0
@

1
A W420E ¼� 1

Ж

2WA
220

�WB
131þ2WA

311
�W
B

220

þ4WA
131

�WB
040

0
@

1
A

W333E ¼� 1
Ж 4WA

131
�W

B
131þ4WA

222
�WB

222

� �
W511E ¼� 1

Ж

3WA
311

�WB
131þ8WA

220
�W
B

040

þ8WA
222

�WB
040

0
@

1
A

W240E ¼� 1
Ж

2WA
131

�WB
220þ2WA

220
�W
B

311

þ4WA
040

�WB
131

0
@

1
A W600E ¼� 1

Ж 4WA
311

�W
B
040

� �

Table A1.7 Seidel sums of a parallel glass
plate in air of index n and thickness t

SI ¼ � n2 � 1
n3

u4t

SII ¼ � n2 � 1
n3

u3�ut

SIII ¼ � n2 � 1
n3

u2�u2t

SIV ¼ 0

SV ¼ � n2 � 1
n3

u�u3t

CL ¼ � n� 1
n2v

u2t

CT ¼ � n� 1
n2v

u�ut
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Appendix 2

Pupil Aberrations

�W H
!
; ρ!

� �
¼ �W000 þ �W200 ρ

!� ρ!
� �

þ �W111 H
!� ρ!

� �
þ �W020 H

!� H!
� �

þ �W040 H
! � H!

� �2
þ �W131 H

!� H!
� �

H
!� ρ!

� �
þ �W222 H

! � ρ!
� �2

þ �W220 H
!� H!

� �
ρ!� ρ!

� �
þ �W311 ρ!� ρ!

� �
H
!� ρ!

� �
þ �W400 ρ! � ρ!

� �2

(A2.1)

Table A2.2 Pupil chromatic coefficients

δλ �W020 ¼ 1
2
�CL �CL ¼ Pj

i¼1

�A�yΔ
δn
n

� �� �
i

δλ �W111 ¼ �CT �CT ¼ Pj
i¼1

A�yΔ
δn
n

� �� �
i

�C∗
L ¼ �CL �C∗

T ¼ �CT þ S�CL

Table A2.1 Identities
between pupil and image
aberration coefficients

�W040 ¼ W400

�W131 ¼ W311 þ 1
2
Ж�Δ �u2

� �

�W222 ¼ W222 þ 1
2
Ж�Δ u�uf g

�W220 ¼ W220 þ 1
4
Ж�Δ u�uf g

�W311 ¼ W131 þ 1
2
Ж�Δ u2

� �
�W400 ¼ W040
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Appendix 3

Structural Aberration Coefficients

Table A3.1 Seidel sums in
terms of structural
aberration coefficients.
Pupils located at principal
planes

SI ¼ 1
4
y4PΦ

3σI

SII ¼ 1
2
Жy2PΦ

2σII

SIII ¼ Ж2ΦσIII
SIV ¼ Ж2ΦσIV

SV ¼ 2Ж3σV
y2P

CL ¼ y2PΦσL
CT ¼ 2ЖσT
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Table A3.3 Field curve
vertex curvature in terms of
structural coefficients

CPetzval ¼ �n0Φ�σIV
CSagittal ¼ �n0Φ� σIV þ σIIIð Þ
CMedial ¼ �n0Φ� σIV þ 2σIIIð Þ
CTangential ¼ �n0Φ� σIV þ 3σIIIð Þ

Table A3.2 Stop-shifting from principal planes

σ∗I ¼ σI
σ∗II ¼ σII þ �SσσI
σ∗III ¼ σIII þ 2�SσσII þ �S2σσI
σ∗IV ¼ σIV
σ∗V ¼ σV þ �Sσ σIV þ 3σIIIð Þ þ 3�S2σσII þ �S3σσI
σ∗L ¼ σL
σ∗T ¼ σT þ �SσσL
�Sσ ¼ yP�yPΦ

2Ж

Δ�Sσ ¼ yPΔ�yPΦ
2Ж

¼ y2PΦ
2Ж

�S

�Sσ ¼ yP�yPΦ
2Ж

¼ Φ��s
Y � 1ð Þ�Φ��s� 2n

¼ Φ��s0
Y þ 1ð Þ�Φ��s0 � 2n0

�s is the distance from the front principal point to the entrance
pupil. �s0 is the distance from the rear principal point to the exit
pupil.
yP is the marginal ray height at the principal planes. �yP is the
chief ray height at the principal planes. Φ is the lens system
optical power.

Table A3.4 Structural aberration coefficients of a reflecting
surface in air

Stop at surface With stop shift

σI ¼ Y2 þ K σI ¼ Y2 þ K
σII ¼ �Y σII ¼ �Y 1� �SσYð Þ þ �Sσ �K
σIII ¼ 1 σIII ¼ 1� �SσYð Þ2 þ �S2σ �K
σIV ¼ �1 σIV ¼ �1
σV ¼ 0 σV ¼ �Sσ � 1� �SσYð Þ� 2� �SσYð Þ þ �S3σ �K
K is the surface conic constant, Y ¼ 1þ m

1� m
, �Sσ ¼ yP�yPΦ

2Ж
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Table A3.5 First-order identities of a
thin lens

Φ ¼ n� 1ð Þ� c1 � c2ð Þ ¼ n� 1ð Þ� 1
r1

� 1
r2

� �

X ¼ c1 þ c2
c1 � c2

¼ � r1 þ r2
r1 � r2

Y ¼ 1þ m

1� m

c1 ¼ 1
2

Φ
n� 1

X þ 1ð Þ

c2 ¼ 1
2

Φ
n� 1

X � 1ð Þ

ω ¼ nu ¼ � 1
2

Y � 1ð Þ Φ�yPð Þ

ω0 ¼ n0u0 ¼ � 1
2

Y þ 1ð Þ Φ�yPð Þ

Table A3.6 Structural aberration
coefficients of a thin lens in air
(Stop at lens)

σI ¼ AX2 � BXY þ CY2 þ D A ¼ nþ 2

n n� 1ð Þ2
σII ¼ EX � FY

B ¼ 4 nþ 1ð Þ
n n� 1ð Þ

σIII ¼ 1
C ¼ 3nþ 2

n

σIV ¼ 1
n D ¼ n2

n� 1ð Þ2
σV ¼ 0

E ¼ nþ 1
n n� 1ð Þ

σL ¼ 1
ν

F ¼ 2nþ 1
n

σT ¼ 0 ν ¼ nF � nC
nd � 1
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Table A3.7 Structural coefficients of a system of k
components

σI ¼
Pk
i¼1

Φk

Φ

� �3 yP,k
yP

� �4

σI,k

σII ¼
Pk
i¼1

Φk

Φ

� �2 yP,k
yP

� �2

σII,k þ �SkσI,kð Þ

σIII ¼
Pk
i¼1

Φk

Φ

� �
σIII,k þ 2�SkσII,k þ �S

2
kσI,k

� �

σIV ¼ Pk
i¼1

Φk

Φ

� �
σIV ,k

σV ¼ Pk
i¼1

yP
yP,k

� �2

σV ,k þ �Sk σIV ,k þ 3σIII,kð Þ þ 3�S2kσII,k þ �S3kσI,k
� �

σL ¼ Pk
i¼1

Φk

Φ

� �
yP,k
yP

� �2

σL,k

σT ¼ Pk
i¼1

σT,k þ �SkσL,kð Þ

�Sk ¼
Φk�yP,k��yP,k

2Ж
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Appendix 4

Primary Aberrations of a Plane Symmetric
System

To describe the aberration properties of a plane symmetric system, an aberra-
tion function must be constructed. We establish the unit vector, i

!
, in the field

of view to define the direction of plane of symmetry. Since the aberration
function is a scalar, it must depend on the dot products of the field vector, the
aperture vector, and the symmetry vector, i

!
. The aberration function for a

plane symmetric system can be written as,

W i
!
;H
!
; ρ!

� �
¼

X∞
k,m,n,p,q

W
2kþnþp,

2mþnþq,

n,p,q

H
! �H!

� �k
ρ!� ρ!

� �m
H
! � ρ!

� �n
i
!�H!

� �p
i
!� ρ!

� �q
,

(A4.1)

where W2kþnþp, 2mþnþq,n,p,q is the coefficient of a particular aberration form
defined by the integers, k, m, n, p, and q. By setting the sum of the integers to
0, 1, 2, . . ., groups of aberrations are defined as shown in Table A4.1.

A study of Table A4.1 provides useful insights. The aberration terms are
divided in groups and in turn in subgroups according to symmetry characteris-
tics. Thus, the third group contains the primary aberrations of axially symmet-
ric systems as a subgroup, contains the aberrations of double plane symmetric
systems as a subgroup, and a subgroup of aberrations for plane symmetric
systems that are not axially or double plane symmetric. Thus, the aberration
properties of a plane symmetric system can be thought of as the superposition
of the properties of axial, double plane, and plane symmetric systems. The
correction of the aberrations of a given subgroup can be carried out using
system properties according to subgroup symmetry.
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Table A4.1 Aberrations of a plane symmetric system

First group
W00000 Piston
Second group

W01001 i
!� ρ!

� �
Field displacement

W10010 i
!� H!

� �
Linear Piston

W02000 ρ!� ρ!
� �

Defocus

W11100 H
!� ρ!

� �
Magnification

W20000 H
!� H!

� �
Quadratic Piston

Third group

W02002 i
! � ρ!

� �2 Uniform astigmatism

W11011 i
!� H!

� �
i
!� ρ!

� �
Anamorphic distortion

W20020 i
! � H!

� �2 Quadratic piston

W03001 i
!� ρ!

� �
ρ!� ρ!

� �
Uniform coma

W12101 i
!� ρ!

� �
H
!� ρ!

� �
Linear astigmatism

W12010 i
!� H!

� �
ρ
!� ρ!

� �
Field tilt

W21001 i
!� ρ!

� �
H
!� H!

� �
Quadratic distortion

W21110 i
!� H!

� �
H
!� ρ!

� �
Quadratic distortion

W30010 i
!� H!

� �
H
!� H!

� �
Cubic piston

W04000 ρ
! � ρ!

� �2 Spherical aberration

W13100 H
!� ρ!

� �
ρ
!� ρ!

� �
Linear coma

W22200 H
! � ρ!

� �2 Quadratic astigmatism

W22000 H
!� H!

� �
ρ!� ρ!

� �
Field curvature

W31100 H
!� H!

� �
H
!� ρ!

� �
Cubic distortion

W40000 H
! � H!

� �2 Quartic piston
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Appendix 5

Sine Condition

The sine condition is theoretically an important result, as an aplanatic lens
system must satisfy it. In the derivation that follows we assume that there is no
spherical aberration in the lens system. Consider Figure A5.1, which shows the
optical axis, the object and image planes, the on-axis conjugated points, O and
O0, the surfaces of unit magnification that near the optical axis region approach
the principal planes, and the points, P and P0, that are conjugated to second-
order.

The optical path length along any ray from the on-axis object point, O to the
image point O0, is constant and is denoted by lon�axis. We are interested in
determining the optical path for a meridional ray from an off-axis point near
the optical axis, as specified by heights, h and h0. With respect to the optical
path, lon�axis, and noting that points P and P0 are conjugated, the optical path of
an off-axis ray, loff�axis, is given to first-order in h by,

loff�axis ¼ lon�axis � n sin Uð Þhþ n0 sin U0ð Þh0

¼ lon�axis þ nh
n0h0

nh
sin U0ð Þ � sin Uð Þ

� �
,

(A5.1)

where U and U0 are the angles of a real marginal real ray with the optical axis
in object and image spaces, respectively. For small object heights, h, the ratio
h=h0 becomes the transverse magnification n0u0=nu, fourth and higher order
path differences between points P and P0 become insignificant, and to have the
path, loff�axis, independent of the object height, h, we must satisfy,

u0

u
¼ sin U0ð Þ

sin Uð Þ : (A5.2)

This relationship is known as the sine condition and states that, in the absence
of spherical aberration, there are no linear phase changes as a function of the
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field of view. In this case, the first-order magnification, n0u0=nu, is equal to the
marginal real ray magnification, as defined by n0 sin U0ð Þ=n sin Uð Þ.

In deriving the sine condition we have made a first-order approximation
with respect to the field of view and, therefore, all aberration coefficients of the
form W1,2nþ1,1 vanish, with n an integer. Effectively, we can write,

X∞
n¼1

W1,2nþ1,1

 !
¼ loff�axis � lon�axis ¼ n0 sin U0ð Þh0 � n sin Uð Þh: (A5.3)

Spherical aberration is independent of the field of view and, if it is added to an
aplanatic system, say at the exit pupil, then the sine condition would no longer
hold, but the system would still be free of coma aberration. Fundamentally,
and due to conservation of throughput, the absence of linear phase variations
with respect to the field of view, coma aberration in the present case, requires a
specific pupil distortion that, to fourth-order, is given by,

�W311 ¼ Ж
2
Δ u2
� �

: (A5.4)

For an object at infinity, the ratio sin Uð Þ=u becomes unity. Therefore, the sine
condition becomes,

Figure A5.1 Geometry for deriving the sine condition. On-axis points, O and O0,
are conjugate and free from spherical aberration.

Figure A5.2 Geometry illustrating the equivalent refracting surface of an apla-
natic Cassegrain type telescope as a sphere of radius f . The surface defined by the
intersection of the incoming parallel rays in object space, with the outgoing rays in
image space (as these rays are extended) is the principal surface; in this case the
cross-section is circular.
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sin U0ð Þ
u0

¼ 1: (A5.5)

This equation is satisfied if the principal surface is a sphere of radius equal to
the lens system focal length, as shown in Figure A5.2 for the Ritchey-Chretien
telescope.

Further Reading

Hopkins, H. H. “The sine condition and the Herschel’s condition,” Chapter III, inWave
Theory of Aberrations (Oxford: Oxford University Press, 1950).
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Glossary

Abbe number A number that characterizes light dispersion by a material and is given

by ν ¼ nd � 1
nF � nC

.

Aberration A departure from ideal imaging behavior. The classical imaging
aberrations are spherical, coma, astigmatism, field curvature, distortion,
chromatic change of focus, and chromatic change of magnification.

Aberration function A scalar mathematical function that provides the optical path
length of a given ray that is specified by the field vector and the aperture vector.
The aberration function is expressed as a series of terms of increasing algebraic
order, each representing an optical aberration.

Achromatic Freedom from chromatic aberration for two wavelengths; typically those
corresponding to the F and C lines.

Afocal The focal lengths are not defined. The optical power of an afocal system is zero.
Air space The axial separation between two contiguous lens or mirror elements.
Aligned An optical system where errors in the position of the lens elements do not

significantly degrade the intended system performance.
Anamorphic Having different transverse magnification in two mutually perpendicular

directions.
Anastigmatic In the context of a flat field lens, anastigmatic refers to the freedom from

spherical aberration, coma, and astigmatism aberrations. In particular, there is no
astigmatism aberration for an off-axis field point.

Aperture stop A circular aperture that limits in extent the size of the on-axis
light beam.

Aperture vector A normalized vector, ρ!, that specifies a ray. It usually lies on the exit
pupil plane of a lens system.

Aplanatic Freedom from spherical aberration and coma aberration.
Apochromatic Freedom from chromatic aberration for three wavelengths.
Aspheric A non-spherical in shape surface.
Aspheric plate A nearly parallel glass plate that has at least one aspheric surface, such

as in the Schmidt camera.
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Axial symmetry Having an axis of rotational symmetry.
Back focal length (BFL) The distance from the vertex of the last surface in a lens

system to the image. Also known as back focal distance.
Bending Changing the surface curvatures of a lens element without changing its

optical power.
Birefringence Double refraction in which two rays, two wavefronts, and two images

are produced by a birefringent material.
Bore sight error The line of sight is in error; or, equivalently, the center of the field of

view, is not in its intended position. An alignment error.
Cam curve The curve defined by the movement of a compensator group in a

zoom lens.
Cardinal points The focal points, the nodal points, and the principal points of a lens

system.
Catadioptric Comprising light reflecting mirrors and light refracting lenses.
Catoptric Comprising only light reflecting mirrors.
Chief ray A meridional ray that originates from the edge of the field of view and that

passes through the center of the aperture stop.
Clear aperture diameter The minimum diameter of a lens necessary to allow light to

pass through the lens. The diameter of the lens that is optically useful for the lens
to perform its function. See lens diameter.

Coddington equations Relate the distances of the astigmatic line segments
to the principal curvatures at a point of a surface. The sagittal equation is
n0

s0
� n

s
¼ n0 cos I 0ð Þ � n cos Ið Þ

rs
, and the tangential equation is

n0 cos 2 I 0ð Þ
t0

� n cos 2 Ið Þ
t

¼ n0 cos I 0ð Þ � n cos Ið Þ
rt

.

Collimated A beam of light rays that is parallel and lacks convergence or divergence.
A lens system that has been adjusted to produce a beam of parallel rays, or that
has been aligned.

Comachromatism The variation of coma aberration with the wavelength of light.
Compensator In a zoom lens the group that re-establish the image location. In lens

tolerancing a lens element parameter that can be used to compensate for lens
system performance degradation due to manufacturing and alignment errors in
other lens elements.

Concave surface In the lens design art a concave surface refers to a surface made in a
substrate. Assuming that the surface is spherical and that the opposing surface of
the substrate is flat, a concave surface makes the substrate thicker at its edges than
at its center.

Conicoid A surface of revolution produced by rotating a conic curve about its axis of
symmetry; i.e. hyperboloid, ellipsoid, paraboloid, and spheroid.

Convex surface In the lens design art, a convex surface refers to a surface made in a
substrate. Assuming that the surface is spherical and that the opposing surface of
the substrate is flat, a convex surface makes the substrate thicker at its center than
at its edges.
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Curvature For a spherical surface the inverse of the radius of curvature.
Defocus A change of the axial position of an image or an observation plane. It relates to

a quadratic wavefront deformation, W020. Also known as focus error.
Depth of field Relates to the object space; it is the axial distance an object can be moved

while maintaining a given image quality at the image plane.
Depth of focus Relates to the image space; it is the axial distance that a lens or a light

sensor can be moved while maintaining a given image quality for a given
object.

Diffraction limited The image quality is limited by the effects of light diffraction and
not by geometrical aberrations. Often, if the RMS wavefront deformation is less
than 0.07 λ, a system is considered diffraction limited. However, in some
applications, like optical lithography or microscopy, the requirement on RMS
wavefront error is more stringent.

Diopter The unit of optical power, expressed in inverse meters.
Dioptric Comprising only light refracting lenses.
Doublet lens A lens system, or lens group, having two lens elements in proximity or in

contact.
Dummy surface A surface with the same material on either side and that is used to

determine light beam size, to reference distances, and for other purposes. It has no
ray deviation function.

Effective focal length (EFL) The inverse of the optical power of a lens system.
Entrance pupil The image of the aperture stop in object space.
Error function A function that conveys the optical performance of a lens system

according to the application of the system. It is also known as the merit function.
Etendue or throughput A geometrical quantity that measures the capacity of a light

source, optical system, or image sensor to deliver, transfer, or receive
optical power.

Exit pupil The image of the aperture stop in image space.
Eyepiece In a visual instrument the lens, or lens group, closest to the observing eye, and

that collimates light.
Field flattener A field lens that corrects for field curvature aberration.
Field lens A lens placed at or near an image.
Field of view (FOV) The observable scene of a lens system for which it was designed.

For a lens that works at finite conjugates the FOV is specified by the object or
image size, and giving the height, width, or both. When the object is at infinity the
field of view is usually specified by the semi-angle subtended by the scene, or
object, as seen from the entrance pupil, either horizontally, vertically, or both. It
can also be specified by the height, width, or both, of the image.

Field stop An aperture that limits the field of view of a lens system.
Field vector A normalized vector, H

!
, that specifies a ray. It lies on the object plane of a

lens system.
Figure The shape of an optical surface, or the shape error of a surface.
First-order ray A ray traced with the first-order refraction and transfer equations,

n0u0 ¼ nu� yϕ and y0 ¼ yþ u0t.
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Fisheye lens A reverse telephoto lens that images a hemispherical field of view, i.e. the
field of view is �90�.

Flare Non-uniform light reaching the image plane such as a defocused ghost image of
the aperture stop.

Focal length The distance from the rear nodal point to the rear focal point is the rear
focal length, f 0. The distance from the front nodal point to the front focal point is
the front focal length f.

Focal point The conjugate to the point at infinity in image space is the rear focal
point. The conjugate to the point at infinity in object space is the front focal point.
First-order rays converge to a focal point, or appear to diverge from a focal point.

Focal ratio See relative aperture.
Freeform surface An aspheric optical surface that does not have more than one plane

of mirror symmetry.
Ghost image A non-intended image formed near or at the nominal image plane of a lens

by light that is Fresnel reflected by one or more surfaces in a lens system.
Glass code A way to specify a glass type by the index of refraction and the ν-number.

For BK7 glass, nd = 1.516 and ν = 64.1, the glass code is 516641.
Gradient index The transverse or longitudinal variation of the index of refraction in a lens.
Ideal image An image defined by an ideal imaging model. For example, by the central

projection model, as specified by Gaussian or Newtonian imaging equations. This
is equivalent to the imaging defined by first-order ray tracing.

IR Infrared radiation.
Iris diaphragm A variable aperture to control the amount of light through a lens. Often

it is the lens aperture stop.
Lagrange invariant A first-order quantity, Ж ¼ n�uy� nu�y ¼ �Ay� A�y, built with data

of the marginal and chief rays that does not depend on the plane where it is
calculated. It determines the optical throughput of a lens system.

Lens A single element or a complete optical system.
Lens decenter An error in the transverse position of a lens.
Lens diameter The physical diameter of a circular lens. It is larger than the clear

aperture diameter to allow for lens mounting.
Lens element A single lens with two optical surfaces.
Lens group In the context of zoom lenses, one or more consecutive lens elements with

their respective distances fixed.
Lens hood A mechanical structure, or shade, added to the front of a lens to avoid

unwanted light from a bright source entering the lens.
Lens kernel The variator and the compensator groups in a zoom lens.
Lens maker’s formula Relates the lens surface radius of curvature and thickness to the

lens focal length,
1
f 0
¼ n� 1ð Þ 1

r1
� 1
r2

þ t

n

n� 1
r1r2

� �
.

Lens splitting Dividing a lens into two lenses close together and usually each with half
the optical power of the un-split lens.

Lens system One or more lens or mirror elements that perform an optical function;
usually that of forming an image.

Lens tilt An angular error in the position of a lens.
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Lens unit One or more lens elements that perform an optical function such as focusing,
correcting field aberrations, changing the magnification, or correcting for line of
sight error.

Light propagation In modeling a lens system it is customary that light rays propagate
from left to right. When there is a single mirror, light propagates from right to left
after being reflected by the mirror. A second flat mirror can be added in contact to
a first mirror to maintain light rays propagating from left to right. This is called
unfolding the ray path.

Magnifying power In a visual instrument the ratio of the apparent size of the image of
an object seen through the instrument to that of the object seen by the unaided
eye. In a telescope, this is given by the ratio of the entrance pupil diameter to the
exit pupil diameter.

Mangin mirror or lens A lens with one of its optical surfaces silvered or aluminized to
be reflective.

Marginal ray A meridional ray that originates from the object axial point and passes
through the edge of the aperture stop.

Meniscus lens A lens with a concave surface and a convex surface.
Meridional plane A plane that contains the optical axis.
Negative lens A lens with negative optical power, as determined using the vertex

surface curvatures. A thin negative lens with spherical surfaces is thicker at its
edge than at its center.

Nodal points A pair of points in the optical axis such that a first-order ray passing
by one, passes by the other, while maintaining the same slope with the
optical axis. The nodal points are conjugated and are the centers of
perspective.

Null corrector An auxiliary lens system used to test an aspheric optical surface by
forming a point image.

Numerical aperture (NA) The numerical aperture is defined as NA ¼ n sin θð Þ, where
n is the index of refraction and θ is the angle of the real marginal ray with the
optical axis.

Objective lens In a lens system the lens or lens group that is closest to the object and
that focuses light.

Optical axis Usually a straight line about which a lens system has rotational symmetry.
In some other contexts a straight line about which an optical system has some
degree of symmetry, or property, or that serves as a reference.

Optical image A representation of an object by light. The image formed by a lens
system.

Optical path difference The difference in optical path length of a ray between the
wavefront and the reference sphere.

Optical power The optical power is defined as ϕ ¼ � n

f
¼ n0

f 0
. For a single surface, the

optical power is ϕ ¼ n0 � n

r
, where r is the vertex radius of curvature. The optical

power of a thick lens in air is ϕ ¼ n� 1ð Þ 1
r1

� 1
r2

þ t

n

n� 1
r1r2

� �
, where t is the

lens thickness measured along the optical axis.
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Optical speed Refers to the time necessary to make a light exposure on a photographic
film which is proportional to square of the lens f-number. Also known as
lens speed.

Optically conjugated Satisfying the Gaussian or Newtonian imaging equations.
Petzval sum Relates the vertex curvature of the object and image surfaces to

the index of refraction and surface vertex radius of curvature,
1

nk 0ρk 0
� 1
n1ρ1

¼ �
Xk

i¼1

ni 0 � ni
nini 0ri

.

Petzval surface The imaging surface in the absence of astigmatism aberration.
Plane symmetry Having a plane of mirror symmetry such as a meridional plane that

contains the optical axis.
Positive lens A lens with positive optical power, as determined using the vertex surface

curvatures. A thin positive lens with spherical surfaces is thicker at its center than
at its edges.

Prescription table A table that provides constructional data of a lens such as radii,
thicknesses, glass type, aspheric coefficients, etc., and main specifications of the
lens such as FOV, focal length, optical speed, etc. Unless otherwise specified,
axial symmetry of the lens system is assumed.

Principal plane Conjugate planes in a lens system having unit magnification.
Principal points The on-axis points of the principal planes in a lens system.
Principal ray The ray of an off-axis beam that passes through the center of the

aperture stop.
Principle of symmetry When a lens system has some degree of symmetry about the

aperture stop, the odd aberrations cancel or tend to cancel.
Real image An image that can be cast on a screen. The imaging rays converge toward

the image.
Real ray A ray traced using Snell’s law and the actual shape and position of the

surfaces of an optical system.
Reference sphere A sphere centered at an ideal image point that passes by the axial exit

pupil point. It is used to determine the wavefront deformation.
Refractive power Same as optical power.
Relative aperture The ratio of the effective focal length, EFL, to the diameter of the

entrance pupil, DE. Also known as F=#, FNO, F-number, focal ratio F.
F=# ¼ EFL=DE . For lens systems that work at finite conjugates, the effective
relative aperture, sometimes referred to as the working F=#, is given by
F=# ¼ 1� mð ÞEFL=DE , where m is the transverse magnification.

Relative illumination The ratio of the off-axis light irradiance to the on-axis light
irradiance at the image plane.

Rotational invariants The products H
! � H!, H

! � ρ!, and ρ! � ρ!, which are invariant upon
a rotation of the coordinate axes.

Sag Short for sagittal depth of a surface.
Sagittal In a direction perpendicular to the tangent line of a curve.
Sagittal plane A plane perpendicular to a meridional plane and that contains a chief or

principal ray.
Seidel sums Five formulas to determine aberration coefficients in an axially symmetric

system from data of the trace of first-order marginal and chief rays.
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Skew ray A ray not contained in a meridional plane. Its ray tracing requires quantities
in three dimensions.

Snell’s law Relates the angle of incidence and refraction to the indices of refraction:
n0 sin I 0ð Þ ¼ n sin Ið Þ. The angle of incidence and refraction are with respect to the
surface normal line where a ray intersects the surface. The normal line, the
incident ray, and the refracted ray are coplanar.

Spherochromatism The variation of spherical aberration with the wavelength of light.
Stigmatic That produces a point image.
Stop aperture Same as aperture stop.
Stop shiftingMoving the stop aperture along the optical axis and changing its diameter

to maintain the optical throughput of the lens system.
Stray light Un-wanted and usually non-uniform light reaching the image plane and

decreasing the image contrast, or forming image artifacts.
Structural aberration coefficient A coefficient that describes aberration in a simple

mathematical form by not depending on the field of view, optical speed, or optical
power, but on the structure of the lens system.

Tangential plane A plane containing the optical axis; same as a meridional plane.
Telecentric The entrance or exit pupil is at infinity. This requires having the aperture

stop located at one focal point. The first-order chief ray is parallel to the optical
axis in object or image spaces.

Telephoto lens A lens system where the ratio of the total track length to the focal
length, called the telephoto ratio, is smaller than one.

Thin lens A conceptual model of a lens obtained by decreasing to zero its central thickness.
Total track length The length from the vertex of the first surface of the first lens of a

lens system to the image surface, along the optical axis.

Transverse magnification The ratio, m ¼ �yo
�yi
, of the image height to the object height.

Transverse ray aberration The transverse error ε
! of a ray at the image plane,

ε
!¼ 1

n0u0
r!ρW H

!
; ρ
!� �

, εx ¼ 1
n0u0

∂WðH!; ρ!Þ
∂ρx

, εy ¼ 1
n0u0

∂WðH!; ρ!Þ
∂ρy

.

Triplet lens A lens system, or lens group, having three lens elements in proximity or in
contact.

UV Ultraviolet radiation.
ν-number A number that characterizes light dispersion by a material, given by

ν ¼ nd � 1
nF � nC

.

Variator A movable, or changeable, lens group that changes the focal length of a lens
system.

Varifocal A lens that provides a variable focal length within a range.
Veiling glare Non-image forming stray light that decreases the contrast of an image.
Vertex The point where the optical axis intersects an optical surface.
Vignetting The clipping, obstruction, of off-axis beams by an aperture, or ray limiting

structure, other than the aperture stop.
Virtual image An image that cannot be cast on a screen because the image forming

rays are diverging. The images formed by flat mirrors are virtual.
Wavefront A surface of equal optical path length, as measured from the object point.

The surface of equal geometrical phase.
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Working F=# See relative aperture.
Working distance The distance from the last physical structure of a lens to the

image plane.
Zonal aberration Residual aberration that results from balancing different orders of

aberration, or different aberrations.
Zoom lens A varifocal lens that maintains the image position stationary as the focal

length changes.
Zoom ratio The ratio of the maximum focal length to the minimum focal length of a

zoom lens. It is also known as zooming range.

228 Glossary

                  

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108625388.025
https://www.cambridge.org/core


Further Reading on Lens Design
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Clark, A. D. “Zoom lenses,” in Monographs in Applied Optics, Vol. 7 (London:

J. H. Dallmeyer, Ltd., 1873).
Conrady, A. E. Applied Optics and Optical Design, Part I (New York: Dover, 1957).
Conrady, A. E. Applied Optics and Optical Design, Part II (New York: Dover, 1957).
Cox, A. A System of Optical Design (New York: Focal Press, 1964).
Dilworth, D. Lens Design (Bristol, UK: IOP Publishing, 2018).
Fischer, R., Tadic-Galeb, B., Yoder, P. Optical System Design (New York: McGraw-

Hill, 2008).
Geary, J. M. Introduction to Lens Design–With Practical Zemax Examples (Richmond,

VA: Willmann-Bell, 2002).
Gross, H. Handbook of Optical Systems, Vols. I–IV (Weiheim: Wiley-VCH, 2005).
Johnson, B. K. Optical Design and Lens Computation (London: The Hatton Press Ltd,

1948).
Kidger, M. Fundamental Optical Design (Bellingham, WA: SPIE Press, 2002).
Kidger, M. Intermediate Optical Design (Bellingham, WA: SPIE Press, 2004).
Kingslake, R. A History of the Photographic Lens (San Diego, CA: Academic Press,

1989).
Kingslake, R. Optical System Design (San Diego, CA: Academic Press, 1984).
Kingslake, R., Johnson,R.B.LensDesignFundamentals (Amsterdam: Elsevier Inc., 2010).
Laikin, M. Lens Design (New York: Dekker, 2001).
Lummer, O. Contributions to Photographic Optics (London: MacMillan and Co.,

Limited, 1900).
Malacara, D., Malacara, Z. Handbook of Lens Design (San Diego, CA: Academic Press,

2013).
Mouroulis, P., Macdonald, J. Geometrical Optics and Optical Design (New York:

Oxford Press, 1997).
Nakajima, H. Optical Design Using Excel (New York: Wiley, 2015).
Nussbaum, A. Optical System Design (Upper Saddle River, NJ: Prentice Hall, 1998).
O’Shea, D. Elements of Modern Optical Design (New York: Wiley, 1985).
O’Shea, D., Bentley, J. Designing Optics Using CODEV (Bellingham WA: SPIE Press,

2018).
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Smith, W. J. Modern Lens Design (Bellingham, WA: SPIE Press, 2008).
Sun, H. Lens Design – A Practical Guide (New York: CRC Press, 2017).
Taylor, H. D. A System of Applied Optics (London: Macmillan, 1906).
Velzel, C. A Course in Lens Design (Berlin: Springer, 2014).
von Rohr, M. The Formation of Images in Optical Instruments (London:

H. M. Stationary Office, 1920).
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Index

A. Marechal, 100
abbe number, 221
aberration, 221
aberration coefficients, 16
aberration function, 12, 221
achromatic, 221
afocal, 8, 221
afocal relay, 161
air space, 221
Airy pattern, 99
aligned, 221
anamorphic, 221
anastigmatic, 92, 221
aperture stop, 7–8, 221
aperture vector, 10, 221
aplanatic, 18, 221
aplanatic-concentric principle, 86
apochromatic, 221
apochromatic lens, 69
as-built lens, 110
aspect ratio, 194
aspheric, 221
aspheric plate, 38, 221
aspheric surfaces, 21
athermal, 73
auto-focus, 194
axial symmetry, 5, 222

back focal length, 96, 222
Baker-Paul, 183
Barry Johnson, 1
bending, 222
Bessel function, 99
birefringence, 194, 222
blaze, 77
bore-sight error, 120, 222

breathing, 203
buried surface, 75

calcium fluoride, 173
cam curve, 203, 222
cardinal points, 7, 222
Cartesian ovals, 23
Cassegrain, 179
catadioptric, 176, 222
catoptric, 222
central limit theorem, 115
central obscuration, 176
central projection, 5
charge coupled device, 187
Chevalier, 87
chief ray, 7, 222
chief ray angle, 190
chromatic aberration, 64
chromatic change of focus, 64
chromatic change of magnification, 64
chromatic focal shift, 68
chromatic vignetting, 160
classical imaging, 5
classical lens, 137
clear aperture, 111
clear aperture diameter, 222
Coddington equations, 222
CODE V, 126
coefficient of thermal expansion, 72
collimated, 222
comachromatism, 156, 222
compensator, 114, 196, 222
complementary metal oxide semiconductor,

188
computer programs, 126
concave surface, 222
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concentric, 178
conic constant, 22
conicoid, 22, 222
conjugate factor, 31
conoid, 22
contrast, 105
contrast reversal, 105
convex surface, 222
Cooke triplet, 137
cosine3 law, 59
cosine4 law, 56
crown glasses, 67
curvature, 223
cut-off frequency, 106

Daguerrotype, 87
Dall-Kirkham, 180
damped least squares, 131
defocus, 223
degrees of freedom, 155
depth of field, 223
depth of focus, 101, 223
desensitize, 122
diffraction limited, 101, 223
diffractive optical elements, 76
diffractive order, 76
diopter, 223
dioptric, 223
direction cosines, 45
dispersive interface, 74
Donders, 202
double Gauss lens, 137
double pass, 27
double telecentric, 162
doublet lens, 68, 223
dummy surface, 51, 223

eccentricity, 22
Edmund Optics, 175
effective focal length, 8, 223
ellipsoid, 22
encircled energy, 103
entrance pupil, 7, 223
error distribution, 113
error function, 129, 223
étendue or throughput, 223
even aberrations, 20
exit pupil, 7, 223
external stop, 161
extrinsic, 153
eyepiece, 223

F-number, 8
field flattener, 38, 223
field lens, 38, 223
field of view, 17, 223
field stop, 7, 223
field vector, 9, 223
figure, 223
filter, 189
first-order imaging, 6
first-order ray, 44, 223
fisheye lens, 62, 224
flare, 164, 224
flint glasses, 67
focal length, 224
focal point, 7, 224
focal ratio, 224
Fraunhofer d-line, 65
freeform surface, 28, 224
Fresnel reflections, 164
fused silica, 173

Gaussian equations, 6
Gaussian surface, 37
genetic algorithms, 131
geometrical wavefront, 11
ghost image, 48, 164, 224
glare, 164
glass code, 224
glass molding, 187
global search, 131
gradient index, 224
grating equation, 76
Gregorian, 179

H. A. Steinheil, 89
H. D. Taylor, 144
H. H. Hopkins, 108
H. L. Schroder, 90
highly aspheric, 187
hyperboloid, 22

ideal image, 224
image aberrations, 10
image brightness, 55
image circle, 188
image evaluation, 98
image matching, 153
image space, 8
imaging equations, 5
impulse function, 104
index of refraction, 7, 52
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induced, 153
injection molding, 111
internal reflection, 47
International Organization for Standardization,

124
interpolation formula, 52
intersection points, 47
inverse sensitivity analysis, 114
IR, 224
iris diaphragm, 224

J. H. Dallmeyer, 89
Joseph Lister, 84
Joseph Petzval, 87

Keiko Mizuguchi, 203
kernel, 196
kidney bean effect, 157

Lagrange invariant, 8, 224
Lambertian source, 54
landscape lens, 30
lens, 224
lens bending, 31
lens decenter, 224
lens diameter, 111, 224
lens drawings, 124
lens element, 224
lens flange, 194
lens forms, 137
lens group, 196, 224
lens hood, 224
lens kernel, 224
lens layout, 10
lens maker’s formula, 224
lens modularity, 161
lens relays, 161
lens specifications, 98
lens splitting, 224
lens system, 153, 224
lens tilt, 224
lens unit, 196, 225
lens wedge, 112
lenslet, 189
light hood, 88
light propagation, 225
light vignetting, 60
line of sight error, 120
linear shift invariant system, 104
line-pairs, 106
Lord Rayleigh, 100

macros, 127
magnifying power, 225
Mangin mirror or lens, 225
mapping, 5
marginal ray, 7, 225
mean square spot size, 32
mechanically compensated, 196
medial field curve, 37
Meinel, 184
meniscus lens, 225
meridional plane, 44, 225
meridional rays, 7
merit function, 129
Mersenne, 182
micro-lenses, 189
microscope objective, 85
miniature lenses, 187
mirror systems, 176
mobile phones, 187
modulation transfer function, 105
monochromatic quartet, 75
Monte Carlo simulation, 117

narcissus, 169
negative lens, 225
new achromat, 83
Newton rings, 112
Newtonian, 177
Newtonian equations, 6
nodal points, 7, 225
non-sequential, 45
normal glasses, 69
normal line, 45
normal probability distribution, 115
null corrector, 26, 225
numerical aperture, 17, 55, 225
Nyquist frequency, 189

object space, 8
objective lens, 225
odd aberrations, 20
Offner relay, 184
off-the-shelf, 171
old achromat, 83
OpTaliX, 126
optical aberrations, 10
optical axis, 8, 225
optical compensation, 196
optical étendue, 62
optical flux, 9, 62
optical glass, 66
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optical image, 225
Optical Path Difference, 13, 225
Optical Path Length, 10
optical power, 8, 225
optical relays, 37, 174
optical speed, 226
optical throughput, 9
optical transfer function, 105
optically conjugated, 7, 226
OpticStudio, 126
optimization algorithms, 131
opto-thermal coefficient, 72
orthogonal descent, 131
Oslo, 126

parabolic mirror, 178
paraboloid, 22
partial dispersion, 68
Paul Rudolph, 91, 149
periscopic lenses, 39
periskop lens, 41
Petzval objective, 137
Petzval sum, 22, 36, 137
Petzval surface, 37, 226
phase function, 78
photopic, 128
pinhole camera, 54
pixel, 189
planar lens, 149
plane symmetric system, 215
plane symmetry, 226
plastic flow, 194
plastic injection molding, 187
point spread function, 104
polynomial surfaces, 24
positive lens, 226
prescription table, 226
Pressman-Carmichel, 180
primary aberrations, 13
prime lens, 197
principal plane, 226
principal points, 7, 226
principal ray, 226
principle of symmetry, 20, 226
probability density function, 118
protective chamfer, 112
pupil aberration, 10, 154
pupil coma, 158
pupil distortion, 159
pupil spherical aberration, 156
pupil walking, 157

R. Shack, 100
radiance theorem, 55
radiant energy, 54
rapid rectilinear, 89
ray aiming, 47
ray tracing, 44
ray tracing equations, 44
ray tracing pitfalls, 47
real image, 226
real ray, 44, 226
reference sphere, 12, 226
reflectance, 165
refraction invariant, 9
refractive power, 8, 226
relative aperture, 17, 226
relative illumination, 56, 226
relaxed, 139
resolving power, 101
retro-reflection, 169
reverse ray tracing, 48
reverse telephoto lens, 96
Ritchey-Chretien, 180
Roossinov lens, 59
root sum square, 116
Ross Optical, 175
rotational invariants, 13, 226
Rudolf Kingslake, 1

S. Sato, 201
sag, 226
sagittal, 226
sagittal field curve, 37
sagittal plane, 226
sampling, 128
scaling a lens, 133
Schmidt camera, 178
Schott formula, 52
Schwarzschild, 181
scotopic, 128
secondary spectrum, 75
Seidel sums, 16, 226
Sellmeier formula, 52
sensitivity analysis, 113
sequential, 46
shape factor, 31
short flint, 162
shrinkage, 194
simplex method, 131
simulating annealing, 131
sine condition, 58, 218
single lens reflex, 201
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single pass, 27
skew ray, 7, 227
skill of lens design, 1
Snell’s law, 7, 227
solves, 127
spatial frequency, 105
spatial frequency spectrum, 105
spectral bandwidth, 189
spectral sensitivity, 128
Spherical surfaces, 21
spherochromatism, 71, 227
splitting a lens, 133
spot diagram, 102
standard deviation, 116
stigmatic, 227
stop aperture, 227
stop shifting, 19, 227
stop shifting parameter, 35
stray light, 48, 164, 227
Strehl ratio, 100
stressed, 139
structural aberration coefficient, 31, 227
surface figure, 112
surface pickups, 127
Sweatt model, 79
Synopsys, 126

T. Cooke & Sons, 144
tangential field curve, 37
tangential plane, 227
telecentric, 227
telecentricity, 8
telephoto lens, 93, 227
test plates, 112
thermal aberrations, 64
thin film, 165
thin lens, 30, 227
ThorLabs, 175
tolerances, 110
tolerancing process, 110
total indicator runoff, 112

total internal reflection, 164
total track length, 93, 187, 227
translational symmetry, 28
transverse magnification, 8, 227
transverse ray aberration, 227
triplet lens, 227
turned down edge, 112

uniform illumination, 61
user defined surface, 29
UV, 227

variables, 127
variator, 196, 227
varifocal, 196, 227
veiling glare, 227
vertex, 227
vidicon tube, 188
vignetting, 227
vignetting factors, 48
virtual image, 227
ν-number, 65, 227

Warren Smith, 1
water absorption, 194
wavefront, 227
wavefront deformation, 12
wavefront variance, 41
weighted power, 139
weights, 127
Wollaston periscopic lens, 30
working distance, 228
working F/#, 228
worst case, 113
worst offender, 114

zero dispersion, 50
zonal aberration, 228
zoom lens, 196, 228
zoom ratio, 196, 228
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