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Preface

The skill of optical design, like many other skills, is acquired with a great deal
of practice. The purpose of this textbook is to illustrate the techniques needed
in optical design and to provide practice in their use. As with any skill or
craft, one cannot teach or explain how to design a specific new product.
Instead, the basic elements of the skill are presented and some examples of
good, or clever, work are shown with some analysis. It is up to the reader
to work through the examples given in the text and other problems given
by the instructor or presented on the job. Through practice, the designer will
develop his or her unique approach to the process.

The great pleasure of design work is to propose a design, determine its
properties, check these against the requirements for the real system, and
modify the design to enhance its usefulness. It is the imaginative working out
of the design within the constraints of the real world that results in the initial
frustrations and final delight of a good design.

This textbook is intended to provide the reader with the elements of modern
optical design. The basic process is that of tracing of light rays through the
optical system and the evaluation of the results. Until two decades ago this was
sufficient for most optical systems. Now that lasers, modulators, and scanners
are common components in many systems, they must be considered as part of
the design process. It doesn’t get any easier, but today it’s a lot more fun.

The organization of this text differs somewhat from that of most optics
texts. In most cases one starts with an exact ray trace and, after having derived
the correct equations, performs a calculation. Then approximations are made
to simplify the equations, first to the paraxial case and then to the thin lens
equation. While this approach leads to simplicity in the derivation of all subse-
quent equations once the original ones are obtained, it does not provide an
approach that approximates the usual design process—simple first, complex
later.

As will be noted in an examination of the table of contents, the text begins
with a review of optics usually taught in a sophomore physics course. This
material is, for most people, the first, last, and only optics they will ever have—
unless they have to design an optical system. Then they will need to know
considerably more optics. However, this does not mean that the thin lens

vil



viii PREFACE

equation and other simple concepts have no place in optical design. On the
contrary, it is these elementary ideas, already understood by most people, that
provide the basis for quick back-of-the-envelope calculations. By building on
this basic information we hope to give the reader some feel for rapid assessment
of preliminary designs and a measure of confidence in his or her present abilities.

After developing a procedure for ray tracing through thin lenses, the ideas
and terminology of stops are discussed. At this point the subject of radiometry
is introduced with the belief that the sooner energy considerations are brought
into the design of an optical system the better the overall design will be. Follow-
ing this, the paraxial approximation is introduced to treat thick lenses and
multiple-surface lens systems and color correction. Finally, the exact ray trace
equations are derived and the effects of aberrations and their correction are
explored.

Once these basic principles are in hand, we can progress to some optical
design problems that are now important in today’s technology. Gaussian beam
propagation is such a problem, since many systems involve lasers as their
primary light source. Another problem usually connected with lasers is deflec-
ting and scanning systems. The final subjects in the text are the active com-
ponents that are introduced into the optical system, such as modulators and
detectors, and the design of optical systems.

There are a large number of subjects that are not covered in this text. They
include optical fabrication, testing procedures, lasers, optical fibers, and off-axis
systems, among other subjects. The field of optics is too large to encompass all
possible design considerations in a single text. Additional references are
provided at the end of most chapters. Even in those cases where we have pro-
vided information in a particular field, we have restricted it to the coverage
needed to progress in mastering the design techniques. Since this information
has been distributed throughout the text, the index should provide a means for
a reader to review a particular area. Additional material on specific components
and products can be obtained from manufacturers and suppliers. When this
text is used in a course, it is a good idea for the instructor to distribute such
material so that the student gets some feel for the type and thoroughness of the
information (or lack of it) from suppliers.

1 hope this text can serve both as a basis for a formal course in optical design
and as a tutorial for individual readers. To the teacher, I offer one piece of
advice: Give lots of homework and provide as much computer assistance as
possible to prevent the work from becoming tedious. I ask for some assistance:
Tell me of any errors in the text and let me know how the examples work. To
the reader I extend my sincere wish that he or she will find the time spent with
this text both profitable and enjoyable!

DonaLp C. O’SHEA

Atlanta, Georgia
June 1985
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1

A Review of Elementary Optics

(WHAT YOU ALREADY KNEW,
BUT MAY HAVE FORGOTTEN)

Most people who have had a physics course in high school or college learn a
little about optics that proves useful in their daily life. They understand how a
lens works and how a mirror can focus the sun’s rays. Some may remember
the thin lens equation, Snell’s Law, and simple ray tracing principles. They
realize that the field of optics has expanded greatly since their last exposure. If
they are uneasy at the prospect of trying to design an optical system, it is
understandable, but unnecessary. All of the material on optics presented in
basic physics courses is valid for optical design, and the simple approaches
taught in these courses are particularly useful in the preliminary stages of a
design. In this book, we begin with the ideas and facts of elementary optics and
build on them. This chapter serves as a brief tutorial for those who have never
had optics and as a review for those who have not thought about optics for
some time. If you have a good idea of basic optics, skim through this chapter
and do a few of the problems at the end of the chapter to check your
understanding of the material. Notice that the material goes beyond geometri-
cal optics and covers, briefly in Section 1.7, some topics in physical optics.

One of the methods introduced in this chapter is called ray sketching. In
Chapter 2 we discuss the method of tracing light rays through a system of thin
lenses, and in later chapters we cover more accurate methods of ray tracing.
Ray sketching, as opposed to ray tracing, is a method for rapidly drawing rays
to determine some of the distances and dimensions of a newly proposed
system. It is a means of putting onto paper for the first time the ideas for an
optical system for criticism, revision, and refinement. This means of thinking
graphically rarely solves anything, but it does serve to clarify and restate many
questions that must be answered by a successful design.

1.1. LIGHT
When we think of optics, we are usually thinking in terms of visible light. But
light is just electromagnetic radiation that we can see. The laws of optics and

the methods of optical design may be used with radiation at any wavelength,
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Figure 1.1. The electromagnetic spectrum.

even those radiations invisible to us. Figure 1.1 displays the extent of the
electromagnetic spectrum and its regions with some arbitrary boundaries. In
some of these regions the methods for focusing and reflecting may be some-
what exotic, but the laws still apply. For example, in the x-ray region there
are no materials with substantial refracting power to be made into lenses, so
all focusing and imaging is done with mirrors. Because of our basic prejudice
in favor of visible light, most of the illustrations and calculations are chosen
from this region of the spectrum, but the methods we discuss can be used
across much of the spectrum.

The visible light spectrum extends in wavelength from about 400 nm (blue)
to 700 nm (red). It 1s in the center of the spectrum (555 nm) that the sensitivity
of the human eye is greatest. A continuous spectrum that spans the visible
region and extends far into the infrared can be produced by heating a tungsten
filament to 2900 K. A plot of intensity versus wavelength for a typical source is
shown in Fig. 1.2.

Not all light sources emit in a broad continuum like the tungsten filament.
An electrical discharge in a gas, like the glowing tube that makes up a neon
sign, emits a series of discrete wavelengths. When a source such as a hydrogen
discharge illuminates a slit and the light passing through the slit is broken up
into its separate colors by passing it through a prism, the spectrum consists of
a number of images of the slit, a series of lines of different colors. Because of
this multiline appearance, the term “line” is used interchangeably with “wave-
length” to designate a particular color of light.

In a sodium discharge, similar to those seen in the bright yellow lamps that
illuminate many of our streets and highways, the emission is primarily in two
lines at 589 and 590 nm. The hydrogen spectrum is made up of a series of
strong lines that show up not only in a discharge tube, but also in the
spectrum of the sun.* Some of these lines of hydrogen and sodium are

* They do not appear as bright lines in the spectrum of the sun, however, but as dark lines on the
broad solar continuum. This is because these elements in the outer atmosphere of the sun are
cooler and absorb light at these wavelengths.
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Figure 1.2. Spectra of blackbody radiation of 2870 K and mercury discharge emission.

Table 1.1. Spectral Lines and Refractive Indices of Two Glasses

Fraunhofer Lines Crown (K-50) Barium Flint (BaFN-10)
# 523601 # 670472

Designation  Element A(nm) n n
t Hg 1014.0 1.51266 1.65500
b(orr) He 706.5 1.51839 1.66343
C H 656.3 1.51992 1.66580
C’ Cd 643.8 1.52034 1.66647
D Na 589.3 1.52249 1.66991
d He 587.6 1.52257 1.67003
e Hg 546.1 1.52464 1.67341
F H 486.1 1.52861 1.68000
F Cd 480.0 1.52911 1.68083
g Hg 435.8 1.53333 1.68801
h Hg 404.7 1.53725 1.69483
i Hg 365.0 1.54395 1.70686
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prominent lines found in the solar spectrum. They were labeled by the solar
scientist, Joseph von Fraunhofer, with letters of the alphabet. For example, the
sodium lines listed above are often referred to as the D lines. In Table 1.1 we
list a number of the important Fraunhofer lines along with their wavelengths,
and we mark their position in the spectrum in Fig. 1.2. With the invention of
the laser, sources are now available that can produce intense outputs at a
single wavelength. In addition, the directional properties of lasers are quite
different from other sources of light. We will use all of the sources just
described to illuminate our designs and our problems.

The wavelengths for the Fraunhofer lines listed in Table 1.1 are those for
light traveling in a vacuum at a speed of 3 x 108 m/sec. In any material
medium, the speed and wavelength of light are less than the values in a
vacuum. The quantity that remains constant in any medium is the frequency
of the light. If we designate 1, as the vacuum wavelength and ¢ as the speed of
light in a vacuum, the relation between frequency and wavelength is

Vo = C. (1.1)

In optics, the properties of this medium at a particular wavelength can be
described by a single constant,* the ratio of the vacuum light speed divided by
the speed in the medium,

n="<. (12)
v

Thus in a material medium, Eq. (1.1) becomes
vl =, (1.3)

where A, the wavelength in the medium, is equal to Ay/n. [See Problem 1.1]
This number n, the index of refraction, is all that is needed to calculate the
behavior of light in the medium.

Because the velocity of light varies with the medium, it can be difficult to
keep track of the progress of a wave as it travels through several media.
Suppose x, is the distance that light travels in a vacuum in time ¢ (x, = ct). In
the same time interval ¢ the wave travels a short distance x, in a medium with
refractive index n,. That is,

*This is true if there is no absorption of light at that wavelength. Otherwise the absorption
coefficient of the medium must be included as a second constant.
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For other media with refractive indices n,, ns, . .., the distance traveled in a
time ¢,

Ct ct
Xy = —I; Xy = —1li....
n, n3

If all of these equations are multiplied by their respective refractive indices,
then all of these quantities are equal to the vacuum distance,

Xp = N1Xy = NyXy = N3X3 = -+« = cl. (1.4)

Thus there are distances equivalent to the vacuum distance, called the optical
path length. With this quantity, the distance of light traveled in any medium
may be compared to that in any other medium.

The refractive index is not a constant but varies as a function of wave-
length. The presence of this variation is called the dispersion of the material.
This property is both useful and vexing. On one hand, it is dispersion that
enables a prism to spread the light from a source into its spectrum, but, on the
other hand, it causes color distortion of an image (chromatic aberration)
formed by a single lens. In Table 1.1 the values of the refractive index at a
number of wavelengths are listed for two common optical glasses. Not only
are the values different, but the rate of change of the refractive index with
wavelength is different for these two glasses. A number that indicates the
amount of the dispersion for a glass is the V-number, or Abbe number, defined
by

V= ng—1

(1.5)

np — ne’

where ny, np and n, are the refractive indices at the Fraunhofer wavelengths
indicated by the subscripts. (Since the D line of sodium actually is made up of
two lines, the d line of helium is used to define ¥V in many modern glass
catalogs.) Because the dispersion is greatest when np — nc is largest, glasses
with the strongest dispersion have the smallest V-numbers. The V-numbers for
both of the glasses in Table 1.1 are given within the glass number (see below).
Using Equation (1.5), check these values for yourself [Problem 1.2].

While many glasses have special names, all glasses can be labeled by their n,
and V. (See box, The Glass Map.) The glass number is a six-digit number
whose first three digits are the three most significant digits of n, — 1 and
whose second three digits are 10 times the V-number. For example, the glass
number for a crown glass (n; = 1.53200 and V = 58.7) is 532587. Because
each glass manufacturer has slightly different recipes for glasses with the same
designation, glass numbers can vary from source to source.
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THE GLASS MAP

The number of glasses with differing n, and V-number is in the neigh-
borhood of 250. Glasses can range in n, from 1.46 to 1.97 and in V-
number from 20 to 85. This bewildering array of glasses can be mapped
on coordinates of n, and V. (The glasses are plotted in a vertical axis by
increasing n, and on the horizontal axis by decreasing V.) With such a
map, a designer can locate the closest match to a glass made by another
company or determine the range of V-numbers that are available for a
particular n,.
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Although the number of glasses is large, only a fraction of them are
used regularly. Based on the cost, ease of optical fabrication of surfaces,
thermal stability, and uniqueness (the fact there are no other glasses with
a similar n; and V in that region of the map), about 50 glasses can be
chosen as “select” glass types [Ref. 5.2]. The various areas of the map
are marked with the type of glass found in that area. Notice that all of
the types end in either a “K” (designating a crown glass) or an “F”
(designating a flint glass). The border between the two areas at V' = 50
for n;, > 1.60 and at V = 55 for n; < 1.60 has been drawn in. Another
boundary imposed by the materials available is the lower boundary of
values that extends from the low index and high V-numbers on the lower
left to the high index and low V-numbers on the upper right. When all
available glasses, not just the select ones plotted here, are marked on the
map, about one third of the glasses cluster about this curve, known as
the “glass line.” A list of the glass numbers for these select types and the
most common designation is given in Appendix A.

1.2. LAWS OF GEOMETRICAL OPTICS

There is no need to convince anyone that light travels in straight lines. When
we see rays of sunlight pouring between the leaves of a tree in a light morning
fog, we trust our sight. The idea of light rays traveling in straight lines through
space is accurate as long as the wavelength of the radiation is much smaller
than the windows, passages, and holes that can restrict the path of the light.
When this is not true, the phenomenon of diffraction must be considered, and
its effect upon the direction and pattern of the radiation must be calculated.
However, to a first approximation, when diffraction can be ignored, we can
consider that the progress of light through an optical system may be traced by
following the straight line paths or rays of light through the system. This is the
domain of geometrical optics.

Part of the beauty of optics, as it is for any good game, is that the rules are
so simple, yet the consequences so varied and, at times, elaborate, that one
never tires of playing. Geometrical optics can be expressed as a set of three
laws:

1. The Law of Transmission. In a region of constant refractive index, light
travels in a straight line.

2. Law of Reflection. Light incident on a plane surface at an angle 8, with
respect to the normal to the surface is reflected through an angle 6, equal
to the incident angle (Fig. 1.3),

6 =0, (1.6)
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Case |. ;< n, Case Il n;>n,

Figure 1.3. Reflection and refraction of light at an interface.

3. Law of Refraction (Snell’s Law). Light in a medium at refractive index n;
incident on a plane surface at an angle 8, with respect to the normal is
refracted to an angle 6, in a medium of refractive index n, as (Fig. 1.3),

n;sinf; = n,sin 6, . 1.7

A corollary to these three rules is that the incident, reflected, and transmitted
rays, and the normal to the interface all lie in the same plane, called the plane
of incidence, which is defined as the plane containing the surface normal and
the direction of the incident ray.

Note that the second of these equations is not written as a ratio of sines, as
you may have recalled it from your earlier studies, but rather as a product of
nsin 6. This is because the equation is unambiguous as to which refractive
index corresponds to which angle [Problems 1.3 and 1.4]. If you remember it
in this form, you will never have any difficulty trying to determine which index
goes where in solving for angles. In Example 1.A, we examine the dispersion of
flint glass using Snell’s Law.

A special case must be considered if the refractive index of the incident
medium is greater than that of the transmitting medium, (#; > n,). Solving for
0,, we get

. n; .
sinf, = —sin 6;.
n!

In this case, n;/n, > 1, and sin 6; can range from O to 1. Thus, for large angles
of 6;, it would seem that we could have sin 6, > 1. But sin 6§, must also be less
than one, so there is a critical angle 6, = 8., where

sinf, = & (1.8)
n

i
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EXAMPLE 1.A. Consider aray of white light in air (n = 1) incident on
a piece of flint glass (670472) at an angle 8; = 60°.
What are the directions of the rays for the C, D, and g lines?

Solution: We may solve the transmitted angle 6, by:

P, SIN 01' = Metint Sin 91,

1-sin60° /3

sin 0, = = .
Pelint 216

From Table 1 we use the refractive indices given for glass number 670472
for the D line, ngy;, = 1.66991; 8, = sin~! (0.5186) = 31.24°, for the C
line; gy, = 1.66580; 6, = sin™ ! (0.5199) = 31.32°, for the g line; ng;,, =
1.68801:; 6, = sin™ ! (0.5130) = 30.87°. Thus the wavelength dependence
of the refractive index resulted in a spreading (dispersing) of the beam
into its various colors. The angle between the two extreme colors
calculated here is 0.45°, or 27 minutes of arc. If we follow the rays for the
different colors to a second interface of a prism [Problem 1.5], we see
that the colors will be dispersed even more.

and sin 6, = 1. This means the transmitted ray is traveling perpendicular to the
normal (i.e., parallel to the interface), as shown in Fig. 1.4. For incident angles
0, greater than 6, = sin™ '(n,/n;), no light is transmitted. Instead the light is
totalty reflected back into the incident medium. This effect is called total
internal reflection. As illustrated in Fig. 1.5, prisms can provide highly reflect-
ing nonabsorbing mirrors by exploiting total internal reflection [Problem 1.6].

n, < m;

Figure 1.4. Three rays incident at angles near or
at the critical angle. Ray @) is transmitted into
medium 2; ray Q) is incident at the critical angle,
6., the light traveling along the surface of the
interface; ray (3 is incident at an angle greater
than 6_and is totally internally reflected.
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45° 45°

A 45°

45°

Figure 1.5. Total internal reflection from prisms.

Total internal reflection is the basis for the transmission of light through
optical fibers. We do not cover the design of optical fiber systems in this text
because the application has become highly specialized and more closely linked
with modern communications theory than geometrical optics. This is not to
say that the launching, transmission, and collection of light with optical fibers
do not produce interesting problems, but only that they are not amenable to
the design procedures discussed in this book.

1.3. MIRRORS AND LENSES—RAY SKETCHING

One of the most useful tools in optical design is a rapid study of the
components of a system, their placement, and the light paths through them.
It is analogous to the quick sketches that a painter makes before deciding
on a final composition. In its most primitive form a preliminary design will
begin with an objective, often unstated. Then a series of lenses, mirrors,
prisms, modulators, detectors, and other optical components are laid out in
a sequential fashion with a few important rays drawn through the compo-
nents along paths that roughly approximate those obtained by a ray trace
calculation.

In most optical designs, the imaging components—the lenses and curved
mirrors—are symmetric about a line, called the optic axis. This line is drawn
first, in order to establish a reference line for the system. An optical surface,
such as a concave mirror, is then drawn so that its center of curvature falls on
the optic axis. (The point where a surface is cut by the optic axis is called the
vertex of that surface.)

By drawing rays through a system, one can determine the advantages and
disadvantages of the system. There are conventions for tracing rays; although
not universally accepted, these conventions have sufficient usage that it is
convenient to adopt them for sketches and calculations.
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1. An object is placed to the left of the optical system. Light is traced
through the system from left to right until a reflective component alters the
general direction.

Although one could draw some recognizable object to be imaged by the
system, the simplest object is a vertical arrow. (The arrow, imaged by the
optical system, indicates if subsequent images are erect or inverted with respect
to the original object and other images.) If we assume light from the object is
sent in all directions, we can draw a sunburst of rays from any point on the
arrow. An image is formed where all the rays from the point, that are
redirected by the optical system, again converge to a point. In which case, any
two rays can locate the image point. If all of the rays from the object point do
not converge to a point, then the system has aberrations which may be
minimized by additional design, as we shall see later.

A concave mirror is the simplest image-forming device. If the object is
placed very far away (“at infinity” is the usual term), the rays from the object

(a) Concave mirror

{b} Convex mirror

Figure 1.6. Focusing of parallel light by spherical mirrors.
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Figure 1.7. Imaging of an object point by a spherical mirror. A real inverted image with respect
to the object is formed by the mirror.

are parallel to the optic axis and produce an image at the focal point of the
mirror, a distance f from the mirror (the distance f is the focal length of the
mirror), as shown in Fig. 1.6(a). The position of this focal point is one half of
the radius of curvature of the mirror (Section 1.4). A convex mirror also has a
focal point, as shown in Fig. 1.6(b). However, in this case, the parallel rays do
not converge to a point, but instead appear to diverge from a point a distance
f from the mirror.

Although it is possible to draw many rays through the system, as in the
elaborate drawing shown in Fig. 1.7, a few special rays, easily sketched, can
give the same information. For a mirror, the rules are:

2. A light ray parallel to the optic axis of a mirror will pass, after reflection,
through the focal point, a distance f from the vertex of the mirror.

3. Light rays through the focal point of a mirror will, after reflection, be
reflected parallel to the optic axis.

4. A light ray reflected off the vertex point makes an equal angle with the
optic axis, as does the incident ray.

5. A light ray directed through the center of curvature is reflected back on
itself.

In Example 1.B the formation of an image by a concave mirror is shown.
Notice that the rays cross at a point in space. If you were to put a screen at
that point you would see the image in focus there. Because the image can be
found at an accessible plane in space, it is called a real image [Problem 1.7].
For a convex mirror, the rays from an object do not cross after reflection from
the surface, as shown in Fig. 1.8, but appear to come from some point behind
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EXAMPLE 1.B. A concave mirror of focal length f (= R/2) images an
object located at a distance of 4f from the mirror. Sketch the resulting
image.

Solution: Draw the mirror and indicate its approximate center of
curvature and then draw the optic axis. (See box, Hints On Ray Sketching).
Draw a mirror normal (i.e., radius) and put tic marks on the optic axis for
the focal point and center of curvature.

e — — R ——>

| ;>/ L

Draw in the parallel ray (D and reflect it through the focus. Send one @
through the center of curvature.

\.

Although two rays are sufficient, you can also draw a ray @ through the
focus and reflect it parallel to the axis. You can also reflect a ray @ off
the vertex of the mirror. Any two of the four rays will locate the image.

Which rays you use will depend on the circumstances. It should be
pointed out that the first two rays illustrated here intersect at an oblique
angle and therefore locate the object with less chance of error when
sketching than the last two, which meet at an acute angle.
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Figure 1.8. Ray trace of an object in front of a convex spherical mirror. Ray (D is directed toward
the center of curvature of the mirror and therefore is normal to the surface and returns on itself.
Ray @ is directed toward the focal point of the mirror (since the mirror is convex, it is negative
and lies behind the mirror), is reflected paraliel to the optic axis. Ray (3 is a single reflection off the
vertex point.

the mirror. This image, which cannot be observed on a screen at some point in
space, is called a virtual image. The image you see in the bathroom mirror in
the morning is a virtual image [Problem 1.87]. One can also produce a virtual
image with a concave mirror if the object is located between the vertex and
focus of the mirror [Problem 1.9]. The labels, “real” and “virtual”, do not
imply that one type of image is useful and the other is worthless. They simply
indicate whether or not the rays redirected by the optical system actually
Cross. ,

Just as with mirrors, lenses can form both real and virtual images. In Fig.
1.9, a number of different lenses are labeled. Those lenses whose axial thickness
is larger than their edge thickness will converge parallel light and have positive
focal lengths. Those with a smaller axial thickness than edge thickness will
diverge parallel light and have negative focal lengths.

Much of the nomenclature and methodology used for mirrors holds true for
lenses. The rules for sketching rays are analogous to those for mirrors. We
have used numbers with a prime to indicate the counterpart to the rule for a
mirror.

2. A light ray parallel to the optic axis of a lens will pass through the focal
point, a distance f from the vertex of the lens.

3. A light ray through the focal point of a lens will be refracted parallel to
the optic axis.

4. A light ray through the center of a lens is undeviated.
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HINTS ON RAY SKETCHING

1. Use quadrille paper (a paper with a square grid printed on it)
whenever possible. Not only does it reduce the need for straight
edges, it also allows you to do some rough scaling of the system. If
there is no quadrille paper available, use whatever is handy at the
time.

2. Do not try to fold the design on the first sketch. Wait until you
sketch in some marginal and chief rays (see next chapter) before
trying a folded sketch.

3. Draw the lens surfaces first, then lay down the optic axis. It is easier
to draw a straight line than a circle, so one can always “fit” an optic
axis into the sketch after some arcs have been drawn and their center
of curvatures estimated. (A convention followed in this text is that
the optic axis is denoted by alternating long and short dashed lines,
surfaces by solid lines, rays by solid lines with arrows, and ray
extensions (used to find virtual images) by short dashed lines. Virtual
objects are also drawn using short dashed lines.)

4. When an axis is redirected by a mirror or scanner, draw the new axis
first, then bisect the angle between the axes. This provides a mirror
normal and makes it easy to orient the mirror correctly.

5. When in doubt, use boxes (black ones, if you prefer). Do not nail
down a ray sketch with too much detail before it is appropriate.

6. Except for specific errors in a sketch, do not erase. Generate

additional sketches. Paper is cheaper than the time lost retracing a
good idea overdrawn with a not-so-good idea.

There is no counterpart to Rule 5 for lenses. The application of these rules is
shown in Example 1.C and explored in Problem 1.10.

Plano-convex Biconvex Meniscus Plano-concave Biconcave Meniscus

|
1
l
I
I
I
l
|

Figure 1.9. Examples of some common types of lenses.
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EXAMPLE 1.C. Sketch the rays for two lenses of equal focal length
but opposite sign. The object in both cases is located 2f from the lens.

Solution: Draw the lens and then the optic axis with the object and

focal length noted. Draw the undeviated ray () through the center of
the lens,

©)
®

then draw the ray through the focus of the lens @ which becomes a
parallel ray upon passing through the lens. The intersection of these two
rays locates the object. The third ray (3, parallel to the axis will, after
refraction by the lens, also go through the focus and then the image
point.

' o
®

The negative lens reverses the roles of the two focal points. Starting as
before, we lay out the system, but the ray parallel to the optic axis (D
diverges from the axis and appears to come from the focal point in the
object space. Usually the extension of the apparent ray is drawn with a
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dashed line, as shown. The undeviated ray @) crosses the extension of the
deviated ray, locating the virtual image. The ray that is parallel to the
optic axis after refraction 3 was directed at the other focus. The
extension of this parallel ray back into object space also crosses the top
of the virtual image, located by the first two rays.

Most optical systems contain more than one léns or mirror. Combinations
of elements are not difficult to handle [Problem 1.11] according to the
following rule:

6. The image of the original object produced by the first element becomes the
object for the second element. The object of each additional element is the
image from the previous element.

In Example 1.D is a sketch of the rays for a compound microscope. More
elaborate systems can be handled in a similar manner. In many cases the
elaborate systems can be broken down into simpler systems that can be handled
separately, at first, then joined together later.

EXAMPLE 1.D. Given two positive lenses, focal lengths f; and f,. The
first lens provides a three-power magnification and produces an in-
termediate image halfway between the front focal point of the second
lens and its vertex. Sketch the rays for this system.

Solution: Draw the first lens (or if space is tight, just its centerline, as
shown in the diagram) and its optic axis. Then draw the undeviated ray
through the middle of the lens. Pick a point on the object side of the lens
and then another point three times as far from the lens on the image side.

Draw parallel rays to the lens from the heads of the object and image.
Then connect these to their respective image and object. The points
where they cross the axis locate the focal points. Draw the second lens
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/ "\!\_; - 1[ -

and locate the front focal point and vertex of the second lens equal
distances from the real image, then add the back focal point. Draw the
undeviated ray through the second lens and draw a parallel ray to the
second lens and through the back focus. Note that the rays diverge from

P

\Z

each other. Extend the rays forward, using dashed lines, to a point where
they cross. This locates the virtual image, magnified and inverted with
respect to the original object.

When a system requires large lengths to accomplish some design objective,
it is sometimes necessary to “repackage” it into a more compact volume. It is
then that folding mirrors and prisms can be used to turn an axis at right angles
to itself or to fold it back on itself. There can be other constraints, such as
changing a horizontal axis to a tilted axis for ease of observation, as in a
microfilm projector shown in Fig. 1.10, or just “getting the optical system out
of the way” to make room for mechanical components that cannot be so easily
“rerouted.” Usually the design is done in an unfolded configuration. Then,
noting those regions where a mirror would not interfere with the components
of the system, the system is folded to fit the space. Sometimes this exercise
forces one to reconsider the original design because the system will not fold
conveniently. It is this interaction between elementary optics and practical
considerations that presents some interesting problems for the designer in the
early stages of the design.
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v Ground
b glass

screen

Condensor
lenses

Folding
mirror

Projection
lens

Figure 1.10. Folding a projection system to produce a more compact design and convenient
screen orientation.

1.4. MIRRORS AND LENSES—CALCULATIONS

Thus far we have not put any numbers with the examples we have shown.
While there are precise graphical methods for assessing an optical system, ray
sketching is only used as a design shorthand. It is through calculation that we
can determine if the system will do what we want it to. And it is only through
these calculations that we can specify the necessary components, modify the
initial values, and understand the limitations of the design. After settling on a
sign convention for ray tracing, we shall derive some simple equations for
mirrors and thin lenses.

Rays traced close to the optic axis of a system, those that have a small angle
with respect to the axis, are most easily calculated because some simple
approximations can be made in this region. This approximation is called the
paraxial approximation, and the rays are called paraxial rays. This approxi-
mation can be used to derive the focal length of a spherical mirror.

A parallel ray close to the optic axis strikes the mirror at a point A, as
shown in Fig. 1.11, at an angle # to the normal to the mirror. The ray is
reflected from the surface at angle 6 and crosses the optic axis at the focal
point C. The normal at the point A4 is a radius of the mirror centered at point
O on the optic axis. Thus OA4 is equal to the radius R of the mirror. Because
the incident ray and the axis are parallel, the angle 40C is also equal to 6,
thus triangle A0C is an isosceles triangle and AC = OC. As the angle 0 gets
smaller, AC = BC = f, the focal length and BO = AC + OC = 2AC = 2f.
But BO = R; therefore f = R/2, for rays close to the axis. For concave
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Figure 1.11. Geometry for the derivation of
focal length for a concave spherical mirror.

mirrors the focal length is positive; for convex mirrors it is negative, as can be
demonstrated by ray sketching with parallel incident rays.

As we examine parallel rays further from the optic axis, we find that after
reflection they cross the axis at a point closer to the vertex of the mirror than
the focus for small angles. This variation in the focal point with incoming ray
height is a defect of a spherical mirror and is called spherical aberration. For
the case of incident parallel rays it can be corrected by changing the shape of
the mirror from a sphere to a parabola. The prescriptions for other object
distances are different. Later on, we shall consider such aberrations; for the
present, we assume that all our rays are paraxial rays, which exhibit no
aberrations.

Before proceeding, a set of sign conventions should be set down for the thin
lens calculations to be considered next and for the paraxial (Chapter 5)
calculations to be done later. We use a standard right-handed coordinate
system with light propagating generally along the z axis.

1. Light initially travels from left to right in a positive direction. (Refractive
indices are positive in this case.)

2. Distances to the right of a component (or surface) are positive; to the left,
negative.

3. Heights above the axis are positive; below the axis, negative.

4. The radius of curvature of a surface is positive if its center of curvature lies
to the right of its vertex; to the left, negative.

5. Focal lengths of converging elements are positive; diverging elements have
negative focal lengths.

6. Light traveling in a negative direction (i.e., in the z-direction), is traced in
exactly the same manner except that (a) distances are reversed in sign (left,
positive; right, negative) and (b) the signs of refractive indices are negative.

The change in the sign of distances holds both for inserting a value in an
equation and for determining the image distance after calculation.

Having settled on the sign convention for tracing rays, it will be obvious
after a re-examination of the derivation of the focal length of a spherical
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mirror, that there is an error. It is that a mirror with a positive focal length has
a negative radius of curvature (the center of curvature is to the left of the
mirror). To be correct then, the conclusion to the derivation should be:
f = —R/2. Note that this holds for a mirror with a negative focal length.

1.4.1. Mirror Equation

Next, we derive a simple equation relating the image distance to the object
distance and the focal length of the mirror. In Fig. 1.12 is an object a distance
t, in front of a mirror (¢, is negative because of Rule 2 above). A ray at a small
angle to the optic axis reflects off the mirror and crosses the axis at a distance
t, from the mirror. (Note that ¢; is positive because of Rule 6.) Since a ray
along the optic axis is reflected back along the axis, the two rays from the
object form an image at ¢,. If u, is the angle of the incident ray to the axis and
@ is its angle of incidence (and reflection) and y, is the distance of the reflection
point above the axis, we may write for small angles [ Problem 1.12]:

tan uy = sin uy = Uy = REN (1.9)
Also
~ ~ W
tan ul = SIn ul = ul = t_, (1.10)
1
tanagsinagaz—y—l— (1.11)
—R
G /
. Y
AT
7
>
] P
s
0
Yo s e
_ Uy _ _ //(X D u,
] C Y2 B s

L

Figure 1.12. Geometry for a derivation of the mirror equation.
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Since u, is the exterior angle to triangle ODA,

u; =20 + ug, (1.12)
and u, is also the exterior angle for triangle CDA,

uy=a+8.
Substituting for 8 in Eq. (1.12),
uy = 2(uy — o) + ug,

or

Uy + Uy = 20,

and using Eqgs. (1.9) to (1.11),

= -, (1.13)

If the object has a height y, and a ray is traced to the vertex of the mirror
(y; = 0), then the image at ¢, will have a height y,. From. Fig. 1.12 it can be
seen that the object and image heights are corresponding sides of similar
triangles. Thus

- Yo =—}’2
L) t,

The transverse or lateral magnification of a mirror, M, the ratio of the image
height to the object height, is simply the ratio of the image distance to the
object distance:

M= Y2 _ t; _ image distance
" yo to object distance

(1.14)
Not only does this ratio give the size of the final image, its sign also indicates
the orientation of the image relative to the object. A negative sign indicates the
image is inverted with respect to the object. The axial or longitudinal magnifi-
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cation M, can be shown to be the square of the lateral or transverse
magnification M,

M =M =-1, (1.15)

In referring to transverse magnification, an unsubscripted M will be used.
For any other magnification parameters a subscript will be provided.

1.4.2. Thin Lens Equation

We can derive the object—image relationship for a lens in a manner similar to
that used for the spherical mirror. With reference to Fig. 1.13 let us use two
rays from an off-axis object point, one parallel to the axis, and one through the
front focal point. We have a set of similar triangles ABC and BCD. In ABC,

Yo —D)2 _ =V2

— 1 S

and in BCD
Yo = V2 _Jo
5 S

Adding these two equations and dividing through by y, — y, we obtain the
thin lens equation [ Problem 1.13].

111
Lot (1.16)

ty ty f°

You may notice that this equation differs from the thin lens equation that you
may have learned in a general physics course—the two terms on the left side

A
A B
o = Yo Y2
. TN N
! f—] s
C D
V

Figure 1.13. Geometry for a derivation of the thin lens equation.
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are a difference rather than a sum, as in most elementary texts [Refs. 1.1 and
1.2]. This is only because the sign convention for object distances has been
reversed. As you will see later, this convention gives a means of easily and
consistently tracing rays through many surfaces.

The transverse magnification can be found from:

V2 v S _Ye—» b _ b (1.17)
Yo f Yo to Yo— Y2 to

It is the same as for mirrors. As in the case of the mirrors, the longitudinal
magnification is the square of the transverse magnification, Eq. (1.15).

For a thin lens of refractive index n, the focal length of a lens can be shown
to be

1 1 1
Tt 1)6{1 - E) (1.18)

where R, and R, are the radii of curvature of the first and second surfaces
encountered by the light ray [Problem 1.14]. This relation is known as the
lensmaker’s equation. While it is possible to derive this equation using Snell’s
Law and some small angle approximations, we shall hold the derivation until
the chapter on paraxial ray tracing, where it is easily derived and provides an
effective example.

The relationship of an image to an object for a positive focal length lens is
the same for all lenses. If we start with an object at infinity as it is moved
toward the lens we find from Eq. 1.16 that for a positive lens a real image is
located at the focal point of the lens (1/t, = 0, therefore t; = f), and as the
object approaches the lens the image distance gets larger until it reaches a
point 2f on the other side of the lens. At this point the object and images are
the same size and the same distance from the lens. As the object is moved from
2f to f, the image moves from 2f to infinity. An object placed between the
focal point and the lens gives a virtual, magnified image that decreases in
magnification as the object approaches the lens. For a negative lens, the
situation is simpler: starting with an object at infinity, a virtual image,
demagnified, appears to be at the focal point on the same side of the lens as the
object. As the object moves closer to the lens so does the image, until the
image and object are equal in size at the lens [Problem 1.15].

The calculation for a combination of lenses is not much harder than that for
a single lens. As indicated in the previous section on ray sketching, the image
of the preceding lens becomes the object of the succeeding lens [ Problem 1.6].
In Example 1.E we show a calculation for a two-lens system similar to the one
sketched in Example 1.D, and in Example 1.F we derive the focal length for
two thin lenses in contact using the same principle.
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EXAMPLE 1E. Given two lenses f; = 10 mm and f, = 55 mm, sepa-
rated by 160 mm. What are the locations, magnifications, and orien-
tation of the intermediate and final images if the object is located 11 mm
in front of the first lens? This example is similar to the Example 1.D.

fi fi fa f2

| - = o — - |

I I I
Solution: 1. Diagram the optical system

2. Firstlens calculation

to = —11mm I I I R

o ‘ L fi e 10 1111
t, 110

t; = +110mm. M, =-+="—"=-10.
te —11

Since ¢, is positive, the image is to the right of the first lens and is
therefore real. It is magnified 10 times, and because of the negative sign
of the magnification, the image is inverted.

3. Second lens calculation. The object distance for the second lens
t; = —160 + 110 = —50. (Note t, is negative since the intermediate
image is to the left of the second lens)

11 . 1 1 11
t, f, t, 55 50 550°

t, —550
t, = —550 mm, M2=i—=_—50—=11.

Since ¢, is negative, the final image is to the left of the second lens and
therefore is virtual. It is magnified 11 times and not inverted with respect
to the intermediate image, since the sign of the magnification was
positive.

4. Combined calculation. Total magnification is
M=M xM,=-10x11
= —110 times.

The image is virtual, 110 times magnified, and inverted with respect to
the original object.
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EXAMPLE 1.F. Given two thin lenses in contact, f; and f,, show that
their combined focal length is

1 1 +1
f;:omb fl f2‘

Solution: Here the thin lens formula is used twice. Starting with an
object distance for both the first lens and the combined system. The
image distance is

1 1 N 1
e it
But this is also the object distance for the second lens, so that

te +¢t, and 1 1+1 1+1
= nd —=—4+—=—+—.
0 ! Lt 2ot

Substituting for 1/,

4 —
v f2 i b

or

1 1 1 1 1

; —_=— 4 — = .
t to fi f2 Jfeom

Since t, is the object distance for the combination and ¢; is the image
distance for the combination, therefore,

1,11
f 1 f 2 f;:omb

acts as the focal length term for the combination.

1.5. SIMPLE OPTICAL INSTRUMENTS

Perhaps the simplest optical instrument that can be constructed is produced
by placing a lens in front of a screen and moving it back and forth in front of
the screen until an image is brought into focus, as shown in Fig. 1.14(a). When
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the lens is placed in the wall of a black box with film on the opposite wall
approximately one focal length away the result is a camera. By moving the lens
in relation to the film plane we can focus on subjects at different distances from
the box [Problem 1.17]. Through careful design of the lens, corrections can be
made to improve the camera for the use at hand, whether it is for taking
portraits or landscapes, for surveying at high altitudes, or for recording high-
speed events.

1.5.1. The Eye

The eye is also a single-lens camera. As shown in Fig. 1.14(b), it consists of the
front surface of the eye, the cornea, the lens, the iris, the vitreous humor, and the
retina. In contrast to the conventional camera, where focusing is accomplished
by moving the lens, the cornea and the lens of the eye remain fixed and the
focal length is changed by a bending of the lens by the eye muscles [Problem
1.18]. The iris limits the amount of light entering the eye, closing down in

(a)

Retina

(b}
Figure 1.14. Two examples of optical instruments. (a) the camera and (b) the eye.
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bright surroundings and opening in dim or dark environments. The maximum
opening is about 7 mm in diameter. Under optimum seeing conditions the iris
diameter is about 3.5 mm.

The eye muscles are most relaxed when the eye is looking at distant objects
(i.e., “focused at infinity”), so that many optical calculations involving the eye
are made under that assumption. However, for examining something critically
at short distances, there is a closest point at which the eye can see an object,
the near point. The distance from the eye to the near point is called the distance
of most distinct vision. For young eyes this distance is about 25 cm, and it gets
progressively longer as a person ages.

One of the terms used in the field of optics is conjugate. If you examine the
thin lens equation (1.16), you will notice that an object located at t, from the
lens and an image located at ¢, will satisfy the equation. The equation would
be equally true if the object and image distances were interchanged. The two
points are conjugate to one another. Unless they are equal, the image and
object distances are sometimes referred to as the short conjugate or the long
conjugate, depending on the relative sizes of the two distances. For example, in
the case of the eye, the object distance is the long conjugate and the image
distance is the short conjugate.

In the projector, the two conjugates are reversed. The object, usually a
small transparency, is magnified on a screen, as shown earlier in Fig. 1.10. The
image distance is now the long conjugate. The magnification of the projector is
just a ratio of the conjugates of the system.

1.5.2. The Magnifier

If the slide transparency is placed inside the focal point of a lens, the lens acts
as a simple magnifier providing the view with an erect, magnified virtual
image. The magnification of an object by an optical instrument is calculated as
an angular rather than linear magnification. The comparison is not between
the sizes of the image and object; it is instead a comparison of the apparent
sizes of the object as seen through the magnifier to the same object located at
the near point by the unaided eye. This magnification is an increase in the
angle subtended by the virtual image over the angle subtended by the object at
the near point. If D is the distance of most distinct vision and h is the object
height (Fig. 1.15(a)), then the angle subtended by the object before magnifi-
cation is

(X"—‘-B.

When the object is viewed by a single thin lens the linear magnification is

_h_ K
M=t=g
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Intermediate
image

(b) (c)

Figure 1.15. Magnifiers. (a) Object of height 4 subtends an angle « at the near point, a distance
D from the eye. (b) A simple magnifier. (c) A compound microscope, f, is the objective lens and
/, is the eyepiece.

The angle subtended by the image is (Fig. 1.15(b))

n h
B=—=—=—=
b b
Using the thin lens equation
p Sty
0 ’
-t
g= - -1

ft
The angular magnification is then

M=o MDD 1)
IoY ftl h f b
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There are two cases. If the object is to be viewed without strain, the eye should
be relaxed to view the image at infinity. In that case t; = oo, and

D
My =7,

where D is the distance of most distinct vision. If the eye is focused to view the
object at the near point (¢, = — D), the angular magnification is [Problem 1.19]

(image at infinity) (1.19)

D . .
M, = 7 + L (image at near point) (1.20)

In all systems in which the image is magnified to provide better seeing, such
calculations are required.

In some cases the magnification of a single lens is not sufficient. To
overcome this limitation a second lens is inserted (Fig. [.15(c)). The system
resembles the one sketched in Example 1.D. The objective lens, a very short-
focal-length lens, forms a real intermediate image magnified from 5 to 60
times. This real image is then examined using an eyepiece, which enables one
to observe a virtual image as in the case of a simple magnifier under a
combined magnification of 50 to 1000 times. It can be derived [Problem 1.20]
that for the compound microscope the angular magnification is

ty

g = —. (image at infinity) (1.21)
ty 12
for the image viewed at infinity or
t, (D . .
My =—-(++1 (image at near point) (1.22)
to \f2

for the image at the near point. A calculation for such a system is given in
Example 1.E [Problem 1.21].

1.5.3. The Telescope

Just as a microscope makes something close look larger, the telescope attempts
to do the same thing for objects far away. The simplest telescope consists of
two optical components of different focal lengths, separated by the sum of their
focal lengths. They may be either lenses or mirrors, as shown in Fig. 1.16.
They are arranged so that the long-focal-length lens is the objective and the
short-focal-length lens is the eyepiece. In comparison with most of the object
distances, the focal lengths of the components used in most telescopes are
small. Therefore the object may often be considered to be located at infinity
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Parallel rays
from top of tree
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Figure 1.16. Geometry for a derivation of the angular magnification of a telescope. In the top
picture the eye perceives the tree on the horizon as subtending an angle «. In the bottom, the tree
subtends the same angle o with respect to the objective, but the focusing of the light for the tree
to an intermediate image and the recollimation of the light by the second lens changes the angular
subtense to 8. To someone looking through the eyepiece (focal length, f,) the tree would appear to
be inverted and subtend an angle .

Intermediate

[Problem 1.22]. Since the object distance is so large, the magnification of a
telescope does not come from an increased image size, but from an increase in
the subtended angle of the image as was discussed in the previous section. For
example, a distant object such as a tree on the horizon will subtend a certain
angle « when observed by the naked eye. When this object is observed through
the telescope, the tree will appear to subtend an angle f§ that will be larger than
the original angle. As illustrated in Fig. 1.16, the ray through the center of the
objective subtends essentially the same angle «. The angle that the ray
subtends after passing through the telescope is f. We can relate these two
angles by using the thin lens equation for the eyepiece f, to find the point at
which the ray through the center of the objective crosses the axis. Using the
thin lens equation (1.16) on the second lens with an object distance equal to

Si+ /o

11 1
t, i A+f2
Now
—Y2 — Y2
o0 = ——"— and ==
Sy S
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so that the angular magnification of the telescope is

_E_‘J’2_f1+f2=_ l_ 1 .
Mte]escope_a - t2 ¥V, <f2 fl +f2> (fl +f2)
__f1 +f2 =“f1 | 1.23
A A (129

the ratio of the focal lengths of the two components.

Since all the rays are by assumption coming from infinity, the image is
formed at the focal plane of the first lens. And, since the focal point of the
second lens is at the intermediate image, the final image is at infinity. Because
both object and final image are located at infinity, the focal length of the
telescope is indeterminate. This is called an afocal system. Another afocal
system is the rangefinder. This is discussed in Chapter 4 as an example of an
optical system consisting of prisms and mirrors.

1.6. POLARIZATION

Polarization has no part in geometrical optics. However, it is essential that we
be able to understand and use the polarization properties of light in the design
of optical systems. For example, we can control the amount and direction of
light through the use of polarization. At this point we leave the realm of
geometrical optics, and for the rest of this chapter, explore some of the
concepts of physical optics that we will need for modern optical design.

Physical optics has as its basis the fact that electromagnetic radiation,
including light, is a combination of electric and magnetic waves oscillating at a
frequency v and with a wavelength 1 and propagating through a medium at a
velocity v which satisfies Eq. 1.3. In its simplest form, a monochromatic (that is,
single color) light wave consists of electric and magnetic fields that oscillate
sinusoidally with a frequency that is related to its color. Since electric and
magnetic fields are vector quantities, both their magnitude and direction must
be specified. But, because the field directions are always perpendicular to one
another in nonabsorbing media, only the direction of the electric field of a light
wave is needed to specify the polarization of the light wave. Since this
direction is perpendicular to the propagation direction of the light, light waves
are transverse waves.

The form of polarization of light can be quite complex. However, for most
design situations there are a limited number of types that are needed to
describe the polarization of light in an optical system. Figure 1.17 shows the
path traced by the electric field during one full cycle of oscillation of the wave
(T = 1/v) for a number of different types of polarization. Figure 1.17(a) shows
linear polarization, where orientation of the electric field vector of the wave
does not change with time as the field amplitude oscillates from a maximum
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Figure 1.17. Three special polarization orientations: (a) linear, along a coordinate axis;
(b) linear, components along coordinate axes are in phase (A¢ = 0) and thus produce linear
polarization; (c) same components, 90° out of phase, produce elliptical polarization.

value in one direction to a maximum value in the opposite direction. The
orientation of the electric field is referenced to some axis perpendicular to the
direction of propagation. In some cases, it may be a direction in the laboratory
or optical system, and it is specified as horizontally or vertically polarized
or polarized at some angle to a coordinate axis.

Because the electric field is a vector quantity, electric fields add as vectors.
For example, two fields, E, and E,, linearly polarized at right angles to each
other and oscillating in phase (maxima for both waves occur at the same time),
will combine to give another linearly polarized wave, shown in Fig. 1.17(b),

whose direction (tan@ = E,/E,) and amplitude (\/E2 + E}) are found by
addition of the two components. If these fields are 90° out of phase (the
maximum in one field occurs when the other field is zero), the electric field of
the combined fields traces out an ellipse during one cycle, as shown in Fig.
1.17(c). The result is called elliptically polarized light. The eccentricity of the
ellipse is the ratio of the amplitudes of the two components. If the two
components are equal, the trace is a circle. This polarization is called circularly
polarized. Since the direction of rotation of the vector depends on the relative
phases of the two components, this type of polarization has a handedness to be
specified. If the electric field coming from a source toward the observer rotates
counterclockwise, the polarization is said to be left handed. Right-handed
polarization has the opposite sense, clockwise. This nomenclature applies to
elliptical as well as circular polarization. Light whose direction of polarization
does not follow a simple pattern such as the ones described here is sometimes
referred to as unpolarized light. This can be somewhat misleading because the
field has an instantaneous direction of polarization at all times, but it may not
be easy to discover what the pattern is. A more descriptive term is randomly
polarized light.
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1.6.1. Methods of Polarization

Light from most natural sources tends to be randomly polarized. While there
are a number of methods of converting it to linear polarization, only those
that are commonly used in optical design will be covered. One method is
reflection, since the amount of light reflected off a tilted surface is dependent
on the orientation of the incident polarization and the normal to the surface. A
geometry of particular interest is one in which the propagation direction of
reflected and refracted rays at an interface are perpendicular to each other, as
shown in Fig. 1.18. In this orientation the component of light polarized
parallel to the plane of incidence (the plane containing the incident propagation
vector and the surface normal, i.e., the plane of the page for Fig. 1.18) is 100%;
transmitted. There is no reflection for this polarization in this geometry. For
the component of light perpendicular to the plane of incidence, there is some
light reflected and the rest is transmitted. The angle of incidence at which this
occurs is called Brewster’s angle, 85, and is given by [Problem 1.237:

tan 0, = ;ﬁ'—_ (1.24)

incident
As an example, for a crown glass, n = 1.523, and the Brewster angle is 56.7°.

Sometimes only a small amount of polarized light is needed, and the light
reflected off of a single surface tilted at Brewster’s angle may be enough to do
the job. If nearly complete polarization of a beam is needed, one can construct
a linear polarizer by stacking a number of glass slides (e.g., clean microscope
slides) at Brewster’s angle to the beam direction. As indicated in Fig. 1.19, each
interface rejects a small amount of light polarized perpendicular to the plane of
incidence.

The “pile of plates” polarizer just described is somewhat bulky and tends to
get dirty, reducing its efficiency. Plastic polarizing films are easier to use and
mount. These films selectively absorb more of one polarization component
and transmit more of the other. The source of this polarization selection is

No reflection
of parallel
polarization

Figure 1.18. Geometry for the Brewster angle.
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@ Perpendicular

Figure 1.19. A “pile of plates™ polarizer. This device working at the Brewster angle, reflects some
portion of the perpendicular polarization (here depicted as a dot, indicating an electric field vector
perpendicular to the page) and transmits all parallel polarization. After a number of transmissions
most of the perpendicular polarization has been reflected away leaving a highly polarized parallel
component.

many aligned linear chains of a polymer to which light-absorbing iodine
molecules are attached. Light that is polarized parallel to the chains is easily
absorbed, whereas light polarized perpendicular to the chains is mostly
transmitted. The sheet polarizers made by Polaroid Corporation are labeled
by their type and transmission. Three common linear polarizers are HN-22,
HN-32, and HN-38, where the number following the HN indicates the
percentage of incident unpolarized light that is transmitted through the
polarizer as polarized light [Problem 1.24].

When you look through a crystal of calcite (calcium carbonate) at some
writing on a page, you see a double image as illustrated in Fig. 1.20. If you
rotate the calcite, keeping its surface on the page, one of the images rotates
with the crystal while the other remains fixed. This phenomenon is known as
double refraction. If we examine these images through a sheet polarizer, we find
that each image has a definite polarization, and these polarizations are
perpendicular to each other.

The calcite crystal is one of a whole class of birefringent crystals that exhibit
double refraction. (Doubly refracting is the English equivalent for the Latin,
birefringent.) The physical basis for this phenomenon is described in detail in
most optics texts. For our purposes it is sufficient to know that the crystal has a
refractive index that varies with the direction of propagation in the crystal and
the direction of polarization. The optical axis of the crystal (no connection to
the optical axis of a lens or a system) is a direction in the crystal to which all
other directions are referenced. Light whose component of the polarization is
perpendicular to the optic axis travels through the crystal as if it were an
ordinary piece of glass with a single refraction index, n,. Light of this
polarization is called an ordinary ray. Light polarized parallel to a plane
containing the optic axis has a refractive index that varies between n, and a
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Figure 1.20. Polarization of light by a birefringent crystal. Note that through the polarizing sheet
(dark rectangle marked with arrow to indicate polarization direction) only one image can be seen.
This demonstrates that polarization of the two images are different. A rotation of the polarizer
ray 90° would allow transmission of the other polarization only showing the polarization of the
two images are orthogonal to each other. (Photo by Vincent Mallette.)
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different value, n,. The material exhibits a refractive index n, where the field
component is parallel to the optic axis and the direction of light propagation is
perpendicular to the optic axis. Light of this polarization is called an extraor-
dinary ray. The action of the crystal upon light of these two orthogonal
polarization components provides the double images and the polarization of
light by transmission through the crystals. If one of these components could be
blocked or diverted while the other component is transmitted by the crystal, a
high degree of polarization can be achieved. There are a number of designs for
birefringent polarizers, many of which can be found in optics texts. To
illustrate the method used, we show in Fig. 1.21 a Nicol prism, the first crystal
polarizer to be made for that purpose. This polarizer consists of a piece of
natural calcite cut in half at a particular angle and rejoined with a resinous
cement from the Canada balsam tree. Light of all polarizations is incident on
the crystal at an angle to the optic axis. At the first interface, double refraction
splits the beam into components polarized parallel and perpendicular to the
optic axis. Because of the different angles of refraction at the first crystal face,
the two beams have different angles of incidence at the calcite-Canada balsam
interface. Because the extraordinary refractive index of the crystal and re-
fractive index of the Canada balsam are nearly the same, the extraordinary ray
is transmitted into the second crystal with little reflection. The ordinary ray,
however, is totally internally reflected since sin 6; > n,/n;, as discussed in
Section 1.2. In most cases, the reflected beam is absorbed by the material
holding the crystal, while the transmitted beam exits through the other half of
the crystal in a direction parallel to the original beam but slightly displaced
from it. In some optical designs it is useful to keep the reflected beam, which is
also highly polarized, and use it somewhere else in the system.

In many cases polarizers are used to provide information about a material
that produces, in some manner, a change in the form of polarized light passing
through it. The standard configuration, shown in Fig. 1.22, consists of a light
source S, a polarizer P, the material M, another polarizer, called an analyzer

R _ﬁ*fu ¢
T 7 A
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Figure 1.21. A Nicol prism. This set of two calcite crystals held together by Canada balsam cement
serves as a polarizer of incident randomly polarized light, transmitting one polarization and total
internally reflecting the other polarization.
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I,cos?0

Figure 1.22. Analysis of polarized light. Randomly polarized light from source S is linearly polar-
ized after passage through the polarizer P with irradiance I,. After passage through optically active
material M, the polarization vector has been rotated through an angle 6. (The dashed lines on the
polarizers P and A denote the transmission axes; the arrow indicates the polarization of the light).
The light is analyzed by polarizer A, transmitting an amount I, cos?8 that is detected by detector D.

A, and a detector D. Usually the polarizer is a linear polarizer, as is the
analyzer. Sometimes, however, polarizers that produce other types of polari-
zation are used.

The amount of light transmitted by a polarizer depends on the polarization
of the incident beam and the quality of the polarizer. Let us take, for example,
a perfect polarizer—one that transmits all of the light for one polarization and
rejects (by absorption or reflection) all of the light of the other polarization.
The direction of polarization of the transmitted light is the polarization axis, or
simply the axis of the polarizer. Since randomly polarized light has no
preferred polarization, there would be equal amounts of incident light for two
orthogonal polarization directions. Thus, a perfect linear polarizer would have
a Polaroid designation of HN-50, since it would pass half of the incident
radiation and absorb the other half. The source in Fig. 1.22 is randomly
polarized, and the polarizer pass is linearly polarized light of irradiance I,. If
the material M changes the incident polarization by rotating it through an
angle 0, what is the amount of light transmitted through an analyzer whose
transmission axis is oriented parallel to the axis of the first polarizer? Since the
electric field is a vector, we can decompose it into two components, one
parallel to the axis of the analyzer, the other perpendicular to this axis. That
is:

E = E,cos0é; + Eysinfe,.

(Note that the parallel and perpendicular components here refer to their
orientation with respect to the axis of the analyzer and not to the plane of
incidence as in the case of the Brewster angle.) The transmitted field is the
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parallel component, and the transmitted irradiance I,
square of the electric field

is the time average

rans

Itrans = <E0 Cos 0>2 = <E0>2 cos? 0
or

I

vrans = lo cO8%0. (1.25)
This equation, which relates the irradiance of polarized light transmitted
through a perfect polarizer to the irradiance of incident polarized light, is
called the Law of Malus, after its discoverer, Etienne Malus, an engineer in the
French army. For a nonperfect polarizer, I, must be replaced by xI,, where «
is the fraction of the preferred polarization transmitted by the polarizer
[Problem 1.24]. (For HN-22 film, x = 0.44, as shown in Example 1.G.)

EXAMPLE 1.G. Given two HN-22 polarizers, what is the amount of
naturally polarized light transmitted by these two polarizers whose axes
are (a) parallel to one another and (b) at 45° to each other?

Solution: (a) Before we can do this problem we need to know how
much light of the correct polarization will be transmitted. We know that
50% of the light is absorbed in the perpendicular direction. In the
parallel direction 22% of the total (that is what HN-22 means) or 44% of
the preferred polarization is transmitted. Therefore, when the second
polarizer is put in front of the first polarizer 449 of the radiation that
passed the first polarizer will be transmitted. Thus, two HN-22 polarizers
whose axes are aligned will transmit 0.22 x 0.44 or about 10%, of the
initial unpolarized light.

(b) The amount transmitted by the two HN-22 polarizers at 45° to each
other is then

I

trans

= 0.22], x 0.44 x cos(45°)

I
=0.22 x 0.44 x 7" = 0.04841, = 5% I,.

1.6.2. Polarization Modifiers

Besides serving as linear polarizer, birefringent crystals can be used to change
the type of polarization of a light beam. We shall describe the effect that these
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polarization modifiers have on the beam and leave the explanation of their
operation to a physical optics text.

In a birefringent crystal, light whose polarization is parallel to the optic
axis travels at a speed of c¢/n; for a polarization perpendicular to that the
speed is, ¢/n, . In calcite n; > ny, and therefore the speed of light polarized
parallel to the optic axis, v, is greater than v, . Thus, for calcite, the optic
axis is called the fast axis and a perpendicular axis is the slow axis. (In other
crystals n, may be greater than n, and the fast-slow designation would have
to be reversed.)

The first device to be described is a quarter-wave plate. The plate consists of
a birefringent crystal of a specific thickness d, cut so that the optic axis is
parallel to the plane of the plate and perpendicular to the edge, whose length
has been specified as d, as shown in Fig. 1.23. The plate is oriented so that its
plane is perpendicular to the beam direction and its fast and slow axes are at
45° to the polarized direction of the incident linearly polarized light. Because
of this 45° geometry, the incident light is split into slow and fast components of
equal amplitude traveling through the crystal. The plate is cut so that the
components, which were in phase at the entrance to the crystal, travel at
different speeds through it and exit at the point when they are 90° or a quarter
wave, out of phase. This output of equal amplitude components, 90° out of
phase, is then circularly polarized [Problem 1.25]. It can be shown that when
circularly polarized light is passed through the same plate, linearly polarized
light results. Also, it should be noted that if the 45° input. geometry is not
maintained, the output is elliptically polarized. The angle between the input
polarization direction and the optic axis determines the eccentricity of the
ellipse.

Optic axis

In phase

Circularly
polarized

Linearly
polarized

\l d '\ 90° out of plh‘a\se

Figure 1.23. Quarter-wave plate. Incident linearly polarized light is oriented at 45° to the optic
axis so that equal £ and E, components are produced. The thickness of the plate is designed to
produce a phase retardation of 90° of one component relative to the other. This produces circularly
polarized light. At any other orientation elliptically polarized light is produced.
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Figure 1.24. Half wave plate. The plate produces a [80° phase lag between the E and E, com-
ponents of incident linearly polarized light. If the original polarization direction is at an angle 6 to
the optic axis, the transmitted polarization is rotated through 26 from the original polarization
direction.

If a crystal is cut that has twice the thickness of the quarter-wave plate, one
has a half-wave plate. In this case, linearly polarized light at any angle @ with
respect to the optic axis provides two perpendicular components which end up
180° out of phase upon passage through the crystal. This means that relative
to one of the polarizations, the other polarization is 180° from its original
direction. These components can be combined as shown in Fig. 1.24 to give a
resultant whose direction has been rotated 26 from the original polarization.
Sometimes a half-wave plate is called a polarization rotator. It also changes the
“handedness” of circular polarization from left to right or the reverse. This
discussion of wave plates assumes that the crystal thickness d is correct only
for the wavelength of the incident radiation. In practice, there is a range of
wavelengths about the correct value for which these polarization modifiers
work fairly well.

Although there may be no need to use polarized light as part of a particular
design, the optical designer should always be aware that reflections from
mirrors and windows may change the polarization content of the light as it
passes through the system. Sometimes, inadvertently, a designer inserts a
number of folding mirrors or tilted windows and beamsplitters in a system in
such a manner that polarization selective surfaces reflect a good deal of the light
out of the main path, starving the detectors in the system for light.

1.7. INTERFERENCE AND DIFFRACTION

Although the next few chapters treat light as rays propagating in straight lines,
this picture does not fully describe the performance of an optical system. There
are a number of additional concepts that are needed to explain certain
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limitations of ray optics and to describe some of the technigues that allow us
to analyze images and control the amplitude and direction of light. This sec-
tion is a brief review of two important phenomena in physical optics, inter-
ference and diffraction. For a complete discussion of these and related subjects,
the reader should consult one or more of the references (Refs. 1.3-1.4).

1.7.1. Wave Nature of Light

As was noted in the previous section on polarization, light is an elec-
tromagnetic wave. Since light from any source consists of waves of different
wavelengths (even a laser!), it would seem that it would be difficult to analyze
their resultant effect. But the effects of light made up of several colors can be
analyzed by determining what happens for a monochromatic wave, then
adding the irradiances of all the colors present. Thus, by analyzing these effects
for monochromatic light, we are able to calculate what would happen in non-
monochromatic cases.

A monochromatic wave propagating along the optic axis of an optical
system, as shown graphically in Fig. 1.25, can be expressed mathematically as

E = Acos<2ﬂ:vt - 2—;[5 + ¢>, (1.26)

where v and 2 are the frequency and wavelength of the light wave discussed at
the beginning of this chapter and ¢ is an adjustable phase factor that gives the
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Figure 1.25. Monochromatic plane wave propagating along the z axis. For a plane wave, the
electric field is constant in an x—y plane. The solid lines and dashed lines indicate maximum positive
and negative field amplitudes.
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correct amplitude at z = 0 and ¢t = 0. Although it is necessary to compute the
resultant wave fields to obtain qualitative expressions of light distributions, it
is possible to gain an understanding of some effects through geometrical
construction. For example, the wave expressed in Eq. 1.26 is a plane wave with
sinusoidal variation in the z-direction. Since there is no variation in planes
perpendicular to the propagation direction, the electric field is constant in any
of these planes and equal to the value on the z axis. To represent this wave, we
can draw the planes of maximum electric field strength, as shown in Fig. 1.25,
where the solid lines represent planes in which the electric field vector is
pointing in the positive y-direction and the dashed lines represent planes in
which the field vector is pointing in the negative y-direction. The solid planes
are separated by one wavelength, as are the dashed planes. The separation
between the dashed and solid planes is /2.

Another useful form for the analysis of light waves is the spherical wave. A
point source emits light as spherical wavefronts whose radii are equal to the
distance from the source, as shown in Fig. 1.26(a). The expression for such a
wave is

E= Ecos<27m - ? + ¢>, (1.27)

r

where r is the distance to the point source. Note that as the distance from the
source increases, the radii become large and begin to approximate plane

Point
source ')

(a)

Figure 1.26. Spherical waves. (a) Generation of spherical waves from a point source. Note that
a small section of the wave field far away from the point source approximates plane waves.
(b) Generation of plane waves by focusing plane waves to a point. Diffraction prevents an actual
point focus.
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waves. Another way to create spherical waves is to focus a plane wave. The
drawing in Fig. 1.26(b) shows the spherical waves collapsing to a point and
then expanding. The waves never collapse to a true point because of diffrac-
tion. There are other possible forms of wave fields, but these two are all that is
needed for our discussion of interference.

1.7.2. Interference

Some of the most useful effects in the field of optics from diffraction gratings to
holography is due to interference. As we shall see, an interference pattern is
often connected with some simple geometry. Once the geometry is discovered,
the interference is easily understood and analyzed.

1.7.2.1. Young’s Experiment. In Fig. 1.27 the geometry and wave pattern for
one of the simplest interference experiments, Young’s experiment, is shown.
Two small illuminated pinholes, serving as point sources, produce overlapping
spherical waves. The figure shows a cross-sectional view of the wavefronts in a

7 > C"D /
;} :}_

Figure 1.27. Young’s experiment. Light diffracted through two pinholes in screen S, spreads out
toward screen S,. Interference of the two spherical waves produces a variation in irradiance (in-
terference fringes) on S, that is plotted to the right of the screen.
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plane containing the pinholes. Notice that at points along a line equidistant
from both pinholes, the waves from the two sources are always in phase (solid
lines crossing solid lines and dashed lines crossing dashed lines). Thus, along
the line marked C the electric fields always add to give a field that is twice that
of a single field; the irradiance at a point along the line will be four times that
due to a single pinhole. When electric fields add together to give a larger value
it is referred to as constructive interference. There are other directions, such as
those along the dotted lines marked D, in which the waves from the two
sources are always 180° out of phase. That is, when one source has a
maximum positive electric field, the other has the same negative value so the
fields always cancel and no light is detected along these lines marked D, as
long as both sources are present. This condition of canceling electric fields is
called destructive interference. Between the two extremes of maximum con-
structive and destructive interference, the irradiance varies between four times
the single pinhole irradiance and zero. It can be shown that the total energy
falling on the surface of a screen placed in the interference pattern is neither
more nor less than twice that of a single point source; it is just that
interference causes the light distribution to be arranged differently!

1.7.2.2. The Michelson Interferometer. Another geometry that produces an
interference pattern is shown in Fig. 1.28. This is a Michelson interferometer,
which is constructed from a beamsplitter and two mirrors. The beamsplitter is
a partially reflecting mirror that separates the light incident upon it into two
beams of equal strength. After reflection off the mirrors, the two beams are
recombined so that they both travel in the same direction when they reach the
screen. If the two mirrors are the same distance (L, = L, in Fig. 1.28) from the
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Figure 1.28. Michelson interferometer. By reflecting the mirror M, about the plane of the beam-
splitter BS to location M7, one can see that a ray reflecting off mirror M, travels an additional
distance 2(L; — L,) over a ray reflecting off M.
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beamsplitter, then the two beams are always in phase once they are recom-
bined, just as is the case along the line of constructive interference in Young’s
experiment. Now the condition of constructive and destructive interference
depends on the difference between the paths traveled by the two beams. Since
each beam must travel the distance from the beamsplitter to its respective
mirror and back, the distance traveled by the beam is 2L. If the path-length
difference, 2L; — 2L,, is equal to an integral number of wavelengths, mi,
where m is an integer, then the two waves are in phase and the interference at
the screen will be constructive.

A
LI—L2=m7 m=...,—1,0,1,2,..)). (1.28)

If the path-length difference is an integral number of wavelengths plus a half
wavelength, the interference on the screen will be destructive. This can be
expressed as (Problem 1.22)

L,—L,= %ﬂ (m = odd integers). (1.29)

In most cases the wavefronts of the two beams when they are recombined
are not planar, but are spherical wavefronts with long radii of curvature. The
interference pattern for two wavefronts of different curvature is a series of
bright and dark rings. However, the above discussion still holds for any point
on the screen. Usually, however, the center of the pattern is the point used for
calculations.

This same path-length difference argument will be used in our discussions of
highly reflective mirrors and anti-reflection coatings. In optical system design,
interferometers, such as the Michelson interferometer, can be used to measure
very small distances. For example, a movement of one of the mirrors by only
one quarter wavelength (corresponding to a path-length change of one half
wavelength) changes the detected irradiance at the screen from a maximum to
a minimum. Thus, devices containing interferometers can be used to measure
movements of a fraction of a wavelength. Applications of these principles are
discussed in Sections 4.2.2 and 9.1.3.

1.7.3. Diffraction

If interference provides some of the “magic” of optics, then it is diffraction that
provides the baseline that tells us how far an optical technique can be
extended. While certain diffraction effects prove useful, ultimately all optical
performance is limited by diffraction, if there is sufficient signal, and by
electrical or optical “noise,” if there is not.
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Figure 1.29. Diffraction of Jight by apertures. (a) Single slit. (b) Circular aperture.

Diffraction of light arises from the effects of apertures and interface boun-
daries on the propagation of light. In its simplest form, edges of lenses,
apertures, and other optical components cause the light passing through the
optical system to be directed out of the paths indicated by ray optics. When a
plane wave illuminates a slit, the resulting wave pattern that passes the slit can
be constructed by representing the wavefront in the slit as a collection of point
sources all emitting in phase. Diffraction can be considered as interference
between this collection of point sources. As in the Young’s experiment, the
resulting pattern on a screen contains maxima and minima, as shown in Fig.
1.29(a). A measure of the amount of diffraction is the spacing between the
strong central maximum and the first dark fringe in the diffraction pattern. At
distances far from the slit, the pattern does not change in shape, but only in
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size. The fringe separation is expressed in terms of the sine of the angular
separation between the central maximum and first dark fringe,

sinf = i, (1.30)
w

where w is the slit width and 1 is the wavelength of the light illuminating the
slit. Note that as the width of the slit becomes smaller, the diffraction angle
becomes larger. If the slit width is not too small, the sine can be replaced by its
argument,

6" (1.31)
w

In the case of circular apertures, the diffraction pattern is also circular, as
indicated in Fig. 1.29(b), and the angular separation between the central
maximum and the first dark ring is given by

sinf = 1.22% or # = 1.22% for large D, (1.32)

where D is the diameter of the aperture. As in the case of the slit, for small
values of 1/D, the sine can be replaced by its angle.

Although it is possible to examine these diffraction patterns on the screen
far from the aperture, the same pattern can be observed at the rear focal plane
of a lens. At that point the dimension of the diffraction pattern is given by f0,
where we assume small angles, and 6 is the diffraction angle given in Egs. 1.31
and 1.32. In many cases the lens serves not only as the imaging element, but is
also as a diffracting aperture. Thus, a point source imaged by a lens will not be
imaged to a point source but to a diffraction pattern of that point source, with
a first dark ring having a radius of 1.224f/D, where the aperture is the lens
itself and D is its diameter.

One good approximation to a point source is a bright star. A pair of stars
close to one another can give a measure of the diffraction limits of a system. If
the stars have the same brightness, the resolution of the system can be
determined by the smallest angular separation between such sources that
would still allow them to be resolved. This is provided that the aberrations of
the optical system are sufficiently small and diffraction is the only limitation to
resolving the images of these two point sources. Although it is somewhat
artificial, a limit of resolution that has been used in many instances is that two
point sources are just resolvable if the maximum of the diffraction pattern of
one point source falls on the first dark ring of the pattern of the second point
source, as illustrated in Fig. 1.30, then

i
O = 1.22—. 33
k= 1227 (133)
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Figure 1.30. Rayleigh criterion. The plot of the
intensity along a line between the centers of the

two diffraction patterns is shown below a photo of
- < two sources just resolved as specified by the
0 =122ND Rayleigh criterion. (Photo by Vincent Mallette.)

This condition for resolution is called the Rayleigh criterion. It is used in other
fields of optical design, such as specifying the resolution of a laser beam
scanner (Section 8.2.1).

1.7.4. The Diffraction Grating

It is a somewhat confusing use of the term to call the item under discussion a
diffraction grating. Although diffraction does indeed create the spreading of
light from the slits, it is the combined interference of multiple beams that
permits a diffraction grating to deflect and separate the light. In Fig. 1.31 a
series of narrow slits, each separated from its neighboring slits by distance d,
are illuminated by a plane wave. Each slit is then a point (actually a line)
source in phase with all other slits. At some angle 6, to the grating normal, the
path-length difference between neighboring slits will be (see inset to Fig. 1.31)

Ax = dsin (0,).

Constructive interference will occur at that angle if the path-length difference
Ax is equal to an integral number of wavelengths:

ml = dsin (0,) (m = an integer). (1.34)
This equation, called the grating equation, holds for any wavelength. Since any

grating has a constant slit separation d, light of different wavelengths will be
diffracted at different angles. This is why a diffraction grating can be used in
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Figure 1.31. Diffraction of light by a diffraction grating.
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Figure 1.32. Orders of diffraction from a grating illuminated by white light. (a) Rays denoting
the upper and lower bounds of diffracted beams for the red (R) and blue (B) ends of the spectrum;
(b) spectra produced by focusing each collimated beam of wavelengths to a point in the focal plane.
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Grating

Figure 1.33. Diffraction of monochromatic light
) at non-normal incidence.

place of a prism to separate light into its colors. Because a number of integers
can satisfy the grating equation, there are a number of angles into which
monochromatic light will be diffracted. Therefore, when a grating is illumi-
nated with white light, the light will be dispersed into a number of spectra
corresponding to theintegersm = ..., =2, —1,0,1, 2,..., asillustrated in Fig.
1.32(a). By inserting a lens after the grating, the spectra can be displayed on a
screen one focal length from the lens, Fig. 1.32(b). These are called the orders
of the grating and are labeled by the value of m.

In those cases when the light is not incident normal to the grating surface,
an additional term must be added to account for the phase difference between
slits [Problem 1.26]. This gives rise to the general grating equation:

m = d(sin 8, — sin 6, (m = an integer), (1.39)

where 6; is the angle between the grating normal and the direction of incident
light as shown in Fig. 1.33. The sign connection for the incident and diffracted
angles is given in 6 (a) of Table 2.1.

The concept of the diffraction grating is very useful in optics. It will be used
to explain acousto-optic modulation in Section 8.4, and grating spectroscopy
in Section 9.3. As noted at the beginning of this section, this discussion is
intended as a review and brief tutorial. Further understanding can be achieved
by readings in the references.

PROBLEMS

1.1.  If the frequency of light is 6.17 x 10'* hertz (cycles/second), what is its
wavelength and velocity in crown glass (n = 1.52929) and in a light flint
glass (n = 1.58957)?

1.2.  Determine the V-number for both glasses listed in Table 1.1 from the
indices given.

1.3.  Light is incident upon a plane parallel slab of glass, n = 1.55 at an
angle of 30° from the normal. Determine the direction of the beam (a) in
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14.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.12.

1.13.

A REVIEW OF ELEMENTARY OPTICS

the glass and (b) on the other side of the plate. What would be the final
direction of a beam relative to an original beam incident at 30° after it
passed through three parallel l-cm-thick slabs of glass n, = 1.55,
n, = 1.65 and n; = 1.757

(a) Derive an expression for the amount of sideways displacement d of a
beam at an angle § with respect to the normal by a plane parallel slab
of glass in air whose thickness is ¢t and refractive index is n. (b) If the
glass is 15mm thick and its refractive index is 1.517, how far is the
beam displaced from its original path if the slab is tilted by 42°?

In Example 1.A we calculated the amount of dispersion of a beam
passing through the first surface of a prism. If the second surface makes
an angle of 60° with the first surface (such that total internal reflection
does not occur), what are the angles of transmission after the second
interface relative to the incident beam for the D, C, and g lines?

If a prism is to be used as a reflector as pictured in Fig. 1.5, what is the
minimum refractive index that will provide total internal reflection?

Sketch the rays and find the image of an object located at the center of
curvature of a spherical mirror.

Sketch the rays and locate the image of an object a distance d in front of
a plane mirror. (Because there is no curvature to the surface, the optic
axis is any normal to the mirror.)

Sketch the rays and find the image of an object located halfway between
the focus and vertex of a concave spherical mirror.

Sketch the rays and find the image of an object located halfway between
the focal point and vertex of a positive lens. Estimate the magnification.

Sketch the rays and find the image location for two identical convex
lenses separated by four times their focal lengths for an object two focal
lengths from the first lens. What is the magnification? What would
happen if the lenses were separated by twice their focal lengths?

Use a calculator or set of trigonometric tables with radian measure to
determine at what angle (in radians) the approximations in (Egs. 1.9—
1.11) agree to within 1% of the actual trigonometric functions. Do this
for the sine and tangent functions. Express the angles in degrees.

The form of the thin lens equation given as Eq. 1.16 is called the
Gaussian form. If the object distance x, is measured from the front
focal point and the image distance x, measured from the back focal
point, show that the thin lens equation can be rewritten in Newtonian
form; that is, as

x1Xo = —f?
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1.14.

1.15.

1.16.

1.17.

1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

1.25.

What radii of curvature must be ground onto a piece of glass of
refractive index 1.63 to produce an equiconvex lens of 105 mm focal
length?

Plot the image distance versus object distance for (a) a lens with
+100 mm focal length and (b) —100mm focal length. Do some pre-
liminary calculations so that you can choose the range of values of
object distances to display the results compactly.

Calculate the location, magnifications, and orientations of the in-
termediate and final images for two lenses (f; = 16 mm and
f2 = 32 mm) separated by 115 mm if the object is 20 mm in front of the
first lens.

A camera with a 50-mm lens can be used to focus on objects from 3 m
to infinity onto a screen. How much must the lens be moved to focus on
the extremes of this range?

The eye of a young person can focus from the near point (the distance
of most distinct vision equals 25 cm from the eye) to infinity. Determine
the range of focal lengths the eye can attain, if the lens is located 17 mm
from the retina (the photo sensitive surface of the eye).

Show that the angular magnification of a simple magnifier is increased
by 1 when the magnifier is refocused to give an image at the near point.

Show that the angular magnification of a compound microscope is as
given by either Eq. 1.21 or 1.22.

If the focal lengths of the objective and eyepiece of a compound
microscope are 8 mm and 10 mm, respectively, where must the object
and the eyepiece be located, relative to the objective lens, if the overall
power of angular magnification is —200 when the eye is focused for
infinity?

If a telescope has an objective with a focal length of 10cm, at what
distance from the observer might an object be considered to be at
“infinity”? (There is no single numerical answer for the question. You
must make some assumptions and show what answer results.)

Derive Eq. 1.24 using Snell’s Law and the orientation of the rays at the
interface at Brewster’s angle.

Natural light is sent through a perfect polarizer and then through a
second perfect polarizer whose axis is at 30° to the first polarizer. What
percent of the original light is transmitted by the pair of polarizers?
What would be the value if these were HN-36 polarizers?

The refractive indices of calcite at the sodium D line are n, = 1.658 and
n, = 1.486. What are the maximum and minimum velocities of light at
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this wavelength through this crystal? How far will the light traveling
perpendicular to the optic axis have to travel in the medium such that
the maxima in the two polarizations are out of phase by 90° (i.e.,
separated by 1/4)?

1.26. Show that the equation describing the diffraction of light of wavelength
A by a grating whose slit separations are d is given by Eq. 1.35,
assuming an angle of incidence, 6;.

APPENDIX A. LIST OF SELECT GLASS TYPES [SEE REF. 5.2}

Glass Number Designation® Glass Number Designation
487704 FK-5 618551 SSK-4
501564 K-10 622532 SSK-2
511605 K-7 623581 SK-15
517642 BK-7 624470 BaF-8
518651 PK-2 626390 BaSF-1
522595 K-5 636353 F-6
523515 KF-9 648338 SF-12
532488 LLF-6 652449 BaF-51
540597 BaK-2 652585 LaKN-7
547536 BaLF-5 664358 BaSF-2
548458 LLF-1 670471 BaFN-10
552635 PSK-3 673322 SF-§
557586 BaK-5 683445 BaF-50
564608 SK-11 689495 LaF-23
569561 BaK-4 697562 LaK-24
573576 BaK-1 717295 SF-1
580537 BaLF-4 720504 LaK-10
583465 BaF-3 723381 BaSF-51
589613 SK-5 740283 SF-3
596392 F-8 744448 LaFN-2
603380 F-5 762266 SF-14
606439 BaF-4 783371 LaF-22
609589 SK-3 785258 SF-11
613443 KZFS-1 808408 LaSFN-3
617366 F-4

¢ The designation is the catalog type given in the Schott glass catalog.
This designation varies for each manufacturer, but the listed desig-
nations are the most common.
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Thin Lens Ray Tracing

(HOW TO START WHEN YOU ARE
NOT TOO SURE WHERE TO START)

The thin lens equation and the other simple optical concepts that are taught in
elementary physics courses and that were reviewed in Chapter 1 serve as a
beginning for more elaborate calculations. In this chapter we discuss the starting
point for solving an optical design problem and explore a method for producing
rapid preliminary calculations on the system.

2.1. GETTING STARTED

Let us suppose that you were given the following problem: A large amount of
computer information is to be put on microfiche (a transparent film containing
demagnified reproductions of a large number of pages or lines of information).
An example is shown in Fig. 2.1. A standard microfiche measures
101.6 mm x 152.4 mm (4 in. x 6 in.) and holds about 84 frames, or pages, of
information. You are asked to design a camera that will record the output of a
computer terminal cathode ray tube (CRT) directly onto film to create a
microfiche master. To increase the rapidity of searching, and to provide for
some automation of the microfiche viewers, a computer generated bar code is
to be included at the edge of each frame of information. Due to the distortion
in most terminal screens, the code, which is to be optically readable, cannot
be put directly onto the screen. A system is needed to accomplish this task.
Because the camera will fit over the entire screen, some provision must be
made to allow inspection of the screen and the code.

Where do you start? If you are sitting at a desk, feet on the floor, and feeling
industrious, you might write “Objective” at the top of a clean sheet of paper,
followed by a statement to the effect that you want to reduce the image from a
computer terminal to that of a microfiche frame and to provide an optical access
for a frame code and for visual inspection of the frame contents. This step is to
be encouraged. However, many times the initial design takes place at a lunch
table, in a lab, or at a cocktail party. In such cases, the objective is unwritten or
even unspoken. Still, a few seconds of thought about what it is that you want to
do can save you a great deal of time later. It is always good to understand the
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Figure 2.1. A microfiche (actual size).

nature of the problem before you try to solve it. The next thing to do is to
analyze the system in terms of its major operations. From this you see that there
is really one system with two subsystems attached. The main system, a reduction
camera, should be outlined first, with the subsystems—coding and inspection—
providing constraints on the design.

Then what? Probably the next step is the most enjoyable. Using your sheet of
paper (or your lunch bag, lab notebook, or cocktail napkin) with the objective
sitting at the top you can begin to ray sketch any number of designs. Here is
where experience has an advantage. Choices can be quickly made and kept or
rejected. A general direction becomes evident as the possibilities from these
sketches are exhausted. Figure 2.2 is a preliminary ray sketch for two systems.
Since we must produce a reduced image on film, we want a demagnified real
image. One method is to demagnify in one step, inserting the frame code on a
separate panel next to it. The other method reduces the image in two stages.
The intermediate stage could be used to insert the frame code and to inspect
the frame and code. The final image, in either case, is recorded by the microfiche
master which is exposed and then stepped to a new position for the next frame.
We will consider the single-lens system first, then look at the two-stage system.

What is the focal length of the imaging lens in the first system? This is where
the real world and the thin lens equation come together. You need to know two
things: the size of the data area on the terminal screen and the size of the
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Figure 2.2. Ray sketches of two possible configurations for a computer terminal-microfiche
recording system.

microfiche frame. From an examination of a terminal we find the data area to
have dimensions of, 20 cm long and 14 cm high. The size of a standard
microfiche frame, which usually reproduces an 8 x 10 in. area from a type-
written original, is 10 mm long and 12.5 mm high. Because the letters on a
computer display are larger than those on an ordinary typewriter, we can reduce
the image somewhat more than the typescript and still have room at the bottom
of the frame for a computer code. At this point one can do a little juggling of
dimensions to provide the best possible display in the tightest microfiche format
[Problem 2.1]. From the horizontal dimensions of the object and image, we
choose an overall reduction of 20 times.

We can derive some simple relations between the focal length and the object
and image distances once the magnification has been set. For a single lens

L

M ="t (1.14)
tO
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Here M = —1/20 since this is a demagnification. Note the magnification, as well
as ty and ¢, is a signed quantity. Therefore,

t
to = Ml (2.1)

Inserting this into the thin lens formula we obtain

r_r M WM-D
St t
or
t,=—(M - 1)f (2.2)
and
to = _M A_d%. 2.3)

The length of the system L is given by

_ _ 1)
L=t1—t0=—(MM ) f. (2.4)

Thus, once the reduction is set, the length is directly proportional to the focal
length of the lens chosen and if M is small, it is approximately equal to —f/M
(here, approximately 20f).

One needs to know what range of focal lengths are available for use in such a
system. Some can be found in lists of stock lenses available from manufacturers
and suppliers. It should be noted here that such lists can serve only as a guide.
Whether one of these lenses would actually perform well depends on the
demands in image quality of your particular specifications. As we will discuss
later, the choice and design of lenses are dictated by the optical errors
(aberrations) that must be eliminated to provide an acceptable image. Camera
lenses are usually designed for an object at infinity. Thus an actual camera lens
might not do the job. Still, such a lens list (and price list) can give you some idea
of what ranges of focal lengths are reasonable for a preliminary design. You
might know that the focal length of an ordinary 35-mm camera lens is 50 mm. If
we used a similar 50-mm lens in our system, the total length of the system,
according to Eq. 2.4, would be 1000 mm—fairly long. Upon consulting a
catalog you might find that wide-angle lenses are available with 28- and 35-mm
focal lengths. These require system lengths of 617 mm and 772 mm. Let us
choose a 35-mm lens and use it as a preliminary choice. The calculations are
given in Example 2.A. Now we have an optical system with spacings and a lens
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Figure 2.3. Single lens system with a 35-mm focal length lens.

as shown in Fig. 2.3. (The distances ¢, and ¢, in the figure should really be drawn
with single-headed arrows to indicate that they are directed quantities.
However, in order to show, with any degree of clarity, the various distances in
the figures in this text, they are drawn with double-headed arrows.) Our thin
lens equation has taken us about as far as it can. It will be necessary to revise it
to be able to continue.

EXAMPLE 2.A. Based on a choice of a 35-mm focal length lens and a
20-fold reduction in the object size, find the image and object distances and
the total length of the system.

Solution: Using Eq. 2.1

1 ty
M=—-—=—.
20 ¢t
Using Eq. 2.3
_ (=120-1)
to = = ~1/20 35 mm

= ~21 x 35mm = —-735mm

1
t, = Mt, = ~55 % —735mm = 36.75 mm.

Using Eq. 2.4
L=t —t,=36.75—(—735 mm

= 771.75 mm.
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22. TRACING RAYS THROUGH A SERIES OF LENSES

The preceding section illustrated how an optical system can be laid out using
just the thin lens equation and some reasonable estimates as to focal lengths,
overall length of the optical system, and magnification. This approach enables
the designer to begin, but it will not provide a means of evaluating the perfor-
mance of the system. For this, the most useful tool an optical designer has is
ray tracing. By calculating the paths of one or more rays through a proposed
optical system, the performance and imperfections of an optical system can
be assessed before the system is built. Thus, poor or imperfect systems can be
discarded on paper rather than waiting until many costly steps later.

Before proceeding any further, however, a set bf sign conventions should be
set down for use in all ray-trace calculations. Table 2.1 is a list of the sign
conventions used in this text. They are similar to those used in most modern
texts, articles, and ray-trace programs. Unfortunately, there is no universal sign
convention accepted by the optics community. Please note that the slope angle
of aray, the angle that the ray makes with the optic axis, is positive if a clockwise

Table 2.1. Sign Conventions for Equations and Calculations

1. Until a reflecting surface intervenes, light travels from left to right and all
refractive indices are positive. (For the exception of reflecting surfaces, see # 7
below.)

2. Focal lengths of converging elements are positive; focal lengths of diverging
elements are negative,

3. Ray heights above the axis are positive; below the axis, negative.

The distance to the right of the vertex of a component (or surface) is positive;
to the left, negative.

5. Theradius of curvature of a surface is positive if its center lies to the right of its
vertex;; if to the left of its vertex, negative.

6. {(a) The angle of a ray with respect to a normal to a surface is positive if a
clockwise rotation of the ray brings it parallel to the normal; it is negative if it
takes a counterclockwise rotation to do the same thing. (b) The same is true
for the slope angle, the angle between a ray and the optic axis. A clockwise
rotation of a ray through an angle to bring it parallel to the optic axis is
positive; a counterclockwise rotation of a ray through the slope angle is
negative,

7. Upon reflection, the sign of all refractive indices is changed until the next
reflective surface. All distances measured from the vertex of a component
follow the same sign convention as indicated in #4 above. This means that
after one reflection the surface separations and distance along the ray are
negative. All other conventions (angles, heights, and focal lengths) remain the
same.
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rotation of the ray aligns it parallel to the optic axis. One should be certain when
using someone else’s calculator and computer programs to determine the
convention being used. This is easily done by tracing a sloping ray a short
distance to a surface. From the new angles and height of the ray after a reflection
or refraction, one can determine the convention.

First, we will look at what happens to a ray between an object and a lens or
between two lenses. As was stated in Section 1.2 as the Law of Transmission,
light in a medium of constant refractive index travels in straight lines. If we draw
a right-handed coordinate system, as shown in Fig. 2.4, with the z axis
coincident with optic axis of the system, then tanu, = (y,,; — V.)/t.. In the
limit of small angles we can replace tan u, by u, and solve for the ray height at
the k + 1 surface as

Yer1 = Vi T Uty (2.5)

where t, is the distance between the k and the k + 1 surface and u, is the ray
angle defined earlier. This is called the transfer equation since it transfers the
ray from one surface to the next.

When the ray meets a thin lens it will be redirected onto a path with a new
angle. Let the ray with an angle u, with respect to the axis meet a lens at a height
Vi+1- 8s shown in Fig. 2.5. The ray will be refracted to the new angle u, ;. If we
extend the rays forward and backward to where they cross the axis at z, and
Z,+ 1, We can apply the thin lens equation (Eq. 1.16)

1 1 1

Zg+1 Jew1 Zy

The slope angles of the rays are

—Vr+i —Vr+1y
tan uy, = ——— tanu, ;= .

Zy i Zr+1

The minus sign in the first equation is due to the fact that the tan 4, and y, ., are
positive, but z, is negative. Thus a negative sign must be included for both sides

—

.. Vi1
Positive
angle

= t >

Figure 2.4. Ray trace of a ray between two surfaces separated by a distance #,.
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Figure 2.5. Ray trace of a ray through a thin lens of the focal length £, . ,.

of the equation to agree. In the second equation, the same argument is true, but
in this case it is the angle u, , , that is negative. In the limit of small angles (the
same approximation used for the thin lens equation), tan u, = u, so that

= “Yi+1 - Y+
k= k+1 = .
[ * Uy
Substituting into Eq. 2.6,
Wy 1 U

- - s
Yi+1 Jeer Yi+1

and multiplying by —y,,,, we have an equation for the new angle,

Uppr = Uy — J}kﬂ ) 2.7
k+1

in terms of the ray height at the lens y, ., and the incident ray angle u, .

It is sometimes convenient to label a lens not by its focal length, but by its
reciprocal, called the power of the lens. A lens with considerable refractive power
is one that bends parallel light to a focus at a short focal distance, whereas a lens
with a long focal distance (a low-power lens) hardly affects the light at all. If the
focal length is expressed in meters, then the power is in units of reciprocal meters
of diopters. For example, a 50-mm (or 0.05-m) camera lens has a power of 20
diopters; a flat piece of glass has an infinite focal length and a power of zero
diopters. The typical powers of other lenses are listed in Table 2.2. If we
represent the power of the kth element as ¢, = 1/f,, then Eq. 2.7 may be
written as

Uy = U — Vir1Pras- (2.8)

Since the equation determines the new slope angle of a ray after it encounters an
element of optical power ¢, it may be called the slope angle equation.



¥9

Figure 2.6. General notation for a ray trace through j elements.
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Table 2.2. Powers of Lenses

Approximate f/  Approximate ¢

Type (mm) (diopters or m™1)
Reading glass 150 7
Camera lens 50 20
Microscope | low power 25 40
Objectives | high power 2 500

Many times it is useful to locate a reference surface somewhere in the optical
system. Since there is no beam deviating element there, we assign the surface
zero power (¢ = 0). This is easier than assigning an infinite focal length at that
surface. Please note the ¢, must have the inverse dimensions to those of y, if
their product is to yield a dimensionless angle; that is, if the ray height is given in
millimeters, then the ¢ could not be entered in diopters, but would have to be
converted tomm ™!,

We can set up a consistent labeling scheme that will serve us for all
calculations to come. Starting with the object as the zeroth surface, all surfaces
(lenses, images, or surfaces we need to examine, such as the stops, discussed later)
are numbered sequentially through the optical system to the final image surface.
All variables and constants in the space between surfaces are labeled with the
number of the surface to the left. An illustration of the general numbering
scheme is given in Fig. 2.6. A specific example, using the two lens designs we
began in Section 2.1, is found in Fig. 2.7.

AN N
\\ Computer
v ) 1
. = _
fz = 60
WV V
fi f3

Figure 2.7. Notation for a two-lens system including the intermediate image.
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23. THE y-u TRACE

A technique that is of great use for evaluating optical systems consisting of thin
lenses is the y-u trace. It is a consistent, easy-to-use tabular arrangement of the
initial specifications and the subsequent ray-trace calculations. Using the two
equations

Yis1 = Vi T Uty (2.5)
Uppr = U = Vis1Purrs (2.3)

we can trace any ray through the system given a starting ray coordinate (y,, )
and the description of the system in distances ¢, and powers ¢, or focal lengths
fx- By choosing only two rays we can learn a great deal more about an optical
system.

Let us apply this y—u trace method to our computer terminal camera. We set
up our system design as shown in Fig. 2.3 using the labeling method described in
Section 2.2. From our choice of a 35-mm lens and Egs. 2.1 and 2.2 we find that
tois 735 mm and ¢, is 36.75 mm, as shown in Example 2.A. As a first step we will
arrange these values for the system in an array that can be conveniently used to
calculate the path of different rays through this system. Starting with the image
surface we list the ¢, (or f;) and 1, in alternating columns until the image surface
is reached, as shown in Table 2.3. The first ray to be traced is an axial ray. An
axial ray starts at the point on the optic axis in the object plane and at an angle to
the axis. How large an angle? As will be shown later, it does not really matter,
but as a rule an angle of u, = 0.1 radian is reasonable and realistic for many ray
traces. This set up of the initial ray angle and object height is referred to as

Table 2.3. Ray Trace of Single-Lens System®

k 0 1 2

System values | ¢, = 1/f, 0 1/35 0
t 735 36.75

Axial ray Ve 0 73.5 0
U, +0.1° =20

Chief ray Pa —73.5 0 3.675
il 0.14 0.1%

¢ Calculated values are shaded.
® Value set arbitrarily.
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opening the ray trace. (For objects at infinity (t, = c0), a ray parallel to the
opticaxis (u, = 0)is an axial ray. For such a parallel ray y, and y, are arbitrary;
in this text 10 units is the standard value.) In a second array beneath the first, the
axial ray is started and its progress recorded as it is traced through the system.
All calculations made below are listed in Table 2.3 and shaded.

Given thatu, = +0.1, y, = 0,and ¢, = 735, we use Eq. 2.5 to get

y1 = 0 4+ (735)0.1) = 73.5 mm.

Putting this value into Eq. 2.8 with ¢, = 1/35 we obtain

73.5

Notice that the sign of the slope angle is now negative, indicating that the lens
has caused the light to bend enough so that it crosses the axis beyond the lens to
give a real image. The point at which it crosses the axis locates the image
distance. By setting y, = O (image height for an axial ray) we can find the image
distance ¢,

Y, =0=735-2¢,,

and solving for t,, we get t; = 36.75 mm. This termination of the ray trace is
referred to as closing. For parallel rays, closing determines the focal point of
the system. In this case we had already found the image distance using the thin
lens equation in Example 2.A. Besides determining the image distance for a
system, a ray trace provides the height of the rays at each element of an optical
system, a quantity useful for identifying important components and surfaces.
In systems with many elements one can rapidly assess a system using such
an array [Problem 2.2]. The y—u trace method lends itself readily to program-
ming on a small computer or hand-held calculator. While it might seem to
be a good idea to entrust all of these calculations to a ray-trace program, until
an understanding of ray-trace methods is gained, it is best to do these
preliminary designs using pencil and paper.

24. STOPS, PUPILS, AND WINDOWS

Although for convenience of computation the initial slope angle 1, = +0.1 was
chosen, we could have chosen another value just as well. If the sizes of the
optical components are given, we can adjust the slope angle to trace a ray at the
outer edge of the optical system. As we increase u,,, the ray will eventually hit the
edge of one of the components of the system. For angles beyond this slope angle,
the rays will not be imaged by the optical system. An axial ray traced near the
outer edge of the system is termed a marginal ray. In our present case, we see that
the amount of light to the image will be limited by the lens, since it is the only
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optical component in the system between the object and image. The opening in
an optical system that limits the amount of light that can be collected is the
aperture stop of the system. After the image location, it is the most important
quantity to be determined by a ray trace since all subsequent analysis depends
on knowing the location of the aperture stop. In this case it is the lens itself, as
shown in Fig. 2.8.

One reason the aperture stop is a very important concept in optical system
design is that it provides a measure of the light collecting ability of the system.
If a system is built with an aperture stop that is too small, the detector, be it a
film or photoelectric sensor, will not get enough light. Sometimes the aperture
stop is in the middle of an optical system, inaccessible to the observer as in the
case of Example 2.B. Yet it is necessary to be able to determine the size and
location of its images in regions that are accessible. These regions are: object
space, all the space to the left of the first element or surface of a system, and
image space, the space to the right of the last optical element, assuming no
reflecting surface. What must be done is to turn the aperture stop into an
object plane and trace rays from this new object to determine the location and
magnification of the images of the aperture stop as seen from object space
and from image space. The image of the aperture stop as seen from object space
is called the entrance pupil of the system. Likewise, the image of the aperture
stop as seen from image space is known as the exir pupil of the system. In our
microfiche example, the aperture stop is at the lens and accessible from both
image and object space so it is also the pupils for this simple system. This is
not the case in more complicated systems.

These three openings, the aperture stop, the entrance and exit pupils, their
placement and size, have profound effects not only on the light collecting
ability of the optical system, but also on certain aberrations. As we shall see,
sometimes it is useful to shift the stop of a system along the optic axis to improve
performance. This is another reason that the aperture stop is an important
quantity in the analysis of an optical system. Many students have difficulty
understanding the concepts of the aperture stop and its pupils. Perhaps this
is because they expect the object to be in object space and the image to be in

Aperture stop

(imaging lens
limits ray
Terminal Marginal ray bundle)
Field screen
stop and ~
Entrance 'K\
window - Exit window
Chief ray (image of
(through center field stop)
of aperture stop) fi

Figure 2.8. Ray trace of the single-lens example (see text). Stops and windows are identified.
Since there is a single lens to limit the light, it is also the exit and entrance pupils.
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image space. But when they have to find the images of elements in an optical
system by locating an object in the middle of the system and look for its images
in object space and image space, some initial confusion is understandable. After
you have examined a number of systems such as the one given in Example 2.B
and worked most of the problems at the end of the chapter, the concepts of
pupils (and windows, discussed below), will become a natural part of your
analysis of any optical system. Examples of the usefulness of pupils in optical
design are given in the next chapter and throughout the text.

® Focal point of f,
X Focal point of f,

- -9 -
el ray

]

Object i
/I

! Stop

Solution: The object is at the focal point of the first lens. So it is easy to
draw an axial ray. As the slope angle of the axial ray is increased, the ray is
cut off first by the stop. This identifies the aperture stop.

I "/— Aperture stop
| \

Marginal ray \ /\

a _ I

= —anl
<

Stop

We can now locate the entrance pupil by using a point at the edge of the
aperture stop (point P) as an object and tracing some rays to find its
image as it is seen from object space.

ntrance pupil
virtual image)
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Thus, the aperture stop can be replaced by a hole located at the entrance
pupil.

..,.zszfl'/'lll%

The exit pupil is located at P” by finding the image of the edge of the
aperture stop (point P) as it is seen from image space.

P Exit pupil (virtual image)

~
i
|

1
I
|

——
1(———-7C
v

Thus, a cone of light filling the entrance pupil will be output as a cone of
light emitted from the exit pupil. A ray centered at A in the aperture stop,
the chief ray, can be traced in both directions. In object space the chief ray
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appears to come from the center of the entrance pupil B, and in image
space it appears to come from the center of the exit pupil C.

Chief ray

i

Stop

The slope of the chief ray is increased until it is cut off by the edge of a
component. This component is the field stop. In this case it is the first lens,
Since the field stop is in object space, it is also the entrance window. The
angle subtended by the marginal chief rays at the entrance pupil is the
angular field of view of the system.

e Field stop and

entrance window

Chief ray

To find the exit window, the field stop (first lens) must be imaged
through the second lens. Note that the exit window is not in the same
plane as the image of the object. This means that the edges of the image
field will be blurred and out of focus. Only if the field stop is at the object
(as it is in the text example), at an intermediate image, or at the final image,
will the edge of the image field be well defined.

i
Exit window | |

LJ

i Image

<®

Object

71
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The other ray that provides information on our system is a ray through the
center of the aperture stop, called the chief ray. As shown in Table 2.3, we set
yy =0 and @, = ii, = +0.1 (since a ray through the center of a thin lens is
undeviated). This yields values of y, and y, that indicate the 20:1 reduction, as
shown in Table 2.3. (Note that all chief ray quantities have a bar over the
symbol.) The question to be answered by these calculations is: What limits the
extent of the image? (Obviously the diameter of the lens has no effect; it limits the
axial cone of light.) The chief ray can be set at any arbitrary angle to the optic
axis at the center of the lens. We can increase the angle of the chief ray until it is
limited by some edge in the system. The limitation, in this case, must occur
either at the object (size of data area on the terminal screen) or at the image
(frame defining the image border at the microfiche film plane). The opening
that limits the chief ray is the field stop of the system. To review: The terminal
screen is 200 mm long x 140 mm high. If we add a 50-mm band of computer
code beneath the screen, the object dimensions are 200 mm x 190 mm. When this
area is reduced 20-fold by the lens it will be 10 mm x 9.5 mm. Unless the border
of the frame holding the microfiche film is smaller than this, the terminal screen
opening is the limiting aperture and, therefore, the field stop of the system. Just
as in the case of the aperture stop, the images of the field stop as seen from
object and image space can be determined. They are called the entrance and
exit windows, respectively. In our simple case, the field stop is already in object
space, so it is also the entrance window. The image of the field stop behind the
lens, the 10-mm x 9.5-mm area just calculated, is the exit window, and it is
located in the image plane, as shown in Fig. 2.8. In later calculations, the
locations and size of the stops, pupils, and windows require a little more effort
than was needed here (Example 2.B). In all calculations the location of the
entrance quantities should be given relative to the first surface of the system
and all the exit quantities to the last surface of the system.

One additional concept that is useful in describing an optical system is the
angular field of view. This provides the designer with the size of the angular
coverage of the system. In object space, the angular field of view is the angle at
the entrance pupil defined by chief rays that touch the edges of the field stop. In
our microfiche example, the terminal screen with an average dimension of
200 mm is located 735 mm from the entrance pupil. Thus, the angular field of
view is 2 tan~! (100/735) or about 15.5°. In general, if i, is a chief ray angle in
object space, j; is the ray height at the field stop, the ith surface, and r; is the
radius of the field stop, the angular field of view is given by:

r
Bco, = 2tan“<—ﬁ -%).
f 0 ¥,

It is possible to trace other rays for this system, but as long as we are using the
small angle approximation, we will learn nothing new. It should be pointed out
that all of these paraxial rays will scale with a constant multiplier. For example,
if we start an axial ray with a new u,, value equal to f times the old u, value, then



[ 1

EVALUATION OF SYSTEMS USING THE y-u TRACE 73

all subsequent ray values y, and u, would be multiplied by f. Similarly, if the
height of the chief ray were multiplied by 8, all subsequent values for this ray
would be f times the original ray values. Any new ray having both nonzero
¥o and u, 1s just a sum of an axial ray and a chief ray with appropriate multi-
pliers. Because Eqs. 2.5 and 2.8 are linear in y, and u,, the subsequent ray
parameters are just the sum of the ray values for the separate rays (with correct
multipliers) [ Problem 2.3].

This might be an appropriate place to evaluate our system; it would be better,
however, to perform the same analysis on the two-lens system. We can then
compare advantages and drawbacks between the two systems.

25. EVALUATION OF SYSTEMS USING THE y-u TRACE

In the second system, the optical power is distributed over two lenses. Although

we could assign each stage of the system equal magnification (,/20), we shall
instead make the first stage a 4-power demagnification (M = —1) and the
second stage, S-power (M = —1). From Eq. 2.4, we find that for two 50-mm

lenses, the total system length is

@4+ 1)
4

(5 +1)?

L, +L,= 50 + 50 = 672.5 mm,

considerably shorter than the single-lens system. Using 28-mm and 35-mm
lenses instead of a 50-mm lens yields system lengths of 377 and 471 mm,
respectively. Let us again choose the 35-mm lenses and run a y—u trace on the
system. From Eqgs. 2.3 and 2.2 we determine the spacings for the system and
describe the system in Fig. 2.9:

ty=—(M — 1)f, = g X 35mm = 43.75 mm,

and

t
to = Ml = —4 x 43.75mm = —175 mm,

pe——- 176 mm — 4 43.75

fy=35mm f3=35mm

Figure 2.9. Two-lens system with 35-mm focal length lenses.
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also
ty =—(M = 1)f, = ¢ x 35mm = 42 mm,
and

t, =—=5%x42mm = —210 mm.

In Table 2.4 the y—u trace of an axial ray for the two-lens system is given. An
additional surface (# 2) has been introduced at the intermediate image point.
Although it is not necessary in this example, it is not unusual to maintain
surfaces at intermediate image locations. Based on this ray trace we can
determine the aperture stop of the system. We note that an axial ray could be
multiplied by a constant value and still preserve the same image and object
distances; all that changes are the heights of the rays throughout the system. If
we divide the clear aperture radius r, of every component by the axial ray
height y, at the component, we can determine the value of r,/y, that would be
needed to produce a ray that would touch the edge of that component. Thus,
the larger the absolute value of r,/y,, the larger the initial and final slope
angles required by a ray to touch the edge. Therefore, the component with the
smallest |r/y,| will define the marginal ray, the ray that will pass through all
the components. Since any axial ray larger than this will not pass through
that limiting component, this serves to identify the aperture stop of the system.
Thus, given any axial ray with ray height values y, at each component surface,
the component with the smallest |r,/y,| is the aperture stop of the system. If we
assume the two lenses are identical, then their clear aperture radius is the same
(r, = ry). Thus, the multipliers for these components would be r;/17.5 for
the first and r;/—84 for the second. Since |r,/—84| < |r;/17.5], the second
lens serves as the aperture stop of the system. The location of the entrance
pupil is found by calculating the image distance from the first lens with the
second lens (aperture) as the object. This can be done either by treating this as
a single lens problem and reversing object and image spaces or by tracing a
ray backward through the system. We can trace a ray backward through a
system by reversing the sign of the distances measured from a component:
positive to the left, negative to the right (Rule 6 in Section 1.4). That is,

| 1 1

= — 4 - -
[em. pup. fl tap.slop

where 1, oo = I, + t; = —(210 + 43.75) mm (negative, since the distances
are to the right of the first lens) and f; = 35 mm

1 1 1

t 35 253.75°

ent. pup.
Lent. pup. = 40.6 mm to the left of the first lens.

Starting a chief ray through the aperture stop, we trace the ray in both
directions. In the forward direction this is simple: y, = 0 — 0.1 x 42 = —4.2.
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Table 2.4. Ray Trace of the Two-Lens System*

Object Ist Lens Int. Image 2nd Lens FinalImage
k 0 | 1 2 3 4
I 175 43.75 210 42
o 0 1/35 0 1/35 0
Ty 200 ry r,=r 10
Y 0 17.5 0 —84 0
U, +0.1 —0.4 -0.4 +2
AR AR ri/17.5 @ ri/84° ®
Vi —84 25.375 21 0 —42
i, +0.625 -0.1 -0.1 -0.1
/7 | 238 r25.4¢ 0 0 2.38

9 Calculated values are shaded.
b Aperture stop.

¢ Field stop (based on an unreasonably large clear aperture; see text). Tracing the chief ray
backward through the system set y; = 0 and u, = — 0.1 at the second lens (aperture stop)

Y2 =3 —#t, = 0 - (=0.1)210) = 21,

i, = il, + 0, = —0.1 + (21)-0 = —0.1,

Py =y — gty = 21 — (—0.1)43.75) = 25.375,
flg = i, + §,¢, = —0.1 + (25.375)/35 = 0.625,
Fo = J1 — gty = 25.375 — (0.625)175) = —84.

(Note that the ratio J,/j, = —4.2/—84 =%, as required. Note also that u,/u; =
0.1/2 = )

But how do you trace a ray in the backward direction? Equations 2.5 and 2.8
are still useful, we just solve for the y, or u,

Uy = ey, + Ves10xs;  (REVERSE), (2.10a)

and

Ve = Viewr — (REVERSE). (2.10b)

Uty
The chief ray in the reverse direction is traced in Table 2.4. When tracing a ray
backward, the same system parameters are used but the distance ¢, to the kth
surface from the k + 1st surface is positive if it is to the left of the k + 1st surface
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and negative if it is to the right. A procedure for analyzing an optical system is
given in Table 2.5.

An examination of the heights of the chief ray, tells us that either the object or
the first-lens diameter will limit the size of the image and serve as the field stop of
the system. But which? We have not specified the clear aperture of the lenses yet.
From our chief-ray heights we know that for the object |r,/y,] = 2.38 and that
for the first lens |r,/y,] = r,/25.4. So depending upon the radius of the first lens,
either the terminal screen edges or the clear aperture of the first lens would serve
as the field stop. Let us assume that the terminal screen is the field stop. Then
Iro/¥o| must be less than |r,/y,|. That is 2.38 < r,/25.4, or the clear aperture
radius of the first lens, r; > 60.3 mm. This, as we shall see, is an unrealistic clear
aperture radius for a lens with a focal length of 35 mm.

Here the real world intrudes. Given a choice between a large-diameter lens
and a small one, one would usually choose a larger-diameter lens so that the lens
could collect either more light (larger aperture stop) or provide a more extensive
image (larger field stop). But, in most cases, the larger lens is more expensive.
One measure of the size and light collecting ability is the optical speed of the lens
given by its f-number. The f-number of a lens is its effective focal length (to be
defined in Section 2.6) divided by its entrance pupil diameter. Thus a 50-mm

Table 2.5. Analyzing an Optical System

1. Set up the system array [distances, component locations, focal lengths
(powers), and clear apertures].

Run an axial ray using a y—u trace.

3. Find the aperture stop (calculate the ratio of clear aperture to ray height:
Smallest |, /y,|).

Run a chief ray using a y—u trace.

5. Calculate as in # 3 above to find the field stop.

If there are a few components, use the thin lens equation to find the location
and size of the pupils and windows.

7. If there are many components, use a y—u trace forward and backward to find
pupils and windows.

8.  Sizes of pupils can be determined by taking the slope angle of the chief ray at
the aperture stop and dividing by the image and object space slope angles of
that ray to get the magnifications of the aperture stop in image space and
object space, respectively. Multiplying the aperture stop size by the magnifica-
tions gives the exit and entrance pupil sizes. (The basis for this will be found
in Section 5.2.1, The Optical Invariant.)

A full report of a system contains:

Image location and magnification; the locations of stops, pupils, and windows;

the effective focal length of the system; its f~-number; and its angular field of view.
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camera lens with a 23-mm aperture stop has an optical speed of 2.2 (=33) or, ina
convenient f-notation, a speed of f/2.2. Table 2.6 lists a range of lenses and
optical speeds and relative costs. Costs, however, are determined by the quantity
of lenses required as well as other variables. A single simple lens that is custom
made will cost considerably more than a stock multi-element photographic lens
of comparable focal length and f~number. For the 35-mm lens in our design the
Jf-number would have to be 35 mm/120 mm or f/0.29. This is an unrealistic lens
requirement. Rarely is the diameter of a lens greater than its focal length (i.e., the
Jf-number of a lens is almost always greater than 1).

Then what is the solution to our problem? We will have to abandon the two-
lens system, as attractive as it may have been, and use a single-lens system. It
should be noted that if we had drawn in a chief ray back at the ray-sketching
phase, we would have diagnosed the problem then. But that would have been
getting ahead of things.

Our design choice is then a single-stage 20:1 reduction lens. The exact focal
length to be chosen may be decided by choosing the best overall length of the
system, but noting that as f gets smaller, the cost of the system increases. Our
next step might be to determine how to fold the system into a convenient
package. This will be postponed until Chapter 4.

Because our sample design is a single-lens design, let us examine another
design to illustrate the full use of the y—u ray trace and to complement the
graphical Example 2.B. This telephoto design consisting of two lenses, one
positive followed by one negative, is analyzed in Example 2.C. For an object
300 mm from the first lens a y—u trace gives ray heights of 30 and 20 mm at the
front lens and back lens, respectively. If the clear radius of the lens or stop is
divided by the ray height at that component |r,/y,|, we obtain ratios of 0.33 and
0.50 for the front lens and back lens, respectively. The component with the
smallest |r/y| ratio will be the aperture stop, as discussed earlier, since this
component will first intercept a marginal ray. Thus, the first lens in this system
serves as the aperture stop and entrance pupil.

Table 2.6. Lenses, Optical Speeds, and Costs

f# Costs

m Very expensive, highly corrected

12 Expensive, well corrected
f/4 Moderate, corrected
18 Moderate, small correction needed

f/16  Inexpensive, little correction needed
f/32  Inexpensive, nearly a pinhole
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EXAMPLE 2.C. Given two lenses as illustrated below, where are the stops of the
system? What is the effective focal length of the system?

t ‘WK“']

10

[}

[ 300 20 tp

nn
f=50 f=—45

Solution: Using a y—u trace (shaded values are calculated, unshaded values are either
given by the system, by definition of the ray type, or set arbitrarily).

n 0 L 1 J 2 3
System t 300 20 360
values s 0 0.02 —0.0222 0
ry 10 10
Axial Ve 0 30 20 0
ray u, 0.1 =05 ~0.05556
|7/ il 0.33° 0.5
Chief Ve -~30 0 2 54
ray i, 0.1 0.1 0.1444
|7/ %] @© s*
Parallel Vi 10 10 6 0 « Atfocal plane
ray ), 0 -0.2 ~0.06667
A 1.0 1.67

¢ Aperture stop.
® Field stop:

Effective focal length of the system is (using parallel ray data)
Ve 10
7w, T 006667

Location of the back principal plane may then be found. (Using primes on the ,’s to
distinguish them from the image distance with the object at 300 units).

Closing for t;: sety, = Ofor parallel ray.
Back Focal Distance: 4 = —y,/u; = 6/0.06667 = 90 units.

Thus the back principal plane is 60 units in front of the second lens and 40 units in
front of the first lens. (See Fig. 2.10))




EFFECTIVE FOCAL LENGTH 79

The exit pupil could be found by ray tracing, but with only one lens between
the aperture stop and the image space it is just as easy to employ the thin lens
equation with the object distance equal to 20 mm.

Exit pupil:
L_t 1
t, —45 20’
t, = —180/13. The image is virtual, 13.85 mm in front of the back lens.

To find the field stop we need only extend a ray in both directions from the
center of the first lens. Obviously, the second lens is the only element to limit the
chief ray and is therefore the field stop and exit window. When an axial ray,
started at the back lens, is traced through the system, the entrance window is
located.

Entrance window:

r_t_1
t, 50 20
t; = —100/3. The image is virtual and appears from object space to be

33 mm behind the first lens.

The results for this system are summarized in Example 2.C. It should be pointed
out that these assignments of stops, pupils, and windows are not true for all
object distances. For example, if the object is located 30 mm from the first lens,
the second lens is the aperture stop and the first lens is the field stop. Here the
lens gives a virtual, magnified image [ Problem 2 4].

2.6. EFFECTIVE FOCAL LENGTH

The y—u trace can also be used to find the effective focal length of the system.
Although applying the thin lens equation twice will give us the back focal point
of the combination, a y—u trace will locate not only this point, but also deter-
mine the effective focal length of this two-lens system [Problem 2.5].

The lenses of this system can be treated as a single optical component. We
can, for example, find the effective focal length for this combination. The effective
focal length is the focal length of the combination system if it were replaced by a
single thin lens. If the initial parallel (¥, = 0) ray and the final ray that crosses
the axis are extended toward each other, the point where the rays cross would
determine the location for the replacement thin lens, and the distance from the
axis crossing (i.e., the focal point) to this position is the effective focal length of
the replacement lens (and, therefore, of the system). The position of the thin lens
is called the back principal plane of the system. It and other parameters of optical
systems will be described in Section 5.1.2 on the cardinal points of a lens.
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The trace is noted at the bottom of Example 2.C as a “parallel ray.” This is
the trace of a ray parallel to the optic axis and is used to find the effective focal
length of an optical system. The ray height is somewhat arbitrary, although it is
usually less than the entrance pupil. The new object distance may be kept the
same as the old object distance since it is of no consequence in this trace. Since a
ray parallel to the optic axis is required, the initial ray slope is set equal to zero.
The place where this ray crosses the optic axis (or appears to diverge from the
optic axis, in the case of a combination of lenses with a negative effective focal
length) is the back focal point of the lens. To find the effective focal length
where j is the number of surfaces in the system (in Fig. 2.10, j = 2), we write

tan u; = “Jo
erff
and in the paraxial case, tanu; = u,
=20 hen u, = 0 2.11
feff—A‘L?, when uy = U. ( )

Again, the inclusion of the negative sign is necessary to provide the proper signs
on both sides of the equation. For the case illustrated in Example 2.C, the focal
length 1s 150 units. In cases where the ray crosses the axis one or more times
before entering image space, even Eq. 2.11 fails. A more general formula for the
effective focal length is

fur =——7L,  whenu, = 0. (2.11)
U; ,y/'l
N
. L
Yo =
l Ha

Back principal plane

V

Figure 2.10. Effective focal length of a telephoto lens system.
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Since the back focal point is 90 units to the right of lens # 2, the principal
plane for this system is 150 — 90 or 60 units to the left of the second lens and
60 — 20 or 40 units in front of the first lens. See Fig. 2.10. This telephoto com-
bination produces a long-focal-length lens from two short-focal-length lenses
located closer to the focal plane than a single lens. Practice in finding the focal
lengths and other characteristics of thin lens systems are given in the problems
[Problems 2.6-2.15].

A thin lens ray trace gives us a first assessment of a proposed design system. It
provides additional information on the size and position of the stops, pupils, and
windows. Note, however, that there must be values assigned to the array before
the trace can be made, and this is usually done, as we did here, with simple thin
lens calculations. Only after these are in place can a y—u trace be run. Equations
2.5 and 2.8 are all that are needed to trace any ray. As we noted earlier, these
equations could be programmed on a small programmable calculator or
microcomputer. Although a number of such ray-tracing programs exist for
different systems, no programs are listed in this text. Rather than give a specific
program for a particular calculator or computer, a flow chart is provided in
Example 2.D to enable one to write such a program quickly and efficiently.

EXAMPLE 2.D. Ray Trace Program for Thin Lenses. Rather than
giving a specific program for a particular calculator or computer, a flow
chart is provided on the following page to enable one to write a program
quickly and efficiently.

2.7. CYLINDRICAL LENSES

All of the lenses and mirrors discussed to this point were constructed from
spherical surfaces. The unique direction in the system was the optic axis, the z
axis in these coordinate systems. In terms of the orientation of an object in a
direction at right angles to the optic axis, it made little difference whether the
object was oriented along the x axis or y axis or any intermediate axis in the x—y
plane, since ray tracing would always give the same result.

If the optical components were made of cylindrical surfaces, instead of
spherical surfaces, this would no longer be true, since the optical power of a
component would depend on whether a ray was propagating in a plane parallel
to the cylinder axis or perpendicular to it. Cylindrical lenses can be used to
provide a line focus rather than a point focus. For example, in Fig. 2.11(a), there
are two cylindrical lenses that provide two line foci. Analysis of this system is
simple: one treats a cylindrical lens in a plane perpendicular to the cylinder axis
as a thin lens and in a plane containing the cylinder axis as a slab of glass with no
optical power. Thus, at least, two sections of the optical system are needed to
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(a)

y

x-Focus line

y-focus line

fixg =0 fax

(b)

Figure 2.11. Cylindrical lens system. (a) Perspective view showing the focusing of two fans of
rays. (b) Ray diagrams in the y-z and x-z planes showing the treatment of cylindrical lenses as thin
lenses in one plane and glass slabs in the orthogonal plane.

display the course of rays through a system. The sections for the cylindrical
optical system in Fig. 2.11(a) are displayed in Fig. 2.11(b). To describe the
system a fan of rays in the y-z plane is shown passing through the system. In this
case, only the first lens has optical power. The rays focus to a point (y-focus) as it
were the only lens in the system. In the x—z planes, the only lens with optical
power is the second lens. The point source is imaged to a different point (x-focus)
along the axis. Since the y-fan is diverging at that point, this results in a line
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focus. Extensions to more complicated systems follow this same treatment
[Problem 2.14].

PROBLEMS

2.1.

2.2

23.

24.

2.5.

2.6.

2.7.

Determine from a computer terminal you are familiar with, the best
possible reduction format. You might take the following into con-
sideration: (1) Most microfiche projectors will display an 8% x 11-in.
page of typescript in a format at 75%; of the original size. (2) The optically
readable code should fit under or beside the screen. (3) the 20-fold time
reduction used in the text may not be optimum. What is the greatest
number of frames you can pack onto a standard microfiche and still
maintain readability? (There is no correct answer to this problem; there
are, however, reasonable versus ridiculous answers.)

The focal lengths of four lenses are f, = 100 mm, f, = —50 mm,
Jf3 = 80 mm, and f, = —280 mm. If the separations between the lenses
are £, = 20mm, t, = 40 mm, and ¢; = 30 mm. Where is the image
located if the object is 400 mm from the first lens? (a) Find the image
using the thin lens equation and rule 6 in Section 1.3. (b) Find the image
using the y-u trace.

(a) Show that a new axial ray with a slope angle uy = au,, will give new
ray values y, = ay, and u, = au,, where y, and u,, are the ray trace values
for the slope angle u,. (b) Using the results of part a, show that any
ray having- both nonzero u, and y, is just the sum of the axial and
chief rays with appropriate multipliers.

If the object distance for Example 2.C is changed to 30 mm, where are the
stops, pupils, and windows of the system?

Two lenses of focal lengths 98.59 mm and 84.84 mm are separated by
2.2 mm. Where is the back focal point of this system (a) using the thin
lensequation and (b) using the y—u trace? Find the effective focal length
and locate the back principal plane of the system. What is the effective
focal length if the 2.2-mm separation is ignored?

Periscopic Lens. Two identical lenses, focal length 104.167 mm, are
separated by 4.6 mm with a stop placed symmetrically between the
lenses. The stop diameter is 909 of a lens diameter. Where are the stops,
pupils, and windows of this system if the object is 75 mm from the first
lens? What is the effective focal length of this system and where is the
back principal plane located relative to the lenses?

Telephoto Lens. A system of two lenses and a stop is shown in the
accompanying figure. What are the image distance, locations, and sizes
of the stops, pupils, windows, and angular field of view if the object is at
400 mm?
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2.8.

2.9.

2.10.

2.11.

f, =60

Telephoto Lens. A system of two lenses and a stop is shown in the figure
for the preceding problem. What are the image distance, locations, and
sizes of the stops, pupils, windows, and angular field of view, if the object
is at infinity? Where is the principal plane of the system?

Telescope. A telescope consists of a 30-mm-diameter objective lens of
147 mm focal length and a 10-mm-diameter single eyepiece of 21 mm
focal length separated by the sum of the focal lengths. If the eye pupil,
adjusted to the amount of light coming through the telescope, is 5 mm in
diameter and 20 mm behind the lens, where are the stops, pupils, and
windows of the system? Draw a number of parallel rays at various
heights through the system to show its operation. What is the angular
field of view of this telescope?

Microscope. A microscope consists of a 14.545 mm focal length objective
(5-mm diameter) separated from a 28-mm focal length eyepiece
(d = 5 mm) by 185 mm. If the object is 16 mm from the objective, what is
the total magnification of the system? Where are the stops, pupils, and
windows of this system ?

Double Gauss. A symmetrical lens system is composed of four thin lenses.
The first component (f = 45.7mm, d = 10 mm) is separated from the
second component (f = —83mm,d = 10 mm) by 4 mm. The second lens
is 6 mm from a diaphragm (d = 7.5 mm). The diaphragm is at the mirror
plane of this symmetrical geometry, so the focal lengths and spacings are
reversed in the second half of the lens. What is the effective focal length?
With the object at infinity, where are the stops, pupils, and windows for
this lens? If an object were at 750 mm, would this change any of these
conclusions?
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2.12.

2.13.

2.14.

THIN LENS RAY TRACING

Cooke Triplet. Three thin lenses are arranged in the following order: a
positive lens (f = 60 mm, d = 8 mm) separated 13 mm from a negative
lens (f = —40 mm, d = 6.4 mm) and followed by another positive lens
(f = 50 mm, d = 7.2 mm) with a separation of 13 mm from the negative
lens. What is the effective focal length of the system? Where are the stops,
pupils, and windows for an object at infinity ? If an object is 300 mm from
the first lens, where are the image and stops for the system?

Ramsden Eyepiece.* Two positive lenses spaced 25 mm apart form an
eyepiece (f; = 50mm, d = 20 mm, f, = 36 mm, and d = 16 mm). What
is the effective focal length of this combination? If an object is 5 mm in
front of the first lens, where is the image located, and where are the stops,
pupils, and windows for this system?

Cylindrical Lens System. Two cylindrical lenses separated by 20 mm have
optical powers of ¢, = 103.333 diopters and ¢, = 36.905 diopters. The
subscripts indicate that these lenses have optical power in planes
perpendicular to one another. If the object is located 10 mm from the first
cylindrical lens, where are the images located? If the object is a square
10 mm x 10 mm format, what will the image look like?

* An eyepiece is a wide-angle optic for a magnified image.
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Radiometry

(OR PUTTING LIGHT THROUGH
AN OPTICAL SYSTEM)

As anyone who looks at an underexposed snapshot knows, the amount of light
converged by an optical system is just as important as the quality of the image.
Many of the cameras we use today have elaborate sensing and computing
systems that tell us whether we should take the picture. Although many optical
systems do not contain such apparatus as part of their design, still the control
and distribution of light in a train of optical elements must be determined if useful
systems are to be produced. Consider the design problems that are present in
residential and commercial illumination, in the visibility of cathode ray tubes in
computer terminals, light emitting diodes (LEDs), and liquid crystal displays
(LCD:s) for calculators, and light propagation in supermarket scanning systems
and photographic systems. Each design raises similar questions and demands
different answers. Some of the questions that must be answered are:

How much radiation is available from the primary source?

What are the limitations in the light collection and distribution system?
How does the illumination fall off away from the optic axis?

How much of the radiation is found in image space?

How do you measure what you have?

IS e

The following general question should always be uppermost in the mind while
designing a system: Is there sufficient radiation available to accomplish the
task? Rough calculations of the sort given in this chapter should be made as
soon as it is possible to answer this question. It is for this reason that this
chapter on radiometry is placed near the beginning of the text.

3.1. THE BASIC CONCEPTS AND TERMS

Before computing any light levels there must be a systematic approach to
defining the amount of light in a system and analyzing its propagation through
the system. To do this, certain concepts and definitions are required. The
purpose of this chapter is to introduce these items and show how they are used

87
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in the simplest cases. One of the most difficult problems in the field of
radiometry is coping with the large number of units that are used in the field. In
this text we use the set of CIE units accepted by the International Commission
on Illumination (Table 3.1). These have also been adopted by the American
National Standards Institute (ANSI Z7.1-1967). There are other systems that
are equally valid; but as an introduction to the subject it is best to keep the
number of units to a minimum. Descriptions of other systems of units and the
conversion factors between them can be found in Ref. 3. 1.

A point source is a small source of light that radiates equally in all directions.
Strictly speaking, a point source is an idealization; however, it can be
approximated in the real world by a source of radiation whose dimensions h,, h,
are small compared to the observation distance R (i.e., b h, < R?), as shown in
Fig. 3.1. Beyond some sufficiently great distance, even sources of substantial size
may be treated as point sources—a useful approximation in many calculations.
For example, all of the stars, some of which are larger than the orbit of the earth,
are from our vantage point, essentially, point sources.

To measure the portion of space into which a point source is radiating, we use
the concept of a solid angle. Recall that a plane angle, measured in radians (rad),
can be described as the ratio of the arc S of a circle subtended by the angle
divided by the radius R of the circle,

b="% @)

Table 3.1. Radiometric and Photometric Units and Symbols

Quantity Radiometric Photometric
Energy Joule (Q,) Talbot (Q,)
Power, flux Waltt {¢,) lumen (¢,)°
Intensity Watts/sr (I,) lumens/sr (I,)
Irradiance Watts/m? (E,, I)

Illuminance lumens/m? (E,)
Radiance Watts/m?2-sr (L,)

Luminance (brightness) lumens/m?2-sr (L,)

7680 lumens = 1 watt at 555nm. Other wavelengths are scaled to the
standard luminosity curve (Fig. 3.16).

Note: The area indicated in the units for irradiance and illuminance is the
illuminated surface area, whereas the area indicated in units for radiance
and luminance is the area of the source.
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Figure 3.1. Approximation of a source of dimensions /, by 4, as a point source.

as shown in Fig. 3.2(a). A solid angle denoted as  in Fig. 3.2(b) is expressed in
units of steradians (sr) and defined as the area A on a sphere of radius R
subtended by the solid angle divided by the square of the sphere’s radius,

A

Q=2

(3.2)

For example, a point source radiating in all directions illuminates the area of a
sphere, 4nR2. Therefore, the point source radiates into 4z steradians. (While the
area defining the solid angle can be irregular, in optical design it will usually be a
circle or an ellipse.) Note that the requirement, h h, < R?, for sources of some
extent to be considered point sources is equivalent to saying that the source as
viewed by an observer must subtend a solid angle very much less than unity.

3.1.1. Radiometry of Point Sources

Starting with the idea of a point source and solid angle, we can do some simple
radiometry. The amount of radiative energy per unit time is the radiation flux or
power (¢,) leaving the source and passing through a reference surface A, as
shown in Fig. 3.3. The power is measured in units of watts (joules/sec), as it is for
mechanical and electrical systems (Table 3.1). As is discussed later, measurement
of the power within certain frequency bands requires a modification of the unit
of power. For example, if we measure only that radiation to which the human

{a) (b}

Figure 3.2. Definition of (a) plane and (b) solid angle.



90 RADIOMETRY

Point
source

e

Figure 3.3. Irradiance of surfaces by a point source.

eye is sensitive and scale these measurements to the response of the eye, the unit
of power within the subfleld of photometry is a lumen. If we measure the
radiation as a function of frequency or wavelength, the unit is watts/Hz or
watts/nm. This is the subfield of spectral radiometry. (Section 3.5 contains
additional discussion of these two subfields.)

The quantity that describes the radiant output of a point source is intensity
(I). It is the power ¢, emitted per unit solid angle Q and has the units of
watts/steradian, that is

I

¢.
¢ dQ’

Py
I

(3.3)

If the source is positioned a distance R; from a surface, the illumination of that
surface is given by the irradiance (E,), the radiant flux density (power per unit
area) given in watts/m?,

E,="¢. (3.4)

The irradiance of a surface by a point source can be expressed in terms of its
intensity. Since the intensity of a point source does not change with angle, then
I, = ¢,/Q. Thus ¢, = 1,Q. Now at a distance R; from the point source the area
subtended by the solid angle Q is 4; = QR?Z, as noted in Fig. 3.3. Inserting these
two expressions for ¢, and A, into Eq. 3.4 for E,, we obtain the inverse square
law,

&=%=; _ L (3.5)
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A'= A/cost

R'= R/cos®

Point
source ‘q

Figure 3.4. Irradiance of a plane surface by a
/ point source.

Thus, the irradiance from a point source on a surface varies as the inverse square
of the distance from the point source to the surface [Problem 3.1]. It follows a
spherical surface with a point source at its center is a surface of constant
irradiance.* But most radiometry problems involve plane surfaces. How does
one determine the irradiance on a plane due to a point source located a distance
R from the plane, as shown in Fig. 3.4? First, note that compared to the point at
the foot of the perpendicular, where the irradiance is I,/R?, the distance to the
screen at an angle 6 to the perpendicular is greater than R by

R
cos '

R =

Also the area A4’ illuminated from a unit solid angle is slanted, and thus one
dimension is larger than an area A normal R’ by

A

A =
cos B

Thus the irradiance on the plane at an angle 6 to R is

¢, LQ  LAJR)  I,cos0

E’ = — = = =
¢ A Afcosf  Ajcos@  R*/cos?6’

E L. 39 30 3.6
e = Rz €08 = E,cos’0. (3.6)

Thus, the irradiance falls off as cos®8 from the irradiance E, at the point closest
to the source. The simple manipulations of these quantities should give you
some idea of the type of calculations that must be made to determine the
distribution of light over a surface [Problem 3.2].

* The term “intensity” should only be used with point sources. The amount of radiation falling on a
surface (usually termed intensity) is the irradiance (W/m?), independent of the type of source.
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3.1.2. Radiometry of Extended Sources

Although it is easy to describe a point source, it is difficult to obtain anything
approximating one with any substantial intensity. The reverse is true for an
extended source—any source of radiation with measurable dimensions. All
sources we use are extended sources; but how can we describe them? From
projector lamp filaments to the sun, all sources have some degree of variation in
the amount and direction of emission with position on the surface unless they
are carefully constructed and masked.

A measure of the “brightness” of a source is its radiance. The term
“brightness” really only applies to visible sources, but if we extend the term to
include regions outside the visible, we can use the idea to gain an understanding
of radiance. Radiance (L,) is the amount of power ¢, per unit source area as
radiated into a unit solid angle Q,

L, = ¢,/4,Q. (3.7)

It may help to think of the source as a large collection of point sources
distributed uniformly across the source area, so the radiance is a measure of the
intensity per unit of source area (and by the definition of intensity, it is a measure
of the power per solid angle per unit source area). This concept of an extended
source as a distribution of point sources can be used in making some
assumptions about the properties of real sources. Suppose that each small area
AA of an extended source contains a point source, as shown in Fig. 3.5. That is,
I, = ¢,/Q = constant for all directions. Then the brightness of the source in the
direction normal to the surface (8 = 0) is L (0) = ¢,/AAQ. But if one observes
this source at some angle 0 to the surface normal, the point sources would
appear to be more tightly packed together in the direction of the observer (look
at the array in Fig. 3.5 at a glancing angle). Thus the A4 areas would be reduced
to AA4 cos § and the brightness should be

b _LO)
AA-Q-cos® cosb’

L(0) =

Figure 3.5. Extended source as a collection of
point sources.
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A source should look brighter at a glancing angle than it does from straight on.
But in most cases, this is not the case. If anything, a source either maintains a
constant brightness or becomes dimmer as the point of observation moves away
from the source normal. _

As an approximation to real sources, we assume that the intensity of each
area small enough_to-be considered a point source falls off as cos 6, instead of
radiating equally in all directions, that is

I1(6) = ?icos 0 (Lambert’s Law) (3.8)

Q

then the brightness of the source is independent of angle,

_ @.cosf P,
L6) = AAcosHQ ~ AAQ LO).

Such a source is referred to as a Lambertian source. While most sources are not
truly Lambertian, many are so well approximated by the description that the
concept is useful in radiometric calculations.

To calculate the irradiance on a screen at some distance from an extended
source, we again appeal to the model of the extended source as a collection of
point sources. A source of brightness L, and area A is located a distance R from
a point P on a screen, as shown in Fig. 3.6. Since all points on S contribute to the
irradiance at P, the irradiance due to each point source is E, = I,/R?. For an
extended source of radiance L,, the intensity of each point source is I, = L ,AA,
where AA is a small area on the source.

Y
R
If we sum over all the sources, they are equal to the source area, A;,

AS
E, = Le-F =1L1,Q, 3.9
where Q is the solid angle of the source from the point P. Note that the actual
locations of the source and screen do not enter the equation, only the solid

Le
Ee
F Figure 3.6. Irradiance of a plane surface by an
A extended source at a point normal to the source
Source - R? p]ane.
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angle. Therefore, if the original source is replaced by an even larger source of the
same brightness at some distance from the screen and an aperture is inserted
between the source and screen having the same solid angle subtense at the screen
as the original source, irradiance will be the same as with the original source! As
long as the aperture is filled (or “flashed” as it is termed) and subtends the same
angle at the screen as the original source did, the irradiance on the screen will be
the same [Problem 3.3].

All of the above applies only to evaluation of the irradiance at a point on the
screen closest to the source or the source defining aperture. What is the
irradiance at a point elsewhere on the screen? The analysis is similar to that for
the cos0 law for the point source. As may be seen in Fig. 3.7, the area 4, of the
source S as observed from point P’ is foreshortened by a factor of cos # and the
distance is increased by 1/cos 6, so that the solid angle subtended by the source
at a point P is

A;cos0  A.cosf A4 3
- =3 = —= 0 = Qcos*6.
Q (R)? R%/cos?0 ~ R cos cos

The irradiance on a surface normal to R’ would then be E. = L =
L,Q cos®6. But just as in the point source calculation, the area on the screen is
greater than that normal to R’ by

A
" cos @

’

so that

E;=FE,cos 6

I~ A;', = Ap/cosf

Figure 3.7. Irradiance of a plane surface by an extended source at a general point on the surface.
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and
E! = L,Qcos*d = E, cos*0, (3.10)

where E, is the irradiance at the point closest to the source. This is known as the
cosine fourth law. Its importance to optical design is that the irradiation on a
screen falls off rapidly with angle for a Lambertian source [Problem 3.4].

3.2. RADIOMETRY IN AN OPTICAL SYSTEM

Although the cos*8 law will work fairly well for everyday sources such as lamps
and fluorescent fixtures, in optical system design there are usually lenses or
mirrors in a system to provide an image, concentrate the light to a small area, or
provide even illumination. In this section the method of calculating the
irradiance at various points in optical systems is examined. We start with the
point source.

3.2.1. Imaging a Point Source

A point source of intensity I, is located on the optic axis of a thin lens a distance
to from the lens, as shown in Fig. 3.8. The first thing to note is that only a
fraction of the light emitted by the source is directed into image space. There are
methods of collecting additional light, but the total power ¢, in image space will
always be less than power emitted by the object [Problem 3.5]. Note also that in
object space (to the left of the lens and around its periphery to the right),
irradiance would be calculated using the cos®6 law. Behind the lens in image
space, there is, in effect, another point source, the image. The image intensity

Figure 3.8. Imaging of a point source by a thin lens.
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may be calculated by noting that the power ¢, collected by the lens within a
solid angle Q = A,/t, where A, is the area of the lens, is refocused to a point in a
solid angle Q' = 4,/t?. Thus

Al {
o = I' _*
¢e e t% e t%
or
tZ
=1+ =M1, (3.11)
fy

where M is the transverse magnification (Eq. 1.14). Thus the intensity of the
image depends on the magnification of the system.

Irradiances in image space may be calculated by treating the image as a point
source of intensity I,. With the point source intensity I, the irradiance in image
space can then be calculated [Problem 3.6] to be

E, = I, M?cos®0/R?, (3.12)

where R is the distance from the image plane. Note that this holds only inside
the solid angle Q'. Qutside of this region, the irradiance is zero. This illustrates the
major difference between the radiometry of sources and of images. Although the
optical system produces secondary sources comparable to the primary sources
at a distance from the original, it does so in a restricted region of image space. In
addition, the irradiance in image space can be calculated using the distance from
the image point to the surface in question, even if the screen is between the lens
and the image point. This can be seen from the fact that the light intercepted by
a plane a distance R from the image point will converge to that point and then
diverge to illuminate an equal area at distance R on the other side of the image.

When the optical system is not a thin lens, these calculations must be recast in
terms of the pupils of the system. As we have seen, the amount of flux collected
by an optical system is determined by the aperture stop. If this is not accessible,
then we may determine the solid angle of the light collected by the system as the
area of the entrance pupil divided by the square of the distance between the
point source and entrance pupil, as shown in Fig. 3.9. In image space, the area
that will determine the solid angle is the exit pupil. In image space with your eye
anywhere inside the solid angle Q' you can look through the lens and see the
entire exit pupil illuminated. As far as the image of the point source is concerned,
the image intensity is due to a uniformly illuminated exit pupil radiating toward
the image. Therefore, in radiometric calculations an optical system can be
replaced by its entrance and exit pupils. (Transmission losses are accounted for
by multiplication of final result by the transmittance T of the system.) While this
may seem like a statement of little consequence, it allows considerable
simplification of a problem.
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Object
point source

Q —
Entrance
pupil

Figure 3.9. Imaging of a point source by an optical system.

EXAMPLE 3.A. A laser beam is focused on a small spot on a slab of
material creating a visible point of light on the slab that radiates into a
hemisphere (27 sr). If a lens images this spot onto a detector and if the
magnification is unity (the lens focal length is 8 cm and its diameter is
3 cm), what fraction of the radiated power will be collected and imaged

onto the detector?
Laser g/ Detector
beam P

7

/
Focus lens / / X
! Collecting
!

7 lens

Solution: We need to determine the solid angle of the collection system.

o =2 21 If magnification is unity, then t, = —2f.
! 2] R? . R =2f=16cm.

n 9 79

T4 (16 4(16)

The total solid angle that the source radiates into is 2z sr. The fraction is
then:

ST

79 _L 9
416)* 2n ~ 8(16)*

= 0.0044.

About 39 is directed onto the detector.
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It should be noted that not all sources that are considered point sources
radiate into 4n steradians. If a source underfills a lens, as in the case of a laser
beam or the intermediate image of a point source, then (with the exception of
transmission losses) all the power is transferred into image space. If a source
overfills a lens, then the power transferred is proportional to the ratio of the
collection optics solid angle divided by the output solid angle of the source. An
example of a calculation involving point sources is given in Example 3.A.

3.2.2. Imaging an Extended Source

As noted above, the irradiance due to an image point source is zero outside the
solid angle into which the image is focused and diverged. The same is true for
images of extended sources. In image space, the observer will see an image only
if the eye is in a region where light from the image is directed. The radiometry of
images applies only in regions where the optics has redirected the light.

An optical system made up of passive components (lenses, mirrors, prisms,
etc.) can redirect radiant energy, but it cannot increase it. (A light amplifier, a
laser, or an image intensifier is needed for that.) Therefore, with the exception of
absorption and reflection losses, the power out of the optical system ¢/, is less
than or equal to the power in, ¢,:

¢, = T¢,, (3.13)

where T is the transmittance of the system,0 < 7 < 1.

In Fig. 3.10, light from a source of brightness L, is collected by a lens to
produce an image of brightness L,. What is the relation between source and
image brightness? First, from Eq. 3.7,

=L, 4-Q

Object
brightness
Le
Image
bnghtness

Figure 3.10. Imaging of an extended source by a thin lens.
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and
=L, A-Q,

where L, is the source brightness, A4 is the source area, and Q is the solid angle
subtended by the entrance pupil. The primed quantities are the corresponding
values for image space. The area of the source is related to the area of the image
by the magnification of the system:

7 2
A _ et
A 3’

and the ratio of the solid angles can also be expressed in terms of the square of
the magnification:

Q= A—*;(%L‘ Q= A;‘%*’"
or
@ _n_ 1
Q 2 M
But A/A’ = 1/M?, therefore
AQ = A'Q. (3.14)

The product of the source area times the solid angle into which it radiates is
referred to as the throughput of the system. This last equation tells us that it is
equal to the corresponding throughput of the image. It can also be shown
[Problem 3.7] that the solid angle subtended by the source or the image, Q" at
the lens multiplied by the corresponding pupil area A is also equal to the
throughput

pupil

AQ=AQ =4 .Q". (3.15)

pupil
Using Eq. 3.13 and the throughput relation, Eq. 3.14, we find that
L, - AQ = TL,AQ,
L, =TL,
or,since T< 1
L,<L,. (3.16)

Thus the brightness of an image can never exceed the brightness of its object.
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The above statement, referred to as the Brightness Theorem, is, in effect, an
optical form of the law of conservation of energy. No amount of repositioning of
optical elements can make the image brighter than the object. For example, note
that: If the lens is moved closer to the object to collect more light (¢, is larger
because Q is larger), the image is magnified so the energy is spread into a larger
area A'. If the lens is moved closer to the image to reduce the image size, the
collection angle is smaller, reducing the light flux. And if the size of the lens is
increased, the power through the system goes into a larger solid angle Q', so the
brightness remains the same.

Then why does anyone buy larger, more expensive lenses for his or her
camera? Because increasing Q and Q' means the irradiance on the film E, is
larger, since E, = L,€Q'. Since L, is constant, as we have just argued, the larger
the solid angle, the greater E.,, and since the exposure of a film is the product of
the irradiance E, and the exposure time, an increase in E., enables one to
decrease the exposure time, capturing motion or preventing a blur due to
camera movement.

3.3. RADIOMETRY OF EXTENDED SOURCES

While the Brightness Theorem sets limits on image brightness, it does not tell us
the irradiance distribution in the image plane or elsewhere in image space. From
Fig. 3.10 and Eqgs. 3.7. and 3.14, we find that the irradiance in the image plane is

LA

E, = Pe _
AI AI

=T L, (3.17)
since L,Q = E, and Q' = Q/M?, the image irradiance is

(3.18)

Thus the image irradiance can be increased by demagnification, but the details
of the image are harder to see and harder to record.

What happens to the irradiance off axis? The power into the lens from a point
at an angle 6 between the source normal and the lens axis is

¢, =L, -A-Qcos*0,

and the irradiance is




RADIOMETRY OF EXTENDED SOURCES 101

Using the throughput relation (Eq. 3.14), the quantity in parentheses can be
replaced by ', so that

E, = TL,QY cos®f. (3.19)

Note that with the exception of the transmission factor 7, this is the same as if
the source were located in place of the lens. This holds until the edge of the
image is reached and then E,, = 0, assuming no diffraction or lens aberration.
In the simple example shown in Fig. 3.10, the lens is the aperture stop and
the pupils. The field stop (and entrance window) is the edge of the source, and
the exit window is the edge of the image. Thus the only reduction in image
irradiance is due to the cosine fourth law.

3.3.1. Vignetting

In more complicated systems the field stop is defined by some aperture in the
system. In Example 2.C, given in the previous chapter, the front lens was found
to be the aperture stop and the back lens to be the field stop. Given a source of
unlimited extent and brightness L, located 300 mm from the positive lens, we
would like to calculate the distribution of light in the image plane. For the point
on the screen on axis, only the aperture stop limits the rays (Fig. 3.11(a)). But at
a certain angle the back lens limits the rays, as shown in Fig. 3.11(b)). To analyze
what is happening, we can replace the two lenses and the source by an exit
window P; P, (here the field stop) and an illuminated exit pupil P, P,. Because
the source has unlimited extent, the exit pupil is always filled with rays at all
angles. Thus the calculation of the on-axis and off-axis points is simplified to
that shown in Fig. 3.11. Note that in part c of the figure, the exit window begins
to cut off the bottom of the ray bundle. This reduction in the effective aperture
stop of the system is called vignetting (vin-yét-ting). At a very high angle such
that a ray from P, hits P,, there will be no light passing through the optical
system. If you positioned your eye on the optic axis and looked back through
the system, you would see the illuminated exit pupil centered in the exit window.
As you move your eye down to point B, the exit pupil moves relative to the
exit window to a point where the bottom edges of the two circles are just
touching. Beyond this, moving toward D, progressively more of the exit pupil
is vignetted until it is completely cut off. A plot of the irradiance as a function
of angle is given to the right of Fig. 3.11.
The value of the irradiance in the image plane can be written as

E, = TL,QYV(6) cos*6, (3.20)

where V(9) is the fraction of the solid angle not vignetted. As the angle 0 is
increased, the cross-section of the solid angle becomes strongly elliptical, but
because the cos*f factor already accounts for a foreshortening of a source
dimension and therefore accounts for the elliptical shape, the factor V() is just
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Figure 3.11. Vignetting. (a)-(c) Left side—marginal ray traces of an extended source seen from
different points in the image; right side—view of the exit pupil as seen through the exit window
from different points in the image plane. (a) on the optic axis, (b) at the point where vignetting
begins, (c) at a point where there is substantial vignetting. (d) Left side—ray traces for the above
three points plus an additional point where vignetting is complete; right side—plot of irradiance
versus distance from the axis corresponding to the points illustrated in the left-side figure.
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Exit
pupil

Exit Image
window plane

Yk+1

(a)

__ Exit
pupil

Figure 3.12. Vignetting. (a) Projection of
—_ Exit exit pupil onto the exit window. (b)
window Off-axis view of exit window and pupil.
A is the separation between the center of the
exit window and the center of the projection

(b) of the exit pupil.

the overlap of two circles, the exit pupil and window, of different radii and
centers. To account for the separation between the circles, the exit pupil is
projected onto the exit window plane, as shown in Fig. 3.12(a), so that its radius
is reduced from r, to

, V4
"1=v‘“d+z‘r1, (3.21)

where z is the exit window to image distance and d is the separation between the
exit pupil and the exit window. The angle 8 between a ray from the center of the
exit pupil to a point y, ., on the image and the axis of the system is given by

Vie+1
tan 8 = . 3.22
an N (3.22)
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and the separation between the two circles A is

d 4
A=dtanf = m'yk+1. (323)

The area between the chord of a circle and the arc is the segment of the circle. The
unvignetted area is the sum of the areas of two segments of the circles as shown
in Fig. 3.12(b), whose half angles can be found from

"2+ A —1)

cos ¢, = A
1

; (3.242)

(3 + A2 — 1)

24b
2r,A (3.245)

cos ¢, =

A preliminary inspection of the overlap of the two circles would seem to require
two cases, one for A greater than the smaller of the two radii and one for A less
than this quantity. In fact, the overlap area for both cases can be expressed as
{Problem 3.8]

AB) = ¢r'E + 13 — rirysin(@, + ), (3.25)
where
(Iri —rl <A< +1))
The vignetting factor in Eq. 3.20 above is then

0
V(6) = V(A) = /:z(rz) .

(3.26)

where r is the smaller of ; and r,. Note that for each value of ¥(8), A has to be
determined and then ¢; and ¢, found before the overlap area can be calculated.
Obviously, this is the type of a problem a small computer or programmable
calculator can solve with ease. Starting from the axis the solid angle could be
evaluated and r found. The calculation of V(8) does not begin until the angle
where A = [r, — r,| (edges of the two circles touching). To that point the cos* 6
factor is the only correction. Beyond that and until A = | + r, (complete cutoff
of light), A is incremented by small amounts to provide a smooth plot in a
minimum amount of time. (Where on the image plane in Fig. 3.12(a) will the
arrangement in part (b) be seen?) An application of this technique to Example
2.C s given in Example 3.B. Note that the function V() could be approximated
by a straight line between the points when A = |r| — r,| and A = #}| + r,. The
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greatest error occurs at the smaller values of ¥ (8) but in that region the cosine
fourth factor reduces it. Thus a linear approximation of ¥ (8) by

(ri+r)—A
(i + 1) = +n

V() = (3.27)

can provide a good approximation to the more exact calculation in much less
time [Problem 3.9]. In the example given above and in Example 3.B the exit
window is closer to the image plane than the exit pupil. This is not always the
case; sometimes they are reversed [Problem 3.10]. In such cases the same
procedure is followed except that the exit window is projected on the exit
pupil. It should also be noted that the irradiated plane need not be in the image
plane. For an extended source the system can be replaced by its illuminated
exit apertures and any plane can be evaluated using vignetting and the cosine
fourth law.

EXAMPLE 3.B. What is the degree of vignetting at 25° to the optic axis
for the system described in Example 2.C?

f, =50 fy =—45

Solution: From Example 2.C, we know that the positive lens is the
aperture stop and that the negative lens is therefore the field stop and exit
window. The exit pupil is found by finding the image of the positive lens in
image space. Using the thin lens formula,

to=—20, f=-45->1 =-13.85
M = 0.692, ry =6.92.
Step 1. Thus, we can replace the lenses with two apertures as shown,

The distance from the exit window to the image is z = 1, = 360 mm
(see Example 2.C).
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Projecting the exit pupil onto the exit window, its radius is reduced (by
Eq. 3.21) to:

. z 360
ry = m.rl = m692 = 666mm

Step 2. The size of A = d tan 8 (Eq. 3.23)
A = 13.85tan 25° = 6.458.

Step 3. Since r,, ¥}, and A are known, ¢, and ¢, can be calculated
from Eqs. 3.24 to be

¢, = 1.733 rad (99.3°),
¢, = 0.717 rad (41°).
The overlap area is (using Eq. 3.25)
A(25°) = 106.16.

The unvignetted area is nr? = 76.66° = 139.3. Thus the vignetting
factor is

A(6)  106.16

V(o) = =
©) nrg 1393

= 0.76, or 76%,.

If one includes the cos*8 factor (cos*6(25°) = 0.675), the reduction in
illumination from the on axis point is

0.76 x 0.675 = 0.51.

At 25° off-axis the irradiance is half the on-axis value with both cos*#
and vignetting contributing comparable amounts.
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The preceding analysis is somewhat simplified in that only two apertures (or
their images) are considered. In some cases, as the observation point moves off
axis, the edges of other apertures may interrupt the solid angle subtended by the
already vignetted sources. Although the calculation involving the additional
sectors increases the difficulty of the computation, the method of calculation
remains the same. For rough calculations, a linear extrapolation between two
values of A that represent the end points of the vignetting region may prove
adequate.

34. APPLICATIONS

The purpose of this section is to show how radiometry can be applied to some
practical situations. Beginning first with the radiometer, we will then look at
searchlights and illuminators.

3.4.1. Radiometer

A radiometer is a device that measures radiant power. It consists of a light
sensitive detector, usually an absorbing black surface and a transducer that
produces a signal caused by the heating of the surfaces as described in Section
10.2; a set of concentric apertures or baffles, which define the amount of
radiation measured and reduce extraneous radiation from other sources; and a
calibrated meter or display to provide a readout, as shown in Fig. 3.13(a). While

Detector
// Baffles

- - - - A-

-
S°“l'”\\ i

e R

(a)

Source

{b)

Figure 3.13. Radiometer. (a) Direct measurement of irradiance of an extended source. (b)
Measurement of an extended source with improved sensitivity by imaging the source onto the
detector.
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a radiometer is relatively insensitive to the wavelength of radiation (otherwise it
is not a radiometer, but a narrow-band power meter), the region over which this
is true should be determined either from specifications or experiment. To be able
to use a radiometer intelligently, the acceptance angle, detector surface area, and
location of the detector within the radiometer head should also be known.

Usually a radiometer will be used in one of two configurations. In the first, it
will be positioned a distance R in front of a source and the power ¢, falling on
the detector surface (the area, A) will give a value for the irradiance E, = ¢,/A4 at
distance R, as shown in Fig. 3.13(a). From the geometry of the source and
assumptions as type of source (isotropic, Lambertian, etc.), a value of the total
power emitted by the source may be found. If the source is too weak, a second
configuration, shown in Fig. 3.13(b), in which a lens is used to image the source
onto the detector, is appropriate. In the second case the fraction of source power
measured must be determined. Here, however, the entrance pupil and its
distance from the object must be found so that the solid angle collected by the
radiometer can be found. By determining the fraction of the source radiation
that enters the radiometer, the total radiated power of the source may be
calculated. Whether the image of the source underfills or overfills the detector
will determine whether the source or the image of the detector surface at the
source is the entrance window. Thus, in most radiometric calculations, the
measurement hinges on the correct assessment of the geometry and application
of certain assumptions. In Fig. 3.13(b), the source is smaller than the detector
image and, therefore, the source outline is the field stop. An example of
calculations for this configuration is given in Example 3.C.

3.4.2. Searchlights

In the realm of geometrical optics, a point source at the focal point of a lens will
produce parallel rays showing no divergence. However, without point sources
and aberration-free lenses, we are forced to produce collimated light as best we
can and analyze the results to understand how brightly we can illuminate a
remote area, actors on stage, or the night sky around shopping malls.

A searchlight consists of an extended source located at the focal point of a lens
or mirror, as shown in Fig. 3.14(a). To simplify matters we assume the source
has a circular shape. Again the replacement of source and lens by the exit pupil
and exit window makes the analysis simple. In this case, the aperture stop (and
therefore, exit pupil) is the lens. The exit window is then the virtual image of the
source, which is located at infinity, but whose angular extent is the same as that
of the source located one focal length f from the lens, as shown in Fig. 3.14(b).
Since the image of the source is at infinity, all rays coming from the top of the
source are parallel to each other. The same is true for all other points on the
source. If the above argument is less than convincing, consider that if you cover
the region to the left of the lens for Fig. 3.14 parts (a) and (b), the ray paths look
the same for both figures. Both the original source and the image at infinity
subtend a solid angle Q, = nr?/f?, where r is the radius of the circular source.
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EXAMPLE 3.C. A light emitting diode (LED) with an internal col-
limator design emits in a 20° cone (full angle). The broadband detector
with a 10° (full angle) acceptance angle is used to measure the output. Set
up the geometry to measure the light output of the diode. (Radiometer
data: 1-cm? circular detector, 1-cm diameter entrance aperture.)

Solution: Unless the radiometer is very sensitive, a lens is needed to
image the object into the detector. Assume T = 0.92 for a glass lens. We
choose a 10-cm lens and set it up in a unit magnification geometry

Acceptance
angle

Detector

(—to =2 =t,). If the radius of the lens is 25 mm, the solid angle
subtended by the lens at the diode is:

_ n(25)°
~ (200)?

= 0.05 sr.

The diode emits into an angle of 20°. This 20° cone corresponds to a solid
angle of # tan?10° = 0.10 sr. Thus the lens will intercept approximately
half the diode output. Because the diode is so small and the detector area is
s0 large the entire image will fall on the detector. The output of the diode
will be

¢ — ¢measured
092 x 0.50°

One region of particular interest is near the lens. Note that within region 4 in
Fig. 3.14 the entire disk of the source will be seen. Since the source is at infinity, a
change of position along the optic axis does not change the size of the solid angle
subtended by the source. Thus, anywhere in region 4, Q' is constant, and since
L, is constant, the illumination E, is constant within this area. Beyond a
distance d,, where the solid angle just fills the exit pupil (i.e.,, when
d} = A,.,s/Q,;check this out for yourself), the illumination along the axis will be
L., where Q' is now equal to A4,.,./d> and d is the lens to observation point
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(a)

Ray from source
at infinity

(b)

Figure 3.14. Searchlight. (a) Ray tracing of center and marginal rays for an extended source at
the focal point of a lens. (b) Replacement of source and lens by a virtual object at minus infinity
and an exit pupil. Region A is a region of constant irradiance, region B is a region where a point
source approximation may be used, region C is a vignetting region, and D is the shadow region.

distance. Therefore, in region B, the lens acts like a point source of intensity
L A, [Problem 3.11].

In region C vignetting occurs, and the irradiance is determined by the
fractional area of the source as seen through the hole that is the exit pupil (the
lens). This is another vignetting problem, but the second aperture cannot be
assigned a finite distance, only a finite subtense Q,. Thus, at any distance d from
the lens, the source subtends a solid angle Q,. Therefore, the projection of the

source on the exit pupil plane is a circle of radius ;, = ./d*Q,/z. In the case of
the searchlight, the separation between the centers of the circles A is equal to the
distance y’ between the point of observation and the lens axis. So the irradiance
in region C can be treated as a vignetting problem, but with | and A calculated
differently [Problem 3.12] and with no cosine fourth dependence.
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In summary, it is possible to separate the searchlight irradiation into four
regions: the region (A4) of constant irradiation, the region (B) of point source
irradiation, the region (C) of vignetted irradiation, and the shadow region (D). In
region C and beyond distance d,,, the solid angle subtended by the lens is smaller
than the source as it is in region B. Thus in region C beyond d, the irradiance
falls off more rapidly than in region B because of vignetting in C in addition to
the 1/d* dependence. Although this discussion of such a simple system may seem
more detailed than necessary, it is done with the purpose of illustrating how an
optical system may be replaced by its equivalent pupil and window to assess the
effect of vignetting. In this case, the values were not found in an image plane (for
there is none), but for the entire irradiated region [Problem 3.13]. Although the
light from a searchlight can be well collimated,* it cannot compare with the
collimation that can be achieved by using a laser source. That subject is
explored in Chapter 7.

3.4.3. Hluminators

In many applications the image we produce does not come from a self-luminous
source. Instead, it is illuminated by another source. The sun, roomlights, or a
flashlamp provide the light in photography. In optical systems, the most
interesting cases are transilluminated objects such as a photographic slide, a film
in a projector, or samples in a microscope. The ideal solution would be a bright
planar source located next to the transparency, but it is impossible to get a
source of uniform brightness as large as a frame of motion picture film or a
35-mm slide. Some optics must therefore be used to increase the irradiance at
the object and the irradiance at the screen. One of the most important
requirements of a good transilluminated system is a nearly uniform illumination
of the image plane. While the border of the transparency or film frame may serve
as a possible system stop, the uniformity of illumination one would like to
achieve is independent of the content of the transparency. Thus, we need only
worry about the uniformity of light distribution on a screen. We will examine
several illumination methods and compare the results of these methods.
Although the direct illumination method shown in Fig. 3.15(a) is simple in
that it only requires a projection lens, it is inefficient in directing radiation to the
screen. If the source is small enough to be considered a point source, then only a
cone of light equal to the image solid angle would illuminate the center of the
screen, leaving the edges dark, as shown in the figure. The irradiance on the
screen is given by Eq. 3.12; E, = I, - M? cos*8/R? for an area inside . Outside

* It is interesting to note that carbon arc searchlights that one often sees at shopping centers and
movie openings usually emit a diverging radiation bundle. This is to compensate for the perspective
distortion, and the net effect (if the divergence is properly set) is to see a parallel bundle or pencil of
radiation proceeding skyward and simply stopping. If the radiation were collimated, it would come
to a point when viewed from near the searchlight, much as two railroad tracks converge due to the
perspective distortion.
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Figure 3.15. Types of illumination. (a) Point source illumination, (b) Collimated illumination,
(¢) Kohler illumination, and (d) Abbe illumination.
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(' it is zero. Any attempt to increase E, by increasing the magnification of the
source will cause the image of the source to be located closer to the screen,
resulting in a smaller illuminated area. If the surrounding illumination is weak
and the magnification of the object modest so that only the narrow central
region of the system could be used, such illumination might be used in an
inexpensive projector.

A lens may be inserted into the system so that the light from the source is
collimated as a mini-searchlight. If the collimation lens is placed close to the
object, as shown in Fig. 3.15(b), the object is in the region of constant
illumination (region A, discussed in the previous section), and the distribution of
light on the screen should be more uniform. However, the illumination is again
dependent on the relative sizes and the separation of the exit apertures. From
Fig. 3.15(b), it should be easy to see that the film frame and its projection on the
imaging lens (since the space between them is filled with collimated light) are
aperture stops and that the image of the source is the field stop. The focal length
of the condenser lens is made as short as possible and the diameter as large as
possible to increase its light collection. The focal length of the projection lens is
determined by the magnification needed and the projection distance. From a
simple ray trace one can see that the light source is magnified as the ratio of the
projector focal length over the condenser focal length [Problem 3.14]. Unless
the source area is very large, the image area and thus the field stop will normally
be small, so that vignetting occurs at relatively small angles.

If the source is moved father back from the condensing lens, at some point a
magnified image of the source is located at the projection lens, as shown in Fig.
3.15(c). This lens is now the field stop, while the aperture stop is the film frame.
But the image of the film frame in image space is the screen image, which is also
the exit pupil. This is an ideal situation since the image surface and the exit pupil
are the same. Provided the film frame is not too large and the projection lens is
filled with the source image, there will be little or no vignetting. This
configuration, in which the source is imaged into the projection lens, is called
Kohler illumination. The same configuration can be used in microscopy to image
the source into the microscope objective.

There are conditions where Ko6hler illumination is not feasible. For example,
when a small frame of a motion picture film must be imaged onto a large screen
in an auditorium or drive-in, the illumination would not be sufficient since the
film is placed in the constant irradiance region of the condenser lens. Instead the
source can be imaged onto the film frame and then the transparency and source
are imaged onto the screen, as shown in Fig. 3.15(d). The problem with this
arrangement is that unless the source brightness is extremely uniform, the
irregularities in the source will be evident on the screen. This is usually achieved
by making the condenser optics slightly irregular to produce a uniformly
blurred source image in the film frame. This type of configuration is called Abbe
illumination and has a counterpart in microscopy. Some microscope illumi-
nators come equipped with a swing-away lens to enable the microscopist to
choose between Kohler and Abbe illumination.
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One last type of illumination might be referred to as focused illumination. In
this case the object is to provide the largest amount of flux into the smallest area.
With the sources discussed so far, this 1s achieved by choosing a lens with a low
Sf-number. The large diameter will collect a large flux and the short focal
length lens will produce a small image of the original source [Problem 3.15]. In
Chapter 7 we consider another illumination problem, that of focused laser
beams. There the approach is somewhat different.

35. PHOTOMETRY AND SPECTROPHOTOMETRY

In the preceding sections, the spectral output of the sources was not discussed.
The rate of energy output was given in watts; no distinction was made between
the radiative power of a source and the power of mechanical or electrical power
sources. There are situations, however, when it is necessary to make this
distinction, to single out certain wavelength regions and measure radiation only
within these regions. For example, the human eye responds to a narrow range of
wavelengths, between 400 and 700 nm. If one tried to design a system without
taking this fact into consideration, radiometric calculations might show an
excellent power flux, but the eye would see nothing.

The subfield of radiometry that deals with the human eye as a detector is
called photometry. All the concepts that have been discussed thus far still hold.
All that will be done is to evaluate the output of a system based on the response
of the human eye. This is accomplished by converting radiometric measure-
ments and units to photometric ones or by evaluating a system initially in
photometric units. The point of contact between the two fields and systems of
units comes through curves shown in Fig. 3.16, that give the relative response of
the human eye to different wavelength bands. These curves are called the
spectral luminous efficiency curves. One of them (the photopic curve) peaks at
555nm in the yellow—green region and falls off toward each end of the
spectrum—to 400 nm in the violet and 700 nm in the red. This is the curve for
the light-adapted eye. For very dim illumination, a second curve, called the
scotopic curve, that peaks further to the blue at 510 nm, is used. The connection
between radiometric units, valid in all regions of the electromagnetic spectrum,
and photometric units, defined only in this narrow region, is that 1 watt of
radiometric power at 555 nm is equal to 680 lumens. All other powers are then
scaled to the photopic spectral luminous efficiency curve. For example, a 50-mW
helium-neon laser, which has an output at 633 nm, has a photometric power of
about 50 mW x 680 lumens/watt x 0.25, or 8.5 lumens. The photometric out-
put of a gallium arsenide diode that operates at 900 nm is virtually zero. (It is not
quite zero. The human eye is still slightly sensitive at that wavelength—about
10™% that of the peak value at 555nm.) Once the connection between
photometric and radiometric quantities is made, there is little difficulty transfer-
ring back and forth between the two systems, providing the spectral distribution
of the source and the spectral variation in the transmittance is known. A list of
corresponding radiometric and photometric quantities is given in Table 3.1.
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1 Watt at 565 nm = 680 Lumens

Daylight vision {cones)
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Figure 3.16. Spectral luminous efficiency curves. The solid curve is a plot of relative response of a
daylight-adapted eye to visible wavelengths (photopic curve); the dashed curve plots the response
of the dark-adapted eye (scotopic curve).

Note that the radiometric and photometric quantities are distinguished by the
radiant and luminous modifiers and roots and by the subscripts , for radio-
metric terms and , for visible (photometric) terms. One of these quantities, the
luminous intensity I,, when expressed in lumens/ster, is equal to one candela
(formerly a “candle”) and is very close to the luminous intensity of an ordinary
candle. At one time the candle was the standard for all photometric measure-
ments. It has now been redefined more precisely as g5cm? of a blackbody
radiator at the freezing point of platinum, 2042 K.

The calculation of a source whose output is constant per unit wavelength
band across the visible range would be done by adding up the contributions for
each small wavelength band on the luminous efficiency curve to get the total
photometric output. It is proportional to the area under the curve [Problem
3.16]. For sources that do not provide a constant power per unit wavelength
band, a multiplication of these two curves and summation would be needed. For
example, if s(4) represents the spectral luminous efficiency curve shown in Fig.
3.16, then the photometric power of source, ¢, is equal to

¢, = D (A)s(A)dA, (3.28)

e

_ 680 lumens J‘“
watt

A2

where 1, and 4, are 400 nm and 700 nm (provided there are no extremely large
contributions to ¢, in the near ultraviolet or infrared) and ¢, is the power (in
watts) per unit band width. In Example 3.D, the method for carrying out a
calculation for a rather simple case is shown.
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EXAMPLE 3.D. The strongest spectral lines in the output of an argon
ion laser are at 488 nm and 514.5 nm. If a laser has an output consisting of
1.5 watts at the 488 nm line and 2 watts at 514.5 nm, what is the
photometric power of this laser?

Solution: The relative efficiencies for these two lines, based on Fig. 3.16,
are 0.19 and 0.60. Thus, the total power is

680 lumens

— {(1.5 x 0.19) + (2 x 0.60)] = 1010 lumens.

In the case of more complicated spectrum, there may be a need to analyze
the spectrum, measure the total power output and apply a point-by-point
weighting to arrive at a photometric value. Experimentally, it is possible to
construct a filter that approximates the standard luminous efficiency
curve. When the filter is placed in front of a broadband radiometer and
calibrated in lumens, the radiometer will serve as a photometer.

One additional quantity introduced in this discussion is that of a spectral
output. In a radiometric measurement the power may be spread across many
wavelengths, but only the total power is measured. In many cases, however, the
actual distribution of power across the spectrum must be determined. The
spectral variation of a source is described using the same quantities defined
earlier in either radiometric or photometric terms but modified by the word
“spectral.” This adjective then specifies that the quantity is measured over a
small unit bandwidth (nm, pm, etc., in wavelength; Hz in frequency). The
symbols given in Table 3.1 are also modified by the addition of another
subscript (4 for wavelength variation; v for frequency variation) to the
radiometric/photometric subscript.

Spectroradiometry, the measurement of spectral variation of sources and
system outputs, plays a large part in the design and details of many optical
systems. The methods for determining these variations, as well as the devices
that must be incorporated into optical systems to disperse and analyze the
radiation transmitted by a system, is covered in Chapter 9.

PROBLEMS

3.1. A point source of light is buried deep in an experimental optical system.
Unfortunately, the plans for the optics are missing and the location of the
source can only be roughly estimated. However, measurements of the
irradiance from the point source show that at some distance from the
opening from which the radiation is emitted d,, the irradiance is
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3.2,

33.

34.

3.5.

3.6.

3.7.

3.8.

3.9.

6.25 W/m?, and at a distance d,, which is 40 cm further from the first
measurement point, the irradiance is 4 W/m?2. How far from the opening
is the source located, and what is its intensity?

At what angle to the normal is the irradiance of a screen illuminated by a
point source equal to 75%, of the peak value?

A light source whose surface is approximated by a circle with a radius of
3cm is located 2 m from a screen. If an aperture with a 1-cm radius is
placed between the source and the screen, how far from the screen can the
aperture be placed without affecting the irradiance in the screen at the
center of the patch of light passed by the aperture? If the aperture is
moved twice as far from the screen, what will be the irradiance at the
center of the patch as a fraction of the unobstructed irradiance?

A Lambertian source of surface area 5 cm? is located 50 cm from a
screen. The surface is tilted at an angle of 10° with respect to the screen
(i.e., the normals of the screen and source make an angle of 10° to each
other). What is the irradiance at point P if the source radiance is
100 W/m?2-sr? What is the irradiance of points A, B, and C on a circle
about point P?

Devise some methods to collect more of the radiation from the source
than the system in Fig. 3.8. Use ray sketches. Estimate the maximum
fraction of the source energy that it is possible to collect.

A point source whose intensity is 1 W/sr is located 25 cm from a 10-cm
focal length lens with a 5-cm diameter. What is the image intensity?
What is the irradiance at the center of a screen (a) 10 cm from the lens in
object space, (b) 25 cm from the lens in image space, and (c) 10 cm from
the lens in image space?

Show that the solid angle at the lens subtended by the source or its image,
Q", multiplied by the pupil area, 4 is also equal to the throughput,
AQ.

Show that the overlap area A(6) can be expressed as Eq. 3.25 and that
this holds whether A is greater than or less than the smaller of the two
radii. Sketch these two cases.

Plot the exact expression for the vignetting factor, V(6), and its linear
approximation, Eq. (3.27) from A =|r{ — r,| to A =+} + r,. (A small

pupils
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3.10.

3.1L.

3.12.

3.13.
3.14,

3.15.

3.16.

RADIOMETRY

programmable calculator should be used for this problem.) For sim-
plicity, assume r| = r,.

A 2-cm-diameter Lambertian source is located 15 cm in front of a 20-cm
focal length lens (diameter, 4 cm). On a screen 1 m beyond the lens, what
is the radius of a circle inside of which the irradiance is greater than 909/
of the peak irradiance? (This problem cannot be solved in a closed form.
You will have to pick a radius and calculate the value. Another method
that is somewhat lengthy is to plot the irradiance versus the radial
distance.)

A searchlight is constructed from a 5-cm-diameter source of brightness
L, = 50 watts/m2-sr placed at the focal point of a 25-cm lens with a
diameter of 10 cm. Plot the irradiance along the optic axis from the lens
to a distance of 250 cm.

Using the values for the searchlight given in the previous problem, plot
the values of the irradiance from the optic axis out to the shadow region

on a plane located at a distance d, = ./ A,.,/Q, from the lens.
Do Problem 3.12 for a plane located at dg/2.

Using a ray trace, show that the source image is magnified by a factor
Sorojector/feondenser fOI collimated illumination (Fig. 3.15(b)).

A tungsten filament whose brightness is 100 W/m?2-sr and whose filament
area is 4 mm? is enclosed in a glass bulb of 2-cm radius is to be used to
irradiate a small sample.
(a) What is the maximum irradiance that can be achieved without the
aid of a lens?
_(b) If an f/2 lens with a focal length of Scm is used to focus the light,
7 what is the maximum achievable irradiance ?

What would be the total photometric output of a source whose power
output is constant across the visible region and is equal to 300 watts in
that region? First, provide a rough estimate and then a more accurate
value.

REFERENCES

3.1

3.2,

3.3.

Handbook of Optics, edited by W. G. Driscoll and W. Vaughn (McGraw-Hill, New York,
1978). Technical handbook. First chapter on radiometry and photometry includes tables of
translation between different symbols.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966). Chapter 8 contains
material similar to that in this chapter. Symbols are different from those used here.

H. A. E. Keitz, Light Calculations and Measurements (Macmillan, London, 2nd edition, 1971).
Comprehensive text that treats a large number of cases that are progressively more difficult.
Uses units other than those defined in this text.



4

Mirrors and Prisms
(HOW TO GET EVERYTHING IN THE BOX)

Although it would be nice if all optical systems could be constructed as they are
originally designed, as one long optical chain, many systems must be folded to fit
a certain length or certain volume. In some systems, several images must be
combined or an image must be moved or a beam scanned as a part of the unit’s
operation. Although it is sometimes possible to scan with elements having
optical power, lenses or curved mirrors, in most instances these operations are
assigned to elements with no optical power, that is, plane mirrors and prisms.
The purpose of this chapter is to show how mirrors and prisms can be used to
fold and combine optical trains in order to provide the most compact and
versatile system possible. The orientation of mirror images will be discussed
first. Then different types of mirrors and prisms will be described. Finally, the
use of mirrors and prisms in the design of optical systems will be presented.

4.1. MIRROR IMAGES

When you turn on the light in the bathroom in the morning, some of that light
scattered by your skin is directed to the plane mirror over the sink and
redirected back to your eye, where you can see what you look like at the
beginning of the day. The image you see has its hair parted on the “wrong side,”
and it appears to use the wrong hand to comb its hair.

Our interpretation of our mirror image is based on the idea that there is
another person facing us. Therefore, when we shake hands with someone, we
expect their right hand to move toward us, but when we try this with our mirror
image it moves its “left hand” towards us. This would seem to argue that a
mirror reverses right and left. If we look at writing in a mirror, that certainly
appears to be so. Look, for example, at the writing in the mirror to the left of the
object in Fig. 4.1. But, consider the writing in the mirror above the object in the
same figure. There is no left and right reversal. Instead up and down are
reversed. How is one to interpret and understand mirror images? A ray trace of
an object in front of a plane mirror (Fig. 4.2) shows that the only coordinate
reversed is the direction normal to the surface of the mirror. The result of this
front—back reversal as we perceive it depends on where the mirror is located
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Figure 4.1. Mirror symmetry. A mirror reverses the front-to-back direction of an image (direction
normal) to the mirror surface. Depending on the placement of the mirror, this can cause right-to-left
reversal (mirror on left of figure) or a top-to-bottom reversal (mirror on right of figure). The result
of two reflections is an inversion as shown by the upside down image in the center. (Photo by
Vincent Mallette.)
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Figure 4.2, Reflection of an object by a plane
mirror illustrating front-to-back reversal.
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relative to the object. In the cases shown in Fig. 4.1, there is a left-right reversal
for the mirror to one side of the writing and an up-down reversal for the mirror
located above the writing. In the case of our own image in front of a mirror, the
front—back reversal turns a right hand into a left hand. Any single reflection by a
plane reflecting surface results in a reversal of the image. This single reversal
changes the handedness of the image and causes printing to be unreadable no
matter how the head is oriented. Two reversals due to reflections from two
mirrors restore the image to the same handedness and the printing to readability.
This is easily seen with an object between parallel mirrors. All odd number
reflections are reversed; all even number reflections are not reversed, and their
printing can be read without difficulty.

In Fig. 4.1 there is a third image, which, although upside down, is readable.
These two reflections from surfaces at right angles to each other produce an
unreversed image rotated by 180°. We refer to this image as inverted. In this case
inversion means a rotation of 180° of the image about the line of intersection
between mirrors. With mirrors at other angles, two reflections yield unreversed
images rotated through some angle with respect to the object. There is some
confusion in the literature as to the image orientation described by a reversal
and an inversion. In this text, as in many others, a reversal is a reversing of one
coordinate which will make printing unreadable; inversion is a rotation of the
image by 180°. This convention is in accord with the description of real images
in the case of lens and mirror systems.

For simple calculations of image orientation, it is useful to think of the effect
of reflections on an image as though a pencil, an arrow, or a matchstick were
bounced off the mirror surface. In some cases, to distinguish both inversion and
reversal, a figure or character (the letter “R” is a good example) is chosen to
follow an image orientation through an optical system. Examples of this method
are given later in this chapter. Please note that if you are following an image
from object space, that the rule of reversal (an odd number of reflections causes a
reversal) is correct only if you view the image from the same side as you viewed
the object. If an image is viewed in the opposite direction of light propagation
from that of the object, an additional image reversal occurs. For example, an
image on a rear screen projection has an additional reversal compared to an
image on a conventional projection screen. To be absolutely certain what one is
seeing, one should use an unsymmetric three-dimensional object (for example,
the letter “R”) whose front is white and whose back is black [ Problem 4.17. The
calculus of image translation and rotation by plane mirrors can become quite
complex, particularly if the mirror orientations change as they do in a scanning
system.

Two special mirror configurations should be described. The first is an answer
to Robert Burn’s prayer: “God give us the gift to see ourselves as others see us.”
If you arrange two mirrors at right angles to one another and look in
perpendicular to their intersection, as shown in Fig. 4.3, you will see yourself as
others see you. Your hair is parted correctly and your image understands the
etiquette of hand shaking. This, of course, occurs because each ray leaving your



122 MIRRORS AND PRISMS

Figure 4.3. A two-mirror reflection.
Someone looking in such a mirror would
see themself as others do.

head is doubly reflected before reaching your eye. If you try this with two hand-
held mirrors, notice how little tolerance there is in the angle between the
mirrors. The eye immediately detects any small deviations from the right-angle
geometry. This can be of value in the alignment and testing of optical systems.
This nonreversing mirror arrangement does, indeed, let us see our face and
figure as others see us. (Robert Burns had a somewhat more profound gift in
mind.)

This first example is really a special case of the general class of constant
deviation mirrors. If two mirrors intersect at an angle 6 (Fig. 4.4), light
perpendicular to the line of intersection of the two mirrors is deviated by

¢ =20 (4.1)

independent of the angle of incidence (providing the ray hits both mirrors)
[Problem 4.2]. Obviously, a two-mirror configuration is slightly more com-
plicated than a single mirror to deviate a beam, but when a system designer
cannot specify the exact position of an entering ray, a constant-deviation
mirror pair may be appropriate.

Figure 4.4. Constant deviation mirrors, Two
mirrors at an angle of § to each other deviate a
ray through twice that angle (¢ = 20), if the ray
reflects off of each mirror once.
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\\

Figure 4.5. A cube corner (or corner cube)

P reflector. The sides of the reflector are three sides
of a cube. A ray reflected from this device returns
parallel to the incident ray.

The second example consists of three mirrors arranged as the corner of a cube
and is called either a cube corner, or a corner cube (Fig. 4.5). The former is more
descriptive; the latter is easier to say. The singular property of a corner cube
reflector is that a light ray incident upon it is returned parallel to itself after three
reflections. Because of this, a corner cube reflector is also called a retroreflector.
Arrays of such reflectors were left on the moon during three of the Apollo
missions so that light pulses from earth could be timed to more precisely
determine the distance from earth to the moon (Ref. 4.1). Because corner cube
reflectors were used, the angular orientation of the array as it was placed on the
moon was not critical. The image in a retroreflector is both inverted and
reversed.

42. PLANE MIRRORS

It would seem that there would be little variety in the types of plane mirrors, but
this is not so. Mirrors in optical design may be called upon to do a lot more than
just translate an image. While many mirrors are made by metallizing a surface, a
large number of optical mirrors are created by optical design from alternating
layers of dielectric materials. Because of their importance to optical design, a
portion of this section is devoted to an understanding of the details of their
construction.

4.2.1. Metal Mirrors

The usual bathroom mirror is an aluminized or silvered second-surface mirror.
It is termed a second-surface mirror because the metallic coating is on the back
surface of the mirror (Fig. 4.6(a)). Light passes through the first surface of plate
glass and is reflected off the second surface, which has been coated with a thin
layer of metal. A layer of paint is applied over the metal to protect this fragile
coating. While this arrangement works well for bathroom and vanity mirrors, it
is unacceptable for many optical designs, since reflections off the first surface will
contribute unwanted “ghosts” to an image in the optical system. Most optical
systems are designed with first-surface mirrors to eliminate any ghosts (Fig.
4.6(b)). However, the mirror surface is exposed to the environment. To provide
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(a)

Figure4.6. Mirrors. (a) A second-surface mirror
can be protected by a tough paint, but it intro-
Mirror | duces a ghost image as well as the intended image.
(b) A first-surface mirror introduces no ghost

(b) image, but is subject to scratches and abrasion.

Object : Image

some protection against oxidation and abrasion, the metal may be overcoated
with a thin layer of dielectric material such as silicon monoxide (SiO) or
magnesium fluoride (MgF,).

4.2.2. Dielectric Mirrors

Many metallic materials, such as aluminum, silver, and gold, are highly
reflective compared to other materials, but they also absorb a fraction of the
incident radiation. For some applications, particularly those involving high-
power lasers, this “small” absorption of radiation contains sufficient energy to
vaporize the material, rendering it useless as a mirror. In these and other
applications, the optical designer must use mirrors made entirely of dielectric
materials that absorb little or no radiation in the region of interest. These
dielectric mirrors consist of alternating layers of materials of high and low
refractive index, each layer having an optical thickness, nd, equal to a small
fraction (usually one quarter or one half) of the wavelength of the light for which
the reflector is designed. The method by which this is achieved can be seen in the
construction of an anti-reflection coating, the simplest example of a dielectric
coating.

The laws of geometrical optics listed in Chapter 1 tell us where light will go
after hitting an interface, but they do not tell us how much light is reflected and
how much is transmitted. That can be found from a series of expressions called
Fresnel’s Equations (Ref. 4.2). If E, is the electric field incident on a surface and
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E, is the electric field reflected from that surface, the fraction of the incident field
reflected is given by the reflectivity, R, given here for two polarizations:

R ___hznzcosﬁl—nlcosﬁz' 42)
! Eoy nycosf; + njcosb,

E.,, nycosf, — n,cosf,
R, = Eo, nycosf; + nycosf,’ (43)
where n, and n, are the refractive indices of the incident and refracted media,
and 6, and 6, are the incident and refracted angles, related by Snell’s Law (Eq.
1.7). The subscripts || and L indicate light polarized with the electric field
parallel (||) and perpendicular (L) to the plane of incidence. There are similar
equations for the amount of transmitted radiation. In the case of normal
incidence (9, = 6, = 0), only R, applies since all light is polarized per-
pendicular to the plane of incidence, and the equation simplifies to

ny — Ny
R-—R = — 4.4
+ n1+n2 ( )

Note that if light in a low refractive index medium is incident upon a higher
refractive index medium (n, > n,) the sign of R is negative, indicating a 180°
phase change of the electric field upon reflection. If n, > n,, no such phase
reversal occurs (Fig. 4.7).

The amount of light reflected from an interface is proportional to the square
of the electric field amplitudes, therefore, the fraction of light reflected from an

E) = Eg ", E, Eg n,
L 0
n,
Ep ~—i L Ep <—
'
ny > ny ny > ny
(a) (b)

Figure 4.7. Reflection of light at an interface. (a) Incident medium refractive index (r,) less than
transmitting medium index (n,) with a 180° (z) phase change between the incident and reflected
rays. (b) n, greater than n, with no phase difference between incident and reflected rays.
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interface, the reflectance, is the square of the reflectivity. In the case of normal

incidence,
2 Ry — ny 2
r=|RpP? =—= 4.5
ny + ny

Therefore, the fraction of light reflected from a glass surface (n, = n, = 1.5) at
an air-glass interface is

1-15\% [-0.5)\? 2
(1_:]'5) =<?) = (0.2 = 0.04. (4.6)

That is, 4% of the light from a glass surface is reflected. At a pane of window
glass, about 8% is reflected since there are two surfaces. While this may seem to
be a small amount, in a five-element lens, where each surface will transmit about
96% of the energy, the amount of light transmitted through ten surfaces would
be (0.96)!° or 66%,. This substantial reduction or transmission of light due to
reflection losses is why anti-reflection coatings are used on many camera lenses.

An anti-reflection coating often consists of a low-refractive-index material,
such as MgF, (n = 1.38), whose optical thickness is one quarter wavelength
(nd = A,/4), deposited on the glass (Fig. 4.8(a)). The incident light reflecting off
the air—MgF, interface undergoes a 180° phase change. The light reflecting off
the MgF,-glass interface also undergoes a 180° phase change. However, the
light reflecting off the glass must also travel an optical path-length distance
equal to 4y/2 (one quarter wavelength into the material and the same distance
back out to the air), which retards the wave by another 180°. Thus one wave
suffers a 180° phase change while the other suffers 360° phase change. Since the
two waves are out of phase by 180° they will destructively interfere. The
cancellation between the two reflected waves can be exact only if R for the air—

A= k_o A A= x_o

e = 34 ny [ o = o )

E, E,
b T
m - A LS T 0
2n < —
ny < np, <ng ny < ny, > ny
(a) (b)

Figure 4.8. Quarter-wave layer coatings. (a) An anti-reflection coating. The rays reflected from
both interfaces are 180° (1) out of phase with each other. (b) A reflection-enhancing coating. The
rays reflected from both interfaces are in phase providing constructive interference for the reflecting
rays.
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MgF, interface equaled that for the MgF,—glass interface. This would be true

only if n, = \/n,n; [Problem 4.4]. However, the deposition of this quarter-
wave layer reduces the reflected light to about 1% of the incident radiation
[Problem 4.5]. With additional layers, reflected light can be reduced virtually to
Zera.

The above discussion would seem to be the wrong topic in a chapter about
mirrors, but consider the consequences of putting a quarter-wave thickness of
material with a refractive index higher than that of the glass (Fig. 4.8(b)). The
reflection at the air—high-index interface again causes a 180° phase change, but
the reflection at the second surface does not. Thus the additional phase
contribution to the second wave from traveling through the material results in
both reflections adding constructively, since they are in phase. By adding a high-
refractive-index layer, the reflectance of the interface is increased almost ninefold
over the uncoated substrate, as shown in Example 4. A. Additional quarter-wave
optical thicknesses of high- and low-refractive-index materials increase the
reflectance further. In Fig. 4.9 is shown the construction of a five-layer reflector.
After more than 12 layers, the reflectance of a dielectric mirror approaches 1009
with virtually no absorption or scattering. This reflectance is at a maximum only
in a region about the design wavelength. The size of the region depends on the
design of the stack of multiple dielectric coatings. Away from this region the
reflectance is reduced. For example, at one half the design wavelength it falls to
that of the uncoated substrate. The dielectric mirror is also designed to be used
at a specific angle of incident radiation. At other angles, the performance is
reduced, and the wavelength of maximum reflectance is shifted (Ref. 4.3).

= A & y 2=
e— 4—>'<—i->4~<—-—&———>-<—- e 4—>4 = o/”
E,
’ T T T T T ot
- 2 2 2 2 2
————————
" 0
- x
. LT S— 5_/4 0
3n L ' X 0
2 2
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s q Ls X
s 2 2 2 Yot
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Figure 4.9. A S-layer reflector. Alternating layers of higher and lower refractive index materials
provide multiple reflections all in phase. This produces constructive interference at the design
wavelength and an efficient nonabsorbing reflector.
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EXAMPLE 4.A. If a quarter-wave layer of zinc sulfide (n = 2.3) is
deposited on a crown glass surface (n = 1.52), what fraction of the light is
reflected from the surfaces at normal incidence?

Solution: Before the irradiance can be found, the reflectivities of the
surfaces must be found. These are given by Eq. 4.4.
ng—n, 1-—-23 -13
R12 = = =
n, +ng 23 +1 33

= —0.39,

R _np—ny 23-1.52
2,40, 234152

0.204.
These are then added together (R,; must be multiplied by —1 because
light reflected off the ZnS—glass interface suffers a 180° phase change
due to the additional path length of one-half wavelength).

R =Ry, + Ry3 =-0.39 — 0.204 = —0.598,

r = R? =0.35.

Thus the reflectance for a single surface has been increased from 4% to
35%.

4.2.3. Liquid Mirrors

One other mirror with a very special orientation is that formed by the surface of
a liquid. A pool of mercury, for example, has been used with a laser beam to
provide a local vertical and serve as the critical element of an optical plumbline.
Less-toxic and less-reflective materials can also be used to perform the same
task.

4.24. Beamsplitters

At times, an optical design requires more than one image or beam. This can be
achieved through the use of a partially silvered mirror, or beamsplitter, a
component that partially transmits and partially reflects the light incident on it.
Besides dividing a beam into two beams, a beamsplitter can be used to combine
two beams or images into one. Examples of both uses of a beamsplitter are
shown in Fig. 4.10. The methods for constructing beamsplitters are similar to
those for mirrors and use either metallic or dielectric coatings. The dielectric
coatings, however, must be designed to give the proper reflectance and
transmittance at the angle for which the beamsplitter is designed. Since the
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EXAMPLE 4.B. What is the minimum reflectance for a dielectric film
of ZnS (n = 2.3) sandwiched between two right-angle prisms (n = 1.52)
to produce a polarizing beamsplitter ?

Solution: The reflectivities are the same at both surfaces since n,, n,, 0,
and 6, in Eq. 4.4 are interchanged. The thickness of the ZnS layer will
determine whether the reflectivity is maximum or minimum. The problem
can be divided into two parts:
ParT 1. What is the reflectivity at an interface between n, = 2.3 and
ny = 1.52 for 6, = 45°7
Snell’s Law gives

/2

8, = 27.86°; cos 8, = 0.707; cos 8, = 0.884.

1.52 .
sin 8, =53 x sin 45° = 5

Using Egs. 4.2 and 4.3

23 x0.707 — 1.52 x 0.884 _ 0.2825
723 x0.707 + 1.52 x 0.884 2.9702

1.52 x 0.707 — 2.3 x 0.884  —0.9586

LT 152% 0707+ 23 %0884 ~ 31082 2084

There is no phase change at the first interface. At the second interface,
the subscripts 1 and 2 are reversed. Thus,

Ry =-Ry; Ri=-R,.

PART 2. What is the thickness needed to obtain the maximum
reflectance?

The optical thickness of the light path inside the dielectric film must
be either 4,/4 or Ao/2. If it is A¢/4, then R}, and R, must be multiplied by
—1. This will then give reflectances that are equal and in phase so that
the reflecting waves add constructively. Thus, R, for both waves will be
twice that for a single surface, or 0.19, and r;, = 0.036 and R, will be
—0.62, and r, = 0.38. Therefore, this simple beamsplitter will reflect
about 389 of the light out of the beam that is polarized perpendicular
to the plane of incidence, while transmitting nearly all of the light
polarized parallel to the plane of incidence. The actual thickness d of
the layer can be determined from the requirement that d/L =
cos 27.86° and nL = A,/4, where L is the geometrical path inside the
layer. Therefore, d = (Ao/(4 % 2.3))c0s27.86°. At 550 nm,d = 52.9 nm.
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Figure 4.10. Beamsplitters in an optical system. Beamsplitters can be used to provide additional
images or to combine two images. In the case shown here, the images are not located in the same
plane in order to clarify the ray traces. In many instances the image planes would be adjusted to
overlap.

incident light is not perpendicular to the dielectric layers, the full Fresnel
equations must be used (Example 4.B). At large angles of incidence, the
reflectances may be quite different for parallel and perpendicular polarizations.
Therefore, some dielectric beamsplitters divide the light according to its
polarization content. Thus, by altering the polarization of a beam before it
enters a polarizing beamsplitter, one can control the ratio of transmitted-to-
reflected irradiance beyond the component [Problem 4.5].

Just as with second-surface mirrors, beamsplitters by their very nature have a
second surface, the uncoated surface of the substrate. Again the possibility of
ghost images occurs. Anti-reflection coatings must be applied to this surface
taking into account the nonzero angle of incidence of the light. Beamsplitters
can also be made from metallized, stretched plastic membranes called pellicles.
The surfaces are so thin that the first and second surface images are essentially
identical. Used in white light illumination at a nonzero angle of incidence
pellicles work well. In monochromatic light, for near normal incidence,
interference fringes may be visible and can pose a problem in some designs.
Because of the fragility of the membranes, pellicles are not used in an exposed
environment or in a system that cannot be isolated from vibrations.

4.3. PRISMS
In Chapter 1 it was noted that light sent through the corner of a glass prism

would be separated into its colors because of the wavelength dependence or
dispersion of the refractive index of the glass. We return to this concept of
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dispersion in Chapter 9, where the analysis of light will be treated. In this section
only nondispersing types of prisms will be treated, those prisms that can serve in
a compact arrangement of multiple reflecting surfaces. The attractiveness of
prisms over several mirrors is that once they are constructed they retain the
design orientations and require no adjustment in the final assembly except for
the prism as a whole.

For example, consider the right-angle prism, as shown in Fig. 4.11(a). In cross
section this simple prism is a 45°-90°-45° triangle. Light entering one of the
small faces is reflected off the hypotenuse face and exits through the other small
face. Provided the refractive index of the prism is greater than \/E (~1.414), the
light will be reflected by total internal reflection (discussed in Section 1.2). This is
another reason that prisms are so useful as mirrors. Since there is no need for
metallic or dielectric coatings on the reflecting surface, it serves as a nearly
lossless reflector. Only scattering due to small surface imperfections and Fresnel
reflections at the entrance and exit faces, which can be anti-reflection coated,
cause any losses. This same right-angle prism, oriented so that the hypotenuse
face is the entrance and exit face (Fig. 4.11(b)), is the prism version of the
nonreversing mirror described at the end of Section 4.1. Again the permanent
alignment of the reflecting faces and the total internal reflections suggest the use
of such a prism in many applications. With such compelling advantages, why
not use a prism in all instances where a mirror is needed? There are two
disadvantages to prisms: cost and weight. If the cross-sectional area of the
entrance or exit opening in the prism is much greater than 5 cm?, the weight
of the prism becomes considerable, as does the cost of fabricating a large chunk
of glass into a precisely ground and polished prism. Beyond a 5-cm? cross
section, a mirror has the advantage. Thus, total internal reflection prisms and
plane mirrors should be thought of as complementary rather than inter-
changeable devices in most optical designs.

AR _. TIR AR ; TIR
: AR

AR TIR
(a) (b)

Figure 4.11. Prism reflectors. (a) A prism used as a mirror reflector. (b) A prism used as a constant
deviation mirror similar to Fig. 4.3. AR : Anti-reflection coating, TIR : total internal reflection.
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Figure 4.12. Pentaprism. The two reflecting sur-
faces must be silvered since total internal re-

<> flection does not occur for light entering through
the correct faces.

The constant deviation prisms and corner cube reflection prisms serve as
prism counterparts to the mirror arrangements discussed earlier. Listed below
are a number of additional prism types and some of their benefits.

1. Pentaprism. As can be seen from Fig. 4.12, a pentaprism is a constant
deviation prism that deviates an incoming ray by 90°. Because of this property,
it serves as an “optical square,” the optical equivalent of a carpenter’s square. It
is useful in alignment and layout systems that depend on ray paths that intersect
at 90° [Problem 4.7]. Because of the small angle of incidence of the first internal
reflection, total internal reflection does not apply here, and the reflecting
surfaces of a pentaprism must be coated with a reflecting film.

2. Porro prisms. These are two right-angle prisms used in the 180°
constant deviation arrangement (Fig. 4.13). While both prisms produce a
reversal, the combination produces an inversion. These two prisms fold the path
of an optical system and also displace an image both horizontally and vertically
by half the hypotenuse length in each direction. Porro prisms can be used to
reduce the length of a Keplerian telescope, providing at the same time the
additional inversion needed to erect the inverted telescope image. For this
reason Porro prisms are found in many binoculars.

Figure 4.13. Porro prisms. Two right-angle
prisms used as shown in Fig. 4.11(b). In addition
to folding the optic axis, the two reflections pro-
vide an inversion of the image.
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Figure 4.14. Dove prism. Light is refracted toward the prism base and is then totally internally
reflected off the base of the prism. Because light near the apex of the prism never reflects off the base
before the second refraction, the apex of the prism may be eliminated to save weight.

3. Dove prism. Consider light entering a prism parallel to its base, as
shown in Fig. 4.14. The light will be refracted toward the base, where it is totally
internally reflected and then refracted at the opposite side to give parallel light
again. Since the apex portion of the prism has no effect on the rays reflected off
the base surface, it is usually removed. What remains is a Dove prism. While it
may at first appear that the non-normal angle of incidence would give rise to
dispersion, traversal of light rays through a Dove prism is equivalent to passage

Figure 4.15. Amici prism. This is a right-angle prism used as a reflector as in Figure 4.11(a), buta
second “right-angle roof” has been added to the hypotenuse. The additional reflection surface
provides an inversion in place of the reversal introduced by the simple reflector.
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through a slab of glass, as we will see in the next section. One of the most useful
properties of the Dove prism is that a rotation of the prism about an axis along
the light propagation direction outside the prism results in a rotation of the
reversed image through twice the rotation angle (Problem 4.8).

There are numerous other prism combinations (Ref. 4.4); many of these are
explored in the problems to this chapter. It is worthwhile to test your
understanding of image orientation by mentally sending rays through each of
the prisms to determine the orientation of the final image. In many cases a single
mirror surface is replaced by a roof (two mirrors at right angles), as in the case of
the Amici prism shown in Fig. 4.15. This eliminates (or adds, if you prefer) one
reversal in the optical train.

44. FITTING IT IN OR SPREADING IT OUT

The above information on image orientation and reflector types can be
combined with ray tracing to enable one to analyze and design optical systems.
(There is a great deal to be learned about optical design by analyzing existing
systems.) '

4.4.1. Plane Parallel Plates—Beam or Image Displacers

Besides prisms and mirrors, one of the simplest methods of redirecting light,
particularly for small displacements, is to pass it through a plate of glass with
parallel surfaces, as shown in Fig. 4.16. If the light ray is normal to the surface,
the only effect is to increase the optical path length by an amount (n — 1)d,
where n is the refractive index of the plate and d is its thickness. Successive
applications of Snell’s Law shows that even if the ray enters the plate at an angle
to the normal, the ray will emerge parallel to its original direction; however, the

Figure 4.16. Lateral displacement of a ray by a slab of material with parallel surfaces.
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beam will be displaced laterally by a distance, 6. Using Snell’s Law and
geometry (Fig. 4.16), this lateral displacement can be shown to be [Problem
4.10]

5=dgn%}-——iﬂﬁl—l. 4.7)

n? — sin0

For a small angle of incidence, 6, (sin 8 = 8, cos 6 = 1), this simplifies to

5=qn D
n

0. 4.8)

Thus, for small angles the displacement is proportional to the angle of incidence.
A thick glass plate can be used to displace a beam or an image by a small
amount by rotating the plate about an axis perpendicular to the displacement
direction. It will also shift an image along the optic axis. This axial image shift is
discussed in the next chapter (Section 5.1.4).

44.2. Analyzing and Designing a Folded System

Any system that includes a number of mirrors can best be analyzed by unfolding
the optics. This is done by removing the reflecting plane mirror, straightening
out the optic axis, and, if it serves as either an aperture stop or field stop,
replacing the mirror with an equivalent slanted aperture of the same size, as
shown in Example 4.C. This concept of mirrors as filled apertures is useful in
many analyses such as laser beam scanning. With beamsplitters it may be
necessary to draw two separate systems, or, if the layout is not too crowded, one
system on top of the other.

In the case of nondispersing prisms, an unfolding shows, as in Fig. 4.17(a),
that a prism is equivalent to a parallel plate. For right-angle prisms, the
thickness of the parallel plate is equal to the length of the input side of the
triangle. In Fig. 4.17(b), the effect of unfolding a Dove prism is seen. Here the
plate is oriented at an angle to the beam. As we will see in a later chapter, in
convergent or divergent light a slab of glass can introduce considerable
aberrations. Thus a Dove prism is always used in parallel light. It is also evident
in the example that the height of the input face is limited by the length of the
base, making the Dove prism a long, narrow component. Its total aperture may
be improved by placing another Dove prism base-to-base with the first.

When designing a system that must include folding, it may be useful to
make a ray sketch on tracing paper of the unfolded geometry that can be cut
out and folded to determine the best possible placement of mirrors. There are
a number of guidelines that are useful in designing folded systems.
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EXAMPLE 4.C. A point source of 5 watts/sr is located 50 cm from the
first of a pair of circular mirrors, 30 cm in diameter. The first mirror
deviates the light by 90° to the second mirror 30 cm beyond, which directs
the light parallel to the original direction. How much flux is directed in
this system?

Solution: Draw the system.

Then redraw the system in an unfolded form, replacing the mirrors with

apertures.
rw “1

15 cos 45°
PR WS

Stop

The second mirror is the aperture stop for this system. Because of the
divergent rays, the top of the second mirror intercepts the rays before the
bottom. The aperture is nearly elliptical with semi-minor axes of approx-
imately 15 mm x cos 45° or 10.6 mm. The semi-major axis is the radius
of the mirror, 15mm. The area of the ellipse is 7 x 10.6 x 15 mm? =
500 mm?. The distance to the mirror is 80 mm. Therefore, the solid angle
subtended by the mirror is 500/(80)> = 0.0781 sr. Thus, the flux redirected
by the mirrors is 5 x 0.0781 = 0.39 watts.
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(b)

Figure 4.17. Unfoiding of (a) a right-angle prism and (b) a Dove prism, to show that both may
be treated as slabs of material with parallel surfaces.

Place the folds near, but not at, a component. Mounting components in
groups including the folding mirrors can simplify the mechanical design of a
system.

Fold where the light is collimated, if possible. This is particularly true if a
prism is being used.

Do not put a folding surface (mirror, beamsplitter, or prism surfaces
including their transmitting surfaces) at an intermediate image point, if
possible. Any imperfection in the surface will show up as part of the final
image.

Think in three dimensions. Folding may be done in an x-y-z geometry.
Some systems must be folded and stacked to fit a volume.

In some stacked geometries and some folded geometries, a component can
be used twice.

There should be a very compelling reason for not folding with 90° and 180°
deviations.

In Example 4.D we present one idea for folding our sample design from
Chapter 2.
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EXAMPLE 4.D. Design a folded system for the design problem in
Chapter 2.

Solution: Since this system in an unfolded geometry would stick straight
out from the terminal screen, the obvious thing to do is to fold the system
at least once to reduce the overall depth of the system. One fold, however,
would leave a tall tower in front of the terminal. The approach, not a
unique one, taken in this case is to fold the system twice to reduce its length
and place the imaging lens and the film transport mechanism atop the
terminal.

One method of determining the approximate locations of folds in the
system is to cut out a diagram of the optical system drawn to scale and
make trial folds in the cutout. Tracing Fig. 2.8 and making trial folds in a
cutout, the geometry, shown in the figure, was produced. Notice that the
chief rays from both extremes of the screen were drawn to assure that
neither of the mirrors acted as field stops.

100%
Refiecting

Film
transport

Note:
Mirror size
to prevent
windowing.

Terminal
screen
90% Reflecting
mirror (transmissive
for inspection)

The provision for visual inspection of the screen was incorporated in
the system by making the first mirror 10%, transmitting to allow direct
inspection. Because there is no intermediate image, the border coding
must enter either at the object (the screen) or at the image (the microfiche
film frame). While a number of considerations would have to be explored
further, some sort of simple bar code generated in a transmissive liquid
crystal device might be used in contact with the microfilm to produce a
shadowgraph of the computer readable code. Such questions as the
information content in a simple code, its resolution, and the amount of
light needed to produce such a code with the exposure requirements as the
screen image must be explored.
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44.3. Examples of Systems with Prisms and Mirrors

In film editing systems with very simple film drives (in some cases nothing more
than a hand crank), the image of each frame must be stopped momentarily,
although the film passes the viewing optics without stopping. This can be
achieved by inserting a rotating octagonal prism in front of the film to produce a
deflection of the image to the same position for different film positions, as shown
in Fig. 4.18. In other designs, a rotating prism can be used to create motion. For
example, a laser beam transmitted through a rotating octagonal prism can be
scanned over a limited region without the beam pausing at the endpoints of the
scan as would occur if an oscillating mirror were used.

A second example is the range finder, an afocal system, made from a
beamsplitter and a plane mirror on a calibrated circle, as shown in Fig. 4.19. The
observer looks through the beamsplitter and observes a distant object. The
observer also sees the same object reflected off the fully reflecting mirror and the
beamsplitter, but shifted with respect to the one transmitted through the
beamsplitter. By rotating the mirror, the two objects may be superimposed.
From the geometry given in Fig. 4.19, we see that if the angle 0 is measured and
the distance d is known accurately, the range to the distant object may be
calculated from

r = d tan 0. 4.9)

Figure 4.18. A motion-stopping prism. Rotating the octagonal prism at the correct rate relative
to the film speed results in stopping the motion of the frame. The prism as depicted here for clarity
is too large for the frame size. Frame 4 should be seen through the next pair of facets in the prism.
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Object _Mirror

- ,

Figure 4.19. Range finder. The mirror is oriented to superimpose the virtual image on top of the
object viewed through the beamsplitter.

Beam splitter

The accuracy of this device is limited by the accuracy by which we can position
and measure the mirror angle and by the accuracy with which we know d
[Problem 4.11].

Sometimes the objective of an optical design requires not a highly compact
system set in a minimum volume, but rather a system with a maximum length.
This might be the case if a system were designed to measure the absorption of
light due to some trace constituent in a gas—some atmospheric pollutant, for
example. In such a system, one might direct a source to a distant corner cube
reflector and collect the light returning from it, as shown in Fig. 4.20. Because of
the divergence of the beam and the diffraction by the corner cube aperture, the
collection lens is considerably larger than the output lens. A detector behind the
collection lens records a fraction of the amount of light returning from the
corner cube. Monitored over some duration, the time variation of the trace
concentration could be determined.

Corner

Collimated Cube
source  °

Reflector

Array

# Outgoing

Detector radiation

Collecting Returning
lens radiation

Figure 4.20. A long-path mirror system. Cube corners in an array are used to return a collimated
beam to a detector in the vicinity of the source.
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PROBLEMS

4.1.

4.2.
43.

44.

4.5.

4.6.

4.7.

4.8.

A television screen is to be magnified by a lens to produce a large screen
display. What must be done to the television to get a correct unreversed,
uninverted image in the following situations? (One of the things that can
be done is to change the electronic circuitry to sweep from right to left,
reversing the image. Thus one can turn the TV upside down or reverse
the circuitry or both.) Draw each configuration.

(@) The light passing through the lens hits a rear projection screen.

(b) The light passing through the lens hits a front projection (i.e.,
reflecting) screen.

(c) The light after passing through the lens is reflected back to a rear
projection screen just above the TV.

(d) The light passing through the lens is reflected back onto a front
projection screen just above the TV.

Using Fig. 4.4, prove that Eq. 4.1 is true.

The refractive index of diamond at the center of the visible part of the
spectrum is 2.42. What is the reflectivity of light normal to the surface?
What is the critical angle for this material? What does this have to do
with the value of diamond as a precious stone?

Prove that the refractive index n, of a deposited quarter-wave layer is the
geometric mean of the product of the air n, and substrate n, refractive

indices (i.e., n, = /ngyn,) for complete cancellation of the reflected wave.
Hint: for complete cancellation, the amount of light reflected by both
interfaces must be equal.

For an air-glass (n, = 1.52) interface the best anti-reflection coating
material is magnesium fluoride (MgF,). If the refractive index of MgF, is
1.38, what percent of the incident light will be reflected off a surface
coated with a quarter-wave layer of MgF, ? For a five-element.lens, what
will be the fraction of light transmitted if they are coated in this manner?

How much variation in the power of a linearly polarized laser beam
could be introduced by passing it through the polarizing beamsplitter
described in Example 4.B and rotating the beamsplitter about the laser
beam direction?

Using a pentaprism, a laser, and a mercury mirror, design a system that
would serve as an “optical plumb” to define both a local vertical and
a line perpendicular to the local vertical.

Using diagrams of the aperture of a Dove prism, show that rotation of a
Dove prism about its base edge appears to rotate an image through twice
the angle of rotation. (A closer examination will show that one is just
reorienting the plane of reversal.)
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49. Analyze the following prisms. All rays enter at normal incidence to the
first surface. What is the final orientation of an image? Which surface
might have to be silvered? What could it be used for?

Silvered

] Py

(a) (b) (c)

(d) (e)

4.10. Derive Eq. 4.7 using Fig. 4.16.

4.11. Assuming a 50-mm mirror separation and a 1-minute accuracy in angle
measurement for a simple range finder, plot the accuracy of such an
instrument as a function of range from 1 m to 10 m. At a measurement
angle of 89°42’, what is the range? How accurate is the instrument?

4.12.  An optical system whose total length is 2 m must be folded into a box
whose sides can be no longer than 37.5 cm. The optic axis at the input
point must be parallel, but not necessarily coincident, with the optic axis
at the exit point. Because of losses in the optical system no more than 4
mirrors or reflections may be used. The reflectors must be large enough
to reflect a 50 mm x 50 mm beam. Design a system to meet these
requirements. Give the locations of the mirrors and the direction of
their normals to determine their orientation.
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Paraxial Ray Tracing

(HOW TO GET A LOT OF INFORMATION
WITH VERY LITTLE EFFORT)

It would be convenient to be able to design and build all systems as if they were
composed of thin lenses, but at some point we must take into account the
thickness of a lens or other optical elements. This can be done using paraxial ray
tracing, a method similar to the thin lens ray tracing described in Chapter 2. It
serves as the first evaluation of a complex optical system and as the reference
trace to which all other traces can be compared. After describing a method for
calculating a paraxial ray trace in detail, we will use it to evaluate a set of
aberrations that occur in many optical systems, chromatic aberration.

5.1. THE y-nu TRACE

Instead of attributing the bending of a ray to the focal power of a thin lens, we
must determine the effect of a number of curved surfaces as a ray propagates
through a system. Between interfaces, from surface k to surface k + 1, the law of
transmission still holds:

Vw1 = Vit Uty (5.1)

where y is the ray height at the surface, u is the slope angle, and t is the
separation between the two surfaces.

5.1.1. Derivation of Paraxial Equations

An equation must be derived to calculate the change in slope angle due to
refraction at the interface. The conventions for angles, curvatures, and heights
are those given in Table 2.1. Note that a clockwise rotation of the ray into the
optic axis gives a positive angle. The same rotation of the ray into a surface
normal is also positive (Fig. 5.1). To simplify the mathematics we use the paraxial
approximation by choosing rays propagating very close to the optic axis. In this
approximation the sine of an angle is equal to its angle (sin i, = i;), and the Law
of Refraction (Eq. 1.7) becomes

Mol = My by (5.2)

144
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k + 1 surface

le~—— Ry ——>]

Ly ]

Figure 5.1. Ray trace at an interface. The sign of each of the ray angles is noted along with the
symbol. In the paraxial approximation, the curved interface is replaced by a tangent plane at the
surface vertex, the point where the interface intersects the optical axis.

The geometry for the refraction of rays at an interface is given in Fig. 5.1. To
keep the notation general, we will look at the k + 1 st surface in a system where
the slope angle of the incident ray u, is changed to u,,, by refraction at the
surface. At the point where the ray intercepts the surface it has a height of y, , |,
calculated from Eq. 5.1. Also at that point the ray is incident at an angle i, and
refracted to an angle i, , , and the local normal to the surface makes an angle o
with the optic axis. In the same small angle approximation, the angles o, u,,
and u, ., can be expressed as

o= tano = &1, (5.3a)
Rk+l
U, = tan u, =f"t“, (5.3b)
k
Uy, Stanu,,, = —':"“ , (5.3¢)
k+1

where R, ., is the radius of curvature of the k + 1 st surface. The negative sign
in Eq. 5.3c is due to the fact that u,, , is a negative angle for this geometry.
From the geometry shown in Fig. 5.1, we can equate i, , the exterior angle to
triangle ABO, to the sum of the interior angles

=0+ U,. (5.4

In triangle OCB the exterior angle, «, is equal to the sums of the interior angles,

O =gy = Ugyye (5.5)
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The negative sign is inserted because u,,, is a negative angle in the figure.
Substituting for « in both Egs. 5.4 and 5.5, using Eq. 5.3a and solving for i, and
iy + 1, We obtain:

o= ooy = 5 (5.6)

Multiplying the first equation by n, and the second by n,, , and equating, using
Snell’s Law (Eq. 5.2), yields

; ; Vi+ 1
t ey =Ml =My gl = Merig t Mes 1Ups 1 (5.7

k+1 k+1

Ye+1

My
Finally, solving for the slope angle of the refracted ray times its refractive index,

(M — 1y
Mg qUypr = MUy — R Ye+1- (5.8)
k+1

This can be expressed more compactly by collecting subscripts and defining new
(or maybe, nu) quantities,

Bl r 1 = My gl ns hiy = Myt (5.9

and

(5.10)

where ¢, , ; is the curvature of the k + 1 st surface, with the result
Ay = il — Vi 1 (e — MCia g (5.11)

The factor (n, ., — n)cy 4 1, the power of the surface, has the same effect that
the power of the lens had in the thin lens equation.

= My g — MJCyry- (5.12)

Note that there are an infinite combination of curvatures and refractive index
differences that can produce the same refracting power. This property is a
valuable asset when it comes to correcting aberrations.

Just as for thin lenses, there are two equations, 5.1 and 5.8, that are linear
in y and u. In some cases, especially for programming calculations, it may
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Figure 5.2. Subscript notation for ray tracing through multiple surfaces. (The vertical arrows
represent ray heights and not the usual symbol for an object.)

be useful to express both equations in terms of the refractive-index—angle
product, nu:

nu,t
Vee1 = Vi + —— (5.13a)
m,
and
Aty = M = Py 1(Mer 1 — M)Crse 1 (5.13b)

The method used for ray tracing through a series of surfaces is similar to that
used for thin lenses. The differences are that the lens power is replaced by the
product of the refractive index difference and the surface curvature (i.e., by the
surface power), and the angle variable u in the thin lens ray trace is replaced by
nu variable. The method is called the y—nu trace. An example of a paraxial trace
of a single thick lens is given in Example 5.A. As before, we can arrange the
system parameters (R, ., or ¢, 1, 1, t,) in an array and calculate the ray values
through the system. Figure 5.2 gives an overall idea of the subscript notation for
a y-—nu trace. Note that the subscript changes at the interface. All values
immediately to the left of the interface have a subscript one less than those at or
immediately to the right of the interface. The zero subscript values are assigned
to object space and, assuming j surfaces and interfaces, the jth subscript is
assigned to image space. The one exception is y;, ,, which is the image height. A
stop is treated as any other surface except that the refractive index does not
change across the stop surface and the surface has zero curvature (¢, = 0).

To open, one assigns an object height and object distance and initial angle,
unless the object distance is infinite and one is tracing a parallel ray, in which
case u, = 0. To close, one can specify a number of different parameters. Each of
these is called a solve. In many cases, all that is required is to find the image
distance in an axial ray trace. Thus, to close one need only set y;,, = 0 and
solve Eq. 5.1 for ¢;, as was done in the thin lens method. In other cases, one may
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EXAMPLE 5.A. Calculate the effective focal length for a lens of crown
glass (glass # 517645) of a thickness of 4 mm, with radii of curvatures,
R, = 40 mm and R, = —120 mm. Assume n = n, = 1.517.

4
@ 40\
T—— 20— |
\[ n, =1.517
Solution: Set up a system array:
& © 4 56.53 closing
1y 1.0 1.517 1.0
g 0 1/40 —1/120
n — — — — no radii given
Parallel ray
ye 10 10 9.659 0 to close
nu, 0 —0.1292 —0.17086
U, 0 —0.0852 —0.17086

Jeg = — Yo/, = 10/0.17086 = 58.526 mm

Since there is only one aperture, it will serve as the aperture stop. The field
stop is either in object or image space.

Note: 1If you need to find an angle in a material when you are doing a y—
nu trace, remember to divide out the index.

wish to maintain a certain light-collecting ability, or to position an image plane
or a pupil plane. In these instances, as will be discussed later, other solves are
needed.

5.1.2. Cardinal Points of a Lens

The introduction of element thickness into our design not only forces us to
revise the method of calculation, but it also requires that some new definitions
be provided to describe the properties of a thick lens. When the thin lens was
discussed there was no doubt where the lens was located and what the focal
length was. But, from what point is a focal distance or any other quantity
measured in a thick lens or a system composed of multiple elements? The
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Figure 5.3. Cardinal points and principal surfaces of an optical system. In addition to the cardinal
points, the vertices of the system (¥, and ¥,) are shown. If the refractive indices in the front and
back of the system are the same, the principal points and nodal points of the system are coincident.

procedure for designing systems'can be simplified since the lens, or even a series
of lenses, can be replaced with six quantities, known as the cardinal points of a
lens. These points, lying on the optic axis, are illustrated in Fig. 5.3. To describe
them it is necessary, however, to set up some directions. When referring to
lenses (and optical systems), the front of the lens is the side facing the object, and
the back of the lens faces into the space where light is transmitted by the lens.
Two points in the figure not defined by ray tracing and not included as cardinal
points are the front and back vertices of the lens, the points where the optic axis
intersects the front and back surfaces of the lens.

The first set of cardinal points are the front and back focal points. Starting
from the concept of a focal point as the point on the optic axis through which all
parallel input rays are directed by the lens, the focal length of the lens could be
defined as the distance between the back vertex and the back focal point. This
distance is the back focal length (for Example 5.A it is equal to 56.53 mm).
Parallel light, incident from the back of the lens, will focus at the front focal
point (57.86 mm from the front vertex for Example 5.A). This distance is the front
Jocal length. But these focal lengths usually do not correspond to the effective
focal length of a lens that is used in most calculations. The effective focal length
of the lens is defined in relation to the so-called principal surfaces of the lens.

As with our example of the telephoto lens in Chapter 2, a parallel ray is
extended as a straight line, and the ray segment through the focal point is
extended back along the ray to cross the parallel ray; their intersection is a point
on the principal surface of the lens. When this is done for rays of differing heights
to the axis, the principal surface is defined. The intersections of the two principal
surfaces with the optic axis are the principal points of the lens, the second set of
cardinal points (Fig. 5.3). Just as in Chapter 2, the effective focal length of a lens
or an optical system is defined as the distance from the focal point to the
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principal point of the lens and is the same for the front and back of the lens,
provided the surrounding media are the same on both sides. In the paraxial
approximation, the curved principal surfaces can be replaced by planes located
at the principal points. These principal planes are used to simplify the layout of
optical designs.

The final set of cardinal points are the nodal points. If parallel rays along the
optic axis are incident on a lens, they will focus at the focal point. If the lens
is rotated at an angle to these rays, the focus of the rays will, in general,
move as the lens is rotated. There is one point on the optic axis where the focus
remains fixed when the lens is rotated (Fig. 5.4). This is one of the nodal points of
the system. Thus, by scanning the rotation point along the optic axis until the
image movement stops, the location of the nodal point in a lens system can be
found. Obviously, the lens has another nodal point, which is found by turning
the lens around so that parallel light enters the other side. If the refractive
indices of the media in the front and back of the lens are the same, the nodal
points are coincident with the principal points.

The advantage of these concepts is that a thick lens or an entire complicated
optical system can be replaced by its cardinal points and principal planes in any
analysis. Similar rules for ray sketching that applied to thin lenses can be
applied to these replacements:

1. A parallel ray entering the system will emerge from the back principal plane
directed toward the back focal point.

2. A ray through the front focal point will emerge from the front principal
plane parallel to the optic axis.

3. A ray through the front nodal point emerges from the back nodal point
with the same slope angle.

/T~
AVAN| \\fj
7k
7’ FARE Ny
/ ’l\\\ \+\\
/ // T
A/ \\N‘j——/_ —===oSs =
[/ // \\\ 7/—_ _______ = —-/-“/—';:_/ { ‘T_
| LA S / / ””’////
LV [~
//
N
\{J'

Figure 5.4. The nodal point of a lens is defined as the point on the optical axis-of a lens around
which the lens may be rotated without producing motion of the image. Here, the lens is rotated
about the back nodal point, N. (Shown in dashed lines.)
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4. All other rays travel between the two principal planes as if parallel to the
optic axis, then continue their transmission from the back principal plane as
shown in Fig. 5.5.

In the calculations in Example 5.A, we see that the angle of the ray through
the focus (u,) in the paraxial approximation is equal to the input ray height (y,)
divided by the distance from the principal point to the back focal point. This
distance, the effective focal length, may be calculated from:

parallel input ray height — y, y; (5.14)
output ray angle  u; [y '

Jor =

The effective focal length of the lens in Example 5.A is 58.526 mm. Using the
values for a parallel ray traced backward through the system to the front focal
point, one gets the same value for the effective focal length [Problem 5.2]. In
this case, however, the intersection of the input and output rays is at the front
principal plane. These concepts can be applied not only to single thick lenses,
but also to elaborate multi-element imaging systems [Problem 5.3]. Thus six
points—two focal points, two principal points, and two nodal points—plus
entrance and exit pupils can replace an extremely complex optical system in
many design studies.

5.1.3. The Lensmaker’s Equation

Although it is useful for only two surfaces, a y—nu trace of a single thick lens
with symbols instead of specific values provides a simple derivation for the
power of a thick lens [Problem 5.5]:

lmop[ L L =D
¢—f—(n 1)[& R2+nR1R2]. (5.15)

fr Pp Py G fs

Front Back
principal principal
plane plane

Figure 5.5, Ray trace of a system in terms of its principal planes.
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In the limit of a thin lens (¢ — 0), Eq. 5.15 becomes the lensmaker’s equation,
which was stated in Chapter 1 (Eq. 1.18):

1 =(n - 1)<L _ _1_) (5.16)

If one of the surfaces of a thick lens is flat (a plano lens), the power of the lens is
independent of thickness. (It has the same value as a thin lens with the same
radius and index.) In general, however, an infinite number of combinations of
construction parameters (radii, index, and thickness) can be used to arrive at a
particular focal length. Two simple cases are shown in Example 5.B. Choosing a
refractive index of 1.5 (so that n — 1 = ) and using two simple cases, the range
of radii of curvature is from about f/2 to f, unless a meniscus-type lens is used.
So, to start from scratch, a glass and a focal length are chosen, and if there are
no other guidelines, a plano or symmetrical lens is used. The curvatures are
calculated. Later, when other requirements are imposed, these assumptions will
have to be modified.

EXAMPLE 5.B. What should the radii of curvature be for a thin lens
with a focal length of 45 mm?

Solution: Not enough information yet, but we can look at two simple
cases.
(a) Plano-Convex Lens: ¢, = 1/R, =0.
Then f =45mm = R,/(n — 1).
Thus if we chose a crown glass n = 1.5,

Ry=(n—-1f=f2=225mm.
(b) Biconvex Lens: R, = —R, (¢, = —¢,).

Then 1/f = (n — 1) (2/R,) and for crown glass (n — 1) = 1.

R,
-t __R,=45mm.
S =qu—q = Ri=4mm

So to start from scratch, choose either the glass or the radius and, using
either type of lens, calculate the other to get some initial values for the
lens.

5.1.4. Parallel Plates in an Imaging System

Besides causing a lateral (sideways) displacement of a ray, a parallel plate
inserted between an element and an image will displace the image position
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along the optical axis. The paraxial ray trace is useful in determining the effect of
a parallel plate in an optical system. It establishes whether or not the plate
serves as a stop, and it enables the designer to specify the smallest possible
components without restricting either the light throughput or the extent of the
image. As shown in Fig. 5.6, the incident and emerging ray angles u, _; and u,
are equal. By Snell’s Law, for paraxial rays the ray angle inside the plate is
u, = U, 4/, where n is the refractive index of the plate. Without the plate, the
distance from the image to the point where the ray height is equal to y, is

£ = —k_. (5.17)
Up

(The negative sign here and in the derivation below is consistent with the fact
that all of the ray slope angles in the example are negative.) With the plate in
place, one additional surface is added so that the ray height at the other side of
the plate is

u
Verr = Vi + thed = y, + "n“ -d. (5.18)

The distance from the front of the plate to the image is the thickness of the plate
PIUS (=Y 4 1/t 4 1) OT

fo=d— 2 _ g ! (yk+““rl*1-d>,

U4y U4y
Vi d d
=d — ——=d—-—-+41,
Uy 1 n
Wje —1
II‘,
§ T S
ity -
Yk M~ Up oy = Up_y e
l TR S /////

d————-——h

Figure 5.6. Axial displacement of an image by a plate of glass with parallel surfaces.
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where we have used Eqs. 5.18 and 5.17. The total distance to the image point is
t, = — yi/t Without the plate. Thus the difference in the image locations is

d=(n—~1)d

Aty =t — t, =d — - (5.19)

n

As an example, we apply these equations to determine the effect of a set of
Porro prisms in an optical system. The two prisms must be unfolded and
replaced by the equivalent parallel plates, as shown in Fig. 5.7. We see that a
prism whose hypotenuse is equal to L is equivalent to a plate of glass of thickness
L. Thus, each prism adds (n — 1)L/n to the distance. In drawing prisms in
optical systems it is sometimes useful to reduce the width of the equivalent
parallel plate by the image displacement distance 4t . This equivalent width,

-1 2L
d,, = 2L — At, = 2L — Ll - ) _ = (5.20)

allows the rays through the prism to be drawn as straight lines, as if the prisms
were not there. It is referred to as the equivalent air thickness or reduced thickness
[Problem 5.47]. The height of the slab is still L, and it must be taken into account
when determining the aperture and field stops of a system. In Example 5.C, the
reduction in length of a telescope and the minimum size of the prisms are
determined using the above principles.

Pt et — b L ——
: =~
B st T ——————— —

(b)

H

(a) (c)

Figure 5.7. Effect of Porro prisms on imaging. (a) A perspective drawing of an axial ray. (b) The
unfolded diagram of two rays traversing the prism. (c) The reduced thickness drawing in which rays
may be drawn undeviated.
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EXAMPLE 5.C. What is the reduction in the length of a 10x telescope
designed with Porro prisms (see Section 4.3 and Fig. 4.13) so that the
prisms do not reduce the optical speed of the system (i.e., none will
become an aperture stop). The refractive index of the prism is 1.5.

Solution: Assuming a nominal eye pupil of 5mm, a 10x telescope must
have an objective with a clear aperture that is 10 times as large, or else the
eye becomes the aperture stop. The only room for the prism is between the
objective lens and the intermediate image. Smaller (i.e., less expensive)
prisms could be used if they were placed close to the intermediate image.
However, a prism surface should not be placed at the intermediate image
since any defect or dust on the prism will be in focus with the image.

Assuming a 150-mm objective with a S0-mm clear aperture (large!), the
prism apertures can be somewhat less. If the first prism is placed 60 mm
from the objective lens, the hypotenuse of the prism must be 60 mm since
the edge rays entering one-half the prism are 30 mm apart. A scaled
diagram with unfolded prisms (n = 1.5) of reduced length, as illustrated in
Fig. 5.7, is shown below.

2L =120 ———{10

—l 15 |je—

l|= 150 15 |jee—

Note that the effect of sending the rays through a slab of glass of thickness
2L is to increase the pathlength by 2L — 2L/n or 2(n — 1)L/n. But the
input plane for the prisms is also the output plane, reducing the length by
2L. The net reduction then is 2L — (2(n — 1)L/n) or simply 2L/n. The
overall length (folded) will be 150 + 15 — 80 mm or 85 mm.

155
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30 mm

The optical axis is placed downward by half the hypotemise of the
prism, or 30 mm.

5.2. THE GAUSSIAN CONSTANTS

Because of the linearity of the paraxial equations in y, and u,, a number of
useful expressions and relations can be derived. Although the paraxial equa-
tions are approximations, they can be used to derive the basic parameters of an
optical system, known as the Gaussian constants. These include the various focal
lengths already discussed, the stops, pupils, windows, and f-number of the
system, the image distance and magnification, and the optical invariant.

5.2.1. The Optical Invariant

Using the paraxial ray trace equations, we can show that a combination of axial
and oblique ray parameters are constant throughout an optical system. In Fig.
5.8 an axial ray and an oblique (nonaxial, nonparallel) ray are traced through an
optical system defined by refractive indices n, curvatures c, and thicknesses . At
the k + 1 st surface, the refracting equations give

(Axial) Py y = N+ Yier 1(Mes 1 — M)Cs 1
(Oblique) Ay = Al + Jies 1(Mer s — M)Cis 1,
where the barred quantities refer to the oblique ray. Solving both of these

equations for the power of the k + 1 st surface, (n,, ; — n)cy 4 1, and equating
yields

MU,y — My Al — Tl

Yi+1 Yi+1
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Uiy

Ry =1/ec, Ry = Vepa

Figure 5.8. Diagram for derivation of the optical invariant.

Multiplying and rearranging, we obtain
Vier 1My — Vi 1Pl g = Ppeu s My — Vi 1 Ml

Using the transfer equation [Problem 5.6], the right side of this equation can be
written in terms of variables with only k subscripts:

Vv 1Mpp 1t = Vw1 Mg 1 = YNl — YNty

Note that the quantities on each side of the equation have only one subscript,
and since this derivation was completely general, the quantity

I'= yemety — yimy il (5.21)

is constant from one medium to another and is an invariant of the system, called
the optical or Lagrange invariant. Although we called the unbarred ray, the axial
ray, and the barred ray an off-axis ray, the derivation is true for any two rays as
long as one is not a scaled version of the other. That is, the second ray is not the
first ray with all the ray heights and slope angles multiplied by a constant.

One particularly simple and useful case where the optical invariant may be
applied is in determining the image magnification from an axial ray. First the
optical invariant is evaluated in both object space and image space. In object
space,

Vo = 0; Jo = h, object height,
and

I=h-nuy — 0-nuy = hnuy = hnyu,.
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In image space, after j surfaces:
Yj+1 = 0; J;.1 = K, the image height,
and
I=h- nu—0-nmu =h-nu = h'nu;.
Equating the values for the invariant in object and image space we obtain
hnoug = h'nju;.
The transverse magnification of the system is therefore

}/
ol o M= i oy =y (5.22)
u

i

M ==
h nu;

Since both of the ray angles are those for the axial ray, this means that an axial
ray trace through a series of lenses will not only determine the image position
but also its magnification. This obviously holds for a thin lens ray trace too.

5.2.2. Finding the Stops—Scaling

The linearity of Eqgs. 5.13a and 5.13b also allows one to write down a whole
family of rays by simply multiplying the values found in an axial trace by a
constant, a procedure known as scaling. For example, the paraxial approxi-
mation to the marginal ray can be determined by dividing the clear radius of the
kth element by y, found by an axial ray trace. The smallest absolute value of
these ratios determines the aperture stop. If the smallest ratio is at the kth
element, then

3

‘y:
Y

and
Ve = and  u = yu,

give the values of the marginal ray in the system, since y, = yy, = r,. The ray
height at the aperture stop is equal to the clear aperture radius. The next
problem to be attacked is to find the entrance and exit pupils. This is done by
tracing a chief ray through the system starting at the aperture stop and tracing
into image and object spaces. The images of the aperture stop locate the
entrance and exit pupils. Since the chief ray, by definition, crosses the optic axis
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at the aperture stop, the locations of the entrance and exit pupils are found by
setting y, = 0 and j;, , = 0, respectively. For the entrance pupil

Vi =Y + ﬁofo = +’Zofo

or
(entrance pupil location),

and after j surfaces:

i=—-2 (exit pupil location).

By using the optical invariant, the size of the pupils can be determined from the
magnification as shown in Example 5.D.

Again, the limiting aperture for the chief ray can be found, giving the field
stop. Dividing the chief ray heights at each element by the clear aperture radius,
the field stop occurs at the element with the smallest |r,/7,| ratio. It might seem
that another ray trace would be needed to find the entrance and exit windows of
the system, but we already have sufficient information to determine their
location and size. As was noted in Chapter 2, any new paraxial ray having
nonzero y, and u, is just the sum of an axial ray and chief ray with appropriate
multipliers. In the equations below let the unprimed variables be those for an
axial ray, the barred variables, a chief ray, and primed variables, the new
paraxial ray. If we wish to find the image of surface m in image and object space,
then we set y,, = 0. But y/, can be written as the sum of an axial ray and a chief
ray, so that at surface m,

Yim = @ + Y = 0. (5.23)

Because y;, can be scaled as can any other ray, we arbitrarily get « = 1, then

p=-Im (5.24)
Vm
In object space

y =y1+B.)—)1’

™

u’o = uo + ﬂﬁo.
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The image of the mth surface is found by setting y, = y| — upt, = 0. (As was
noted in Section 2.5, when a ray is traced backward, the sign convention for
distances is reversed. If the entrance pupil location is to the right of surface 1
then it will be negative.) The location of the image of this surface in object space
is at

(= Vi _ Vi By Vi Ym1/m (5.25)

Up - Uy + Pitg B Uy = Vmito/Vm ’

using values found from the two earlier traces. Similarly, in image space

[

Yi=y; + By

u; = u; + Bu,
and the image of the mth surface is at

= Vi YT InIifn (5.26)
uj uj - ymuj/ym

The value of this method is that once the axial and chief rays are traced, no
additional traces need be done, and no calculations are needed at intermediate
surfaces. If the mth surface were the field stop of the system, then ¢;, and t; locate
the entrance and exit windows, respectively. By finding the magnification of the
field stop, the sizes of the windows can also be calculated [Problem 5.7-5.12].
In Example 5.D, an example of this method is given. Obviously, such a general
method can be programmed into a calculator or small computer to provide
these values in the design.

EXAMPLE 5.D. Determine the size of the entrance and exit pupils of a two-lens
system using the optical invariant. The object distance is 11 units.

Solution: Set up the array and trace axial and chief rays.

4 11 0.3 4.0 0.3 1452
n, 1.0 1.517 1.0 1.517 1.0
G 0 0 -0.5 0.0888 —0.0888 0
T = .20 .20 .10 .10 —
Axial ray

Vi 0 1.1 1.11978 0.36194 0.3212 0
nu, 0.1 0.1 ~0.18946 ~0.2061 —0.22085

Uy 0.1 0.06592 —0.18946 —0.13586 -0.22085

n/Vi 1818 .1786° .2763 3113
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Chief ray
P ~1.1198 -0.01978 0 04 0.4161 0.5070
il 0.1 0.1 0.1 0.0816 0.0625
i 0.1 0.06592 0.1 0.0538 0.0625
Vi 10.11 - 25 .2405°

¢ Aperture stop.
® Field stop.

To determine the locations of the pupils: the aperture stop at surface 2 is the “object”
point and the pupils are its images in object and image space. The “object” slope angle
is the angle at the chief ray i; and the “image” slope angles are the chief ray angles in
the object space for the entrance pupil and in the image space for the exit pupil.

u, 0.1
M = 22 = 1 Fepap = 0.20

ent pup % 0‘1

(As though looking through a pane of glass, since the first surface is plano.)

Uy 0.1
Mexl pup = _—%

u; 00625

1.6 T =0.20 x 1.6 = 32.

ext pup

Using the chief ray values, the entrance pupil can be located at

¥y, —0.01

o Z0078 51078,
T 0.1
which lies to the right of the first surface because of the sign convention for rays traced
backward. The exit pupil is located at

—Va 0.4161

=2 T 6657
G, oo625 ~ 86976

to the left of the last surface. Since the field stop is located in image space, the exit
window is also there. The entrance window may be found with another ray trace or
using the S-ratio. Here m = 4 and

_— 0.3212
=% = U700 0.7719,
A 0.4161
s _ 11+ (=0772)(~001978) _ 1.11527
7701 +(=0.772)(0.1)  0.0228
= 489

to the left of the first surface based on the backward ray trace sign convention.
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The optical speed, or f~number, of the system, which we will denote as F, is
defined for a parallel ray entering the entrance pupil of the system at a height of
y as

effective focal length

F = . 5.27
entrance pupil diameter (5:27)

But from the definition of f_; (Eq. 5.14) this is equal to

F=fe"f= L
2y, 2|“j]

(5.28)

Since the f~number measures the light-collecting ability, f, is positive and the f-
number is also positive. If y, is the entrance pupil radius, u; is the exit slope
angle of a marginal ray with an object at infinity. If the image space refractive
index is not unity, then

1

2n;|uj|

(5.29)

The procedure of scaling can be applied not only to rays in optical systems,
but also to the optical system itself. A system can be analyzed using any
convenient set of units. When an analysis is finished and a specific quantity, say,
the effective focal length, is required, one need only multiply all radii, sepa-
rations, and apertures by a constant equal to the new quantity divided by the
old quantity. This scaling procedure does not affect the angular field of view or
the system f~-number since they are the ratios of two scaled distances.

5.3. CHROMATIC ABERRATION

Until now we have assumed that a single refractive index could characterize the
glass in an optical system. But, as was pointed out in Chapter 1, the refractive
index of all materials varies with wavelength. This dispersion in optical
materials is responsible for chromatic aberration. The effects of chromatic
aberration can be investigated by using the paraxial ray trace. After determining
the amount of chromatic aberration present in a system, it is possible, through
the use of glasses of different dispersions, to reduce the amount of aberration
with the aid of some simple thin lens formulae.

5.3.1. Chromatic Aberration of a Simple Lens

In Example 5.E, the effective focal length of a crown glass (Glass # 517645) lens
is determined for three wavelengths. In this case we choose the C, d, and F lines
at 656.3, 587.6, and 486.1 nm. (The concepts and notation for the glass number,
the dispersion in the form of the V-number, and the notation and wavelengths of
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the Fraunhofer lines were given in Section 1.1.) To serve as a reference point, the
trace is closed on the central d-line. (The point at which the rays cross the axis
are also shown as ¢, in the example.) Note that the blue rays are focused inside
the paraxial focus for the d-line, while the red rays are focused beyond it. This
defect in the lens is called axial color, although it occurs at off-axis points, also.

EXAMPLE S.E. Calculate the effective focal length for a lens of crown glass (glass
#517645) of thickness 4mm with radii of curvatures, R, = 40mm and
R, = —120 mm for wavelengths d, F, and C lines.

C: 56.7983 The array has been set up
t oo 4 d: 56.5311 to parallel all three.
F:559126
ne 1.51461
n, 1.0 1.51700 1.0
ng 1.52262
c 0 % -5
C 0.9660236 0.004544  (to close,
y d 1.0 1.0 0.9659196 0.0  «determines
F 0.9656763 —0.010683 reference
C 0 —0.0084941 —-0.017008 image plane)
nu d 0 —0.0085201 —-0.017086
F 0 —0.0085809 -0.0172712
C:1/0.017008 = 58.796
g d:1/0.017086 = 58.526
F:1/0.0172712 = 57.900
—0.02 _ F (Blue)

d (Yellow)
C (Red)
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Axial color can be measured in terms of the separation between the C and F
image points, the longitudinal axial chromatic aberration,

Loy =ty —tc, (5.30)

where tp is the distance beyond the final element where the F-ray crosses the
axis and ¢, is the corresponding distance for the C-ray. Thus, in Example 5.E,
L, = 55.9126 — 56.7983 = —0.8857. It is sometimes useful, for comparison, to
normalize this error by the focal length, so that L, = L,/f; =
—0.8857/58.526 = —0.01513.

Axial color can also be measured in terms of the separations between the F-
and C-rays in the focal plane of the d-ray. This is the transverse axial chromatic
aberration

T = Y5 — Yo» (5.31)

where yr and y. are the ray heights of the F- and C-rays in the plane of the d-ray
image. In Example 5.E, T, = —0.01068 — 0.00454 = —0.01522. A lens, that
has negative chromatic aberration, such as the one in the example, is said to be
“undercorrected.”

If, instead of examining the distribution of rays around a focus, one examines
an image at a point off the optical axis for a lens uncorrected for chromatic
aberration, the edges in the image would not be sharp but would be a blur of
colors. Because of dispersion, the magnification of the lens is different for
different wavelengths, leading to a succession of centered images of different size
for each color (Fig. 5.9). This chromatic aberration, although arising from the
same source as axial color, is referred to as lateral color. 1t is defined in terms of
the chief ray of the system and therefore varies, as does the chief ray, with the
stop position. Depending upon the application, it may be more important to
reduce the lateral color more than the axial color. While the correction for one
chromatic aberration usually reduces the other, the amount of correction may
not be the same for both.

Red
Color

Blur

]

Blue

Figure 5.9. Lateral color. Because the magnification of a system can vary with the refractive
index of a lens, dispersion of glass produces images whose sizes vary with wavelength. This results
in an overall image that is blurred.
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5.3.2. Achromatization—Cancellation of Dispersive Power
The lensmaker’s equation (Eq. 5.16) can be used to examine the change in the

power of a thin lens with refractive index. Given two wavelengths . and A, the
powers of a thin lens with curvatures ¢, = 1/R, and ¢, = 1/R, are

b = & = (n = Dley — e2) = (e — e
and
br = = = (np — I)c, (5.32)

F

where ¢ = (¢, — ¢;) = (1/R; — 1/R,). The difference in powers of this lens at the
two wavelengths is

A¢ = ¢p — ¢c = (np — ncjc = 4n-c, (5.33)
where An = np — nc. If we define the d-line focal length as the average focal

length,

1
¢y = JTd = (ng — D, (5.34)

then

40 _—4f _ e e 1 (5.35)

where V, is the dispersion given in Eq. 1.5 of Section 1.1. Thus the variation in
power can be expressed as

4¢ = % (5.36)
d

Now it can be seen why the dispersion is expressed as it is.

By combining two lenses made up of different glasses, it is possible to cancel
the 4¢’s while maintaining the overall power. That is, given two lenses 4 and B,
we can use the lensmaker’s equation to construct two lenses such that

¢A + ¢B = ¢d (5-37)

and

Ady + Ay = 0. (5.38)



166 PARAXIAL RAY TRACING

Here we are assuming the two lenses are in contact, since Eq. 5.37 is just another
expression of the equation derived in Example L.F. If ¢, is again defined as the
power of the lens at the d-line and n, is the refractive index for that line, then, the
difference in the curvatures can be expressed, using Eq. 5.34, as

b _ %

. ey =
n—1° ng —1°

=

where we have used the notation n, = (n,),; ng = (n,)p. In Eq. 5.33, we also
subscript the difference in powers and refractive indices:

Ay = Anyey; A¢p = Angcy.
Then the condition for the cancellation of powers (Eq. 5.38) becomes

An,c, + Angeg =0

or

=0. (5.39)

But

and similarly for Vg, so that

G, P8
— —_— = 5-
=0 (5.40)
or
SiVa+ fyVe=0. (5.41)

Since all transparent glasses and materials have a normal dispersion in the
visible—that is with np > n, > n.—the dispersion V, is always. positive. This
means that

—ff—f* = % >0 (5.42)
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and f; and f; must therefore have different signs. Thus, an achromatic
combination must be made of a positive and a negative lens and their focal
length—dispersion product (fV) must be equal amounts with opposite signs.
Using this thin lens achromatization method, let us do a preliminary design
of an achromat to replace the lens in Examples 5.A and 5.E. Therefore,
Jy = 58.526; ¢, = 0.017087. Using Eqgs. 5.37 and 5.40, we can solve ¢, and ¢ in
terms of ¢,, V;, and V.
v, 12

d = ¢—2 543
I{4_VB an ¢B ¢dVB—I{4 ( )

& = ¢d

Note that these lenses will require considerable power unless ¥, — Vj is made as
large as practicable. Usually a value of AV of better than 15 is needed. The glass
map shown in Chapter 1 is a guide to ranges of glasses available. The ones
shown in that map represent a selection of about 20% of the glasses offered
commercially (Ref. 5.1). We choose two glasses, a crown (K5, 522595) and a
dense flint (FS, 603380) (Ref. 5.2), giving V, — V; = 21.5. Using the above
equations we find that with a crown in the front lens

_0.017069 x 59.5

p = 713 =0.0472;  f, = 21.170 mm,

_0.017069 x 38.0

p = oy = 003017 f; = —33.147 mm.

The radii of curvature of these lenses may be calculated, if we are willing to
make some assumptions. If we use a biconvex lens for the positive lens (a
reasonable choice, since it saves on tooling when fabricated), ¢, = —¢,, and

¢ 0.0472

:2 = =
T~ 1 0522

= 0.09042,

¢, = 0.04521,

1
R, =—-R, =— =22.12mm.

€y

If this is made as a cemented doublet (saving one lens mount), then ¢, = ¢, and
only the last surface curvature needs to be calculated:

s —0.03017
= = —0.05
ng, —1  0.6034 ’

€3 —Cy =

¢, = 0.05 4+ (—0.04521) = 0.00479,

R, = 208.77 mm.
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EXAMPLE 5.F. Ray trace the achromat designed using thin lenses. Tentatively
assign thicknesses of t; = 5, ¢, = 3.

C49.7882
t o0 5 3 d49,72288
F49.6367

ne 1.51982 1.59874

n, 1.0 1.52249 1.60342 1.0

ng 1.52860 1.61461

¢ 0 0.04531 —0.04531 +0.0047

c 0.922514 0.884507 ©0.00117
yd10 [710 0.922252 0.884286 0.00000

F 0.921658 0.883830 ~0.00153

c 0 0. - —0.012669 - =0.017765
ud 0 - ~0.012656 1=0.017784

F 0 - =0.012609 ~0.017806

C: 1/0.0176715 = 56.2905
i d: 1/0.0176901 = 56.2303
F:1/0.0177107 = 56.1608

Plotting on the same scale as before.
Ly, = 49.6367 — 49.7882 = —0.1515
L, = —0.00269(or £ of L, in Example 5.E)
T, = —0.00153 — 0.00117 = —0.00270

Because we inserted some thicknesses, the calculations were thrown off somewhat,

and the f,4 has been changed by about 4% . This could be remedied by rescaling the
system values.
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In Example 5.F, the achromat that has just been designed is analyzed using a
paraxial ray trace. Thicknesses of 5 mm and 3 mm were tentatively assigned to
the two lenses and the ray traces computed for the three wavelengths. The rays
are plotted on the same scale as before. The longitudinal axial chromatic
abberration is now L, = 49.6367 — 49.7882 = —0.1515and L, = —0.00269,
or about one sixth of the abberation in Example 5.E. Here, 7., = —0.00270.
Because we inserted the thickness, the lens values were thrown off somewhat. The
effective focal length is about 4 9 less than before. This can be remedied by
scaling the system values to the target effective focal length. For additional
information see Ref. 5.3.

5.4. PARAXIAL RAY TRACING,
CALCULATORS AND COMPUTERS

The y—nu method presented, here is only one of a number of ways of calculating
the Gaussian constants for an optical system. There are methods, such as a
matrix method preferred by some optical designers (Refs. 5.4-5.6). Although the
matrix method has certain benefits, particularly when there is a periodic array
of identical lenses and stops, it suffers from a more complex set up and increased
computation time when working problems on paper. The particular method
shown here has the advantage of being easy to set up. It enables one to
determine the ray heights along an optical system so that stops, pupils, and
windows are rapidly found.

Programs for paraxial ray tracing have been written for a large number of
calculators and computers. You may want to use one yourself. Rather than add
to the slew of programs already in existence, the flow chart for a paraxial ray
trace was given as a modification to the thin lens ray trace in Example 2.D. With
a small amount of effort, you can program your own paraxial ray-trace program
that fits your needs or use one of the “spreadsheet” programs that are available
on all microcomputers (see box). Once this is done, check your routines with the
calculations in this or other texts. Be sure that you understand the sign and
input conventions of other programs, if you choose to ray trace with an
unfamiliar program. Again, use simple problems to check your understanding
of the program.

PARAXIAL RAY TRACING USING SPREADSHEETS

Since paraxial ray tracing requires nothing more than a series of linear
equations, a good deal of computation can be done on a microcomputer
using spreadsheet programs, such as Visicalc and 1-2.3*. These are
programs that enable one to define arithmetic and logical relations
between the contents of one position, or cell in a large array and all others

* Visicalc is a trademark of Visicorp: 1-2-3 is a trademark of Lotus Development Corp.
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cells in the array. Any subsequent changes in the contents of cells result in
recomputations of all relations to give new values. Once the system values
block (t;, 1y, ¢, 1) has been defined for the surfaces in the system, an axial
ray trace block may be built out of the two paraxial ray trace equations.
As soon as initial ray values are entered, the values for the subsequent ray
heights and slope angles are computed. The axial ray block may be
replicated for the chief ray block. Computations of S,, i,, i, enable one to
calculate the third-order coefficients (see Section 6.2) surface by surface.

If the spreadsheet program has @IF commands, one can close a ray
trace to find an image point. One useful procedure, which is easy to
perform, is bending a lens. By writing the optical power of second surface
as the difference of the optical power of the lens minus the optical power of
the first surface, the effective focal length of a system can be maintained
without resorting to additional scaling and redefinition of the size of the
entrance pupil, as is necessary with simple ray-trace programs.

Spreadsheets for exact ray traces are not as useful because the
computational time becomes substantial, although this may change with
the introduction of more powerful programs of this type. But, for an initial
rapid evaluation of a relatively complex system, spreadsheets provide
enormous flexibility once you develop the knack of defining relationships
between cells.

Another question that should be asked at this point is: Why bother with this
y—nu method at all? If all of this can be programmed into a calculator, why not
just teach someone how to run a ray-trace program? The reason is that an
understanding of paraxial ray tracing is required before you can intelligently
run a ray-trace program. Both as an introduction to the concepts and as a
model for much more sophisticated routines, the paraxial ray trace is ideal. We
urge you to work a few problems before continuing.

5.4.1. Ray Tracing with Reflecting Surfaces

In the examples given so far, we have used only refracting surfaces. How is a
reflecting surface handled in a paraxial ray trace? Looking at Example 5.G, we
see that the propagation direction and thus the optic axis has been reversed. To
account for a large number of possible sign changes, all conventions in terms of
height and angles can be preserved if only two things are changed (as noted in
Table 2.1): After a reflection, the signs of all refractive indices (n,) are reversed
and the signs of all spacings and thicknesses (t,) are reversed. It can be shown
tha: this will give the mirror equations, Egs. 1.13 and 1.14. Thus, after one
reflection, all distances and surface separations r,, are negative (see rule # 7
in Table 2.1). An example of a simple paraxial ray trace containing mirrors is
given in Example 5.G. Note that the second mirror surface cancels the effect
of the first surface so that all the conventions are back to the original state.
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EXAMPLE 5.G. Find the focal point for a combination of two mirrors:
a concave mirror (R = 100 units, D = 40 units) reflecting to a convex
mirror (R = 25 units, D = 10 units) at a separation of 40 units. What is
the effective focal length and f~number of the system?

Solution: The diagram and array are given below. Please note the number
of signs that are present. You must be very careful to keep track of them.

t 0 —40 50

1y 1.0 —1.0° 1.0

C; 0 —0.01 —0.04

T — 20 5

Vi 20 20 -4 0
nu, 0 -04 -0.08

Uy, 0 04 -0.08
Vi — 1 1.25

 Changed sign on reflection.
b Aperture stop.

Calculations for some of the quantities are:
nuy = nuy — y,(ny — ng)c,
=0-20(-1 — 1)(—0.01) = —20(—2)(—0.01) = —0.4,
u, = nuy/n; =—04/—1 =04,
Y2 =y + ity
=20 + (0.4)(—40) = 20 — 16 = 4,
nu, = nuy — y,(ny, — ny)e,
=—04 — 401 — (—-1))(—0.04) = —0.4 — 4(2)(—0.04)
= —04 + 0.32 = —0.08,

u, = nu, = —0.08.
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Location of the focal point:

t, = —y,/u, = 4/0.08 = 50 units from second mirror, 10 units from the
first. The effective focal length is

fur = —Voluy = —20/—0.08 = 250 units.

The f-number is F = 1/2[u,| = 1/0.16 = 6.25.

5.4.2. Solves and Pickups

There are certain situations in optical design where the ray trace is carried out
to determine a certain lens characteristic and not simply to find the image
location by “closing” the trace as we did earlier. For example, the f-number of a
system is the reciprocal of twice the final index-marginal ray-angle product (Eq.
5.29). If a system is required to have a specific f~number and the ray height at the
final surface has been computed, then instead of closing by setting y; , ; = 0, one
solves for the radius of curvature in the final surface that will give the correct f-
number. Since 1/nu; = 2F,

n, = — = nu,_, — yn;, — n,_c;
J 2F J—1 ity j- %)

and the required final curvature is

_ _(1/2F) — nu;_y
¢ = ——————————yj(nj ) (5.44)

and image distance is

tj=% it on =1 (5.45)

Although the example given here applied to ending the ray trace, the same
method could be used anywhere in a ray trace if a particular ray angle is
required in a specific region of the optical system. This is sometimes called an
angle solve, although it is a surface curvature that is solved for.

Similarly, if a ray was required to hit an element at a certain height above the
axis, as might be the case if there were a limiting stop somewhere in a design,
one could vary the space between the elements. In this case, both y, . , y, and u,
are known and the translation equation provides a height solve for t, .

f =0 (5.46)
k
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Obviously, both of the paraxial equations may be solved for a particular system
parameter to preserve a particular ray property. Although this also could
include refractive indices, and the range of values is small, the leverage to change
other values is not as great as with other solves.

Sometimes in an optical design it is useful to reduce the number of system
parameters for structural or economic reasons. For example, equating of the
neighboring radii of curvature in our calculation of the achromatic doublet is an
example of a pickup, an assignment of one system parameter value to another
system parameter. Usually curvatures are picked up because this allows the
lenses to be cemented together, enhancing the mechanical integrity of the lens
and reducing mounting costs.

As was pointed out at the beginning of this chapter, the paraxial ray trace
serves as a reference trace against which more exact calculations can be
compared. Considering that the image distance, the locations of the cardinal
points of the system, as well as its stops, pupils, and windows, its magnification
and f~number can be obtained through such a trace, it certainly provides a lot of
information with very little effort.

PROBLEMS

5.1. Calculate the maximum possible clear radius of the lens described in
Example 5.A. Note this is a problem somewhat similar to the de-
termination of segments in the vignetting problems of Chapter 3.

5.2. Given a negative lens with radii of curvature R, = —76 mm and
R, = 24 mm, and a thickness of 4.5 mm, what is the effective focal length
of this lens if it is made from glass number 5734257 Use y—nu trace rather
than the thick lens formula.

5.3. Three thin lenses form a triplet. Their focal lengths are 100 mm,
—50 mm, and 25 mm, and they are spaced 20 mm apart. What is the
effective focal length of the combination? Where are the principal planes
of the triplet located ?

5.4. A Dove prism has a base length of B = 50 mm and a base angle of 60°.,
(a) What is the equivalent air thickness of this prism if its refractive
index is 1.621?
(b) What is the maximum clear aperture height (A4 in Fig. 4.17) of the
prism?

5.5. Using the y—nu trace, derive. the power of a thick lens as given in Eq.
5.15.
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5.6. Show that Eq. 5.21 can be derived from the equation just before it in the

5.7.

text.

You have two large batches of glass on hand, a 541599 and a 689309.
Can you make an achromat with a 30-mm focal length from these? If so,
what are the respective focal lengths of the individual lenses? What
would be the radii of curvature of the two lenses if the contact surface of a
cemented doublet is a plane?

5.8-5.12. The following problems are thick lens versions of the thin lens ray

traces of Chapter 2. In each of the following problems find:
(a) The stops, magnification, effective focal length, image location and

f-number of the system.
The pupils and windows of the system.

5.8. Periscopic Lens

Object distance: 75 mm

Element #1: R, =flat,t = 2.1mm, R, = —54mm, d = 10 mm,
540597 glass

Separation: 2.3 mm

Element #2: Stop;d = 9mm

Separation: 2.3 mm

Element #3: Element #1 (reversed) R, = 54 mm, t = 2.1 mm,
R, = flat, d = 10 mm, 540597 glass

5.9. Double Gauss

Object distance: infinity

Element #1: R, = 31.5mm, t = 4 mm, R, = infinity, d = 10 mm,
689495 glass

Separation: 0.2 mm

Element #2:° R, = 19.47mm, t = 7.0mm, R, = 12.47 mm,
d = 9 mm, 744448 glass

Separation; 6.0 mm

Element #3: Stop;d = 7.5 mm

Separation: 6.0 mm

Element #4: Element #2 (reversed) R, = —12.47 mm,
t = 7.0 mm, R, = —19.47 mm, 744448 glass

Separation: 0.2 mm
Element #5: Element #1 (reversed) R, = infinity; = 4mm;
R, = —31.5 mm, 689495 glass
For an example of some approaches to design, see Mandler’s dis-
cussion, “Design of Basic Double Gauss Lenses,” (Ref. 5.7).
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5.10. Triplet

S.11.

Object distance: 400 mm

Element #1: R, = 100mm, ¢ = 5.7 mm, R, = —69.18 mm,
d = 8 mm, 691547 glass

Separation: 13 mm

Element #2: R, = —66.67mm, ¢ = 3.1mm, R, = 21.81 mm,
d = 6.5 mm, 487704 glass

Separation: 13 mm

Element #3: R, = flat,t = 42 mm, R, = unknown, d = 7 mm,
702410 glass

Solve for R, to obtain an effective focal length of 90.46 mm. (Hint:
What is the final slope angle needed to obtain this focal length for the
particular input ray height you have chosen?)

Ramsden Eyepiece

Object distance: 5 mm

Element #1: R, = 85mm,:= 4.6mm, R, = —44.17 mm,
d = 20 mm, 589613 glass

Separation: 25mm

Element #2: R, = 44mm,t = 50mm, R, = —48 mm,
d = 16 mm, 652585 glass

5.12. Mangin Mirror

Object distance: infinity

Element #1: R, = —120mm, ¢t = 6 mm, R, = —126 mm,
d = 50 mm, 532516 glass

Separation: 0 (mirror coated on second surface)

Element #2: R, = —120 mm, mirror surface, t = —6 mm,
R; = —120mm, d = 50 mm
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Exact Ray Traces
(DISCOVERING WHERE THE PROBLEMS ARE)

Thus far small angle approximations have been used to find the Gaussian
constants that describe an optical system to first order; paraxial ray traces were
used to find the baseline or reference values for a given system. These values can
be compared with exact calculations for rays near the edge of the pupils and for
object points that are not on the optic axis. The differences between the exact
values and the paraxial values are a measure of the performance of the optical
system. These differences may be described by the aberrations in the optical
system. In this chapter, after a discussion of some exact ray-trace methods, the
five monochromatic third-order Seidel aberrations are described, and some
methods for reducing these aberrations are given. Because of the power of
today’s computers and calculators, emphasis is placed on understanding these
aberrations rather than deriving the necessary equations. Discussions of the
advantages and difficulties of aspheric optics and the concept of the modulation
transfer function conclude the chapter.

6.1. RAY TRACING TECHNIQUES

The simplest set of exact ray traces is the meridional ray trace with spherical
surfaces, where rays are restricted to a plane containing the optic axis. The
meridional ray trace is a special case of the more general skew ray trace, which
has no restriction except that the ray pass through the entrance pupil of the
system. A ray-trace scheme for skew rays will not be described. The necessary
equations for calculating a skew ray are found in the references [6.1-6.2].

The conventions for a meridional ray trace are the same as those for the
paraxial ray trace and thin lens ray trace given in Table 2.1. Figure 6.1 shows a
ray trace across an interface. Because of the modern sign convention, the slope
angles in the figure are negative and the angles of incidence and refraction are
positive. While this might lead to a certain amount of confusion in the present
derivation, especially in the geometry, the point to bear in mind is that the
quantities — U, and — U, are positive.

A number of different sets of equations for a meridional ray trace can be
used; the particular method is largely a matter of personal preference. The set of
equations to follow are especially useful for programmable calculators and

177
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Figure 6.1. Ray trace of a ray across an interface. The angles U, and Uj are negative.

computers because all computations involving angles are done through their
trigonometric functions, and these are easily called by most calculator and
computer programs.

Referring to Fig. 6.1, note that two new variables have been introduced, Q,
and Q,, the ray—vertex perpendiculars. Although the Y,’s still exist as vertical
coordinates of the ray intersection at the surface, their computational role has
been taken by the 0, so this method may be called a Q—U trace. To distinguish
between an exact and a paraxial ray trace, all exact quantities are labeled with
capital letters, whereas all paraxial quantities are expressed in small letters, as
they have been in earlier chapters. We will again use j as an index denoting the
number of surfaces with the object surface index being zero and the image
surface index being j + 1.

To open the trace, at least two of the following three variables must be set
(Fig. 6.2):

1. The sine of the initial slope angle, sin U,
The distance to the first vertex, L = ¢,
3. The ray—vertex perpendicular before the first surface,

Q. = Hcos U, + t,sin U,, 6.1)

where H is the object height. In the case of an axial ray, H = 0, and Eq. 6.1
becomes Q, = ¢,sin U, (Fig. 6.2(a)).
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Figure 6.2. Opening a ray trace. (a) An axial ray. (b) A ray from an object of height A with a slope
angle U,.

In contrast to the paraxial ray trace, where there is a single ray height at a
surface, in an exact ray trace there are two ray—vertex perpendiculars, one on
each side of the surface. To distinguish between variables before and after
refraction, values before refraction will be unprimed, those after refraction will
be primed. Thus the paraxial ray height y, at the kth surface is replaced by Q,
and Q,.

For refraction, the angle of incidence at a surface may be calculated by the
geometry at the kth surface (Fig. 6.3):

sin I, = Q, ¢, + sin U, (6.2)

where ¢, = 1/R, and U, = U,_, [Problem 6.1]. In the case of object space,
U, = Uy = U,. The cosine is then found using the trigonometric identity

cos I, = /1 —sin? I,.
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Surface

Rk = 1/Ck |
Figure 6.3. Refraction of a ray at an interface. Determination of the angle of incidence in terms
of the initial slope angle U, . The same geometry will hold for the refracted ray also.
By geometry (using Fig. 6.1 and noting that U, and Uy are negative) it can be
shown [Problem 6.2] that
L-U =1-U, (63)

where U, and I, are the refracted slope angle and the angle of refraction after the
kth surface. The sine and cosine of the combination I, — U, can be calculated
using the trigonometric indentities

sin (I, — U,) = sin I, cos U, — cos I sin U, (6.4a)

cos (I, — Uy = cos I, cos U + sin U, sin I,. (6.4b)

The sine of the angle of refraction is obtained from Snell’s Law and the cosine
calculated from the sine:

sin I{ = sin [, %=1 (6.5)
y

cosIj = /1 — sin?I;.

Using trignonometric identities again, with Uy = I; — (I, — U,), we can de-
termine the new slope angle trigonometric functions from previously computed
values:

sin Uy = cos (I, — Uy sin I — sin (I, — U)cos I}, (6.6a)

cos Uy = cos (I, — U)cos Iy + sin (I, — Uy sin I;. (6.6b)
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The new ray-vertex distance can now be shown to be [Problem 6.3]:

(cos Uy + cos )

(cos U, + cosl)’ (6.7)

Qi = QO

With the calculation of Q@ and U a new ray direction has been determined. The
transfer to the next surface is similar to the paraxial case, i.e.,

Ueer = Uy (6.8)
Qi1 = Ok + tesin Uy (6.9)

The ray values at the k + 1st interface are computed and the next refraction is
determined using Eq. 6.2.

The meridional trace can be closed in two ways: (1) An axial ray, in which
case the image distance is found by setting Q,. , equal to zero.

Q(
L'=T=-=_. 6.10
J sin Uj’ (6.10)

EXAMPLE 6.A. Run a meridional ray trace on the system in Example 5.A and
compare to the paraxial values.

Solution: Run both y—nu and exact ray traces.

56.53 (Paraxial values)

t (o) 4 54.65 (Meridional values)
System n 1 1.517 1
values c 0 1/40 —-1/120
Paraxial Vi 10 10 9.6592 0 Relevant
values U, 0 -0.0852 -0.1709 equations
Q. 10 10 9.7245 0 (6.1,6.9)
sin U, 0 0 —0.0872 —0.1752 Transfer
cos U, 1 1 0.9962 09845  Trig.
sin I, 0 0.2500 ~0.1681 (6.2)
cos I, 1 0.9682 09858 Trig.
sin(I, -U,) 0 0.2500 ~0.0816 (6.4a)
cos(l, —U) | 0.9682 0.9967 (6.4b)
sin I} 0 0.1648 —0.2549 (6.5
cos I, 1 0.9863 0.9670 Trig.
sin Uy, 0 -0.0870 -0.1752 (6.6a)
cos U, 1 0.9962 0.9845 (6.6b)
Q0 10 10.0726 9.5750 (6.7)
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Closing,

L' = —Q}/sin U, = —9.5750/—0.1752 = 54.65

fur = —Qo/tan Uy = —10/—0.1779 = 56.21

Meridional ray

‘_Paraxial focal
[e————————LSA = —1.88 plane
U, ] g, ] | | | l
‘ " TB4 T35 56 )

Comparing to the paraxial ray trace, t, = 56.53.
LSA =L —1t, = 54.65 — 56.53 = —1.88,
TSA = —LSA x tan U; = 1.88 x (—0.1779) = —0.3346.

This is an illustration of the approximate nature of the paraxial trace.

(2) An oblique ray, where it is assumed L has already been found using the
counterpart of Eq. 6.1 in image space. The image height is then given by

_ Q; + L'sin U/

H' 6.11
cos Uj’ ( )

Just as with the paraxial ray trace, a meridional ray trace can be set up in an
array format and each of the ray parameters calculated. An example of this

procedure is given in Example 6.A, using the same lens parameters as for the
paraxial example, Example 5.A.
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Figure 6.4. Meridional ray-trace quantities, Y,, Z,, coordinates of the point of intersection and
T, x+1» the distance along a ray between surfaces.

Other quantities of interest that can be obtained from a meridional ray trace
are the coordinates (Y, Z,) of the point of intersection of the ray with a surface
and the distance (T; , +,) between ray—surface intersection points (Fig. 6.4):

v _ Qi +cos, — U)) _ 01 + cos (U — 1)
* cos Uy + cos I, cos Uy + cos I

, (6.12a)

_Qusin(l,— U _ Qisin( — U

= = 6.12b

*“ cos U, +cosl, cosU +cosl;’ ( )
W—Z,+2

Toksr = k—czl;—UkTiﬂ- (6.12¢)

Meridional rays, confined to a plane containing the optic axis, constitute a
small fraction of the rays emanating from an off-axis object point. Most rays are
skew rays, which can only be described by vectors through their direction
cosines and their coordinates at surfaces of interest. The equations for tracing a
skew ray are not presented here; discussions and derivations are given in Refs.
6.1 and 6.2. Although the computations are quite involved, skew ray traces are
needed to assess most designs. For many years it was necessary to trace some
skew rays by hand, now it is done as part of most ray-trace programs. In most
programs, all exact ray traces are computed as skew rays.

One set of calculations that is quite useful in evaluating a lens or an optical
system consists of imposing a rectangular grid on the entrance pupil and then
tracing rays from an object point to all the intersections of grid lines in the pupil
and plotting the location of these rays on a plane in image space, usually (but
not always) at the paraxial image plane (Fig. 6.5). If the system were perfect, all
of the rays would intersect at one point, the image point. But, because of
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Figure 6.5. Spot diagram. (a) Generation of a spot diagram. Three spot diagrams from Example
6.A: (b) between the lens and the best focus, (c) at best focus, and (d) paraxial image plane. This
shows graphically the spherical aberration in this lens.
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aberrations, the rays are spread out in a region in the vicinity of the image point.
This generates a series of spot diagrams (Fig. 6.5(b)—(d)) that provide insight into
the performance of the optical system. If one assumes that each ray in the spot
diagram carries the same fraction of the total energy, then a plot of the amount
of energy found within some small. circle as a function of the increasing circle
radius about the image point provides additional information on the system
performance. With plots of encircled energy for different distances off axis as
shown in Fig. 6.6, a designer gains some idea of the off-axis performance of a
lens. In the figure, 0° represents an axial object, while the 10° and 20° plots
represent ray bundles whose chief ray is at the specified angle to the optic axis.
The more steeply the plot rises to 100% the closer the performance is to that of
the ideal lens.

6.2. ABERRATIONS

Once a series of exact ray traces are made, one can discover where the problems
are in a design. It is at this point that the knowledge of optics must be combined
with practical experience to progress further. Faced with the evidence of
aberrations, a fledgling designer has two questions: (1) How well does my design
perform the assigned task? and (2) Once I know how bad the aberrations are,
what can I do about it? The complete answers are not in this text. That would
be akin to publishing a map of an entire country that would enable a traveler to
find any particular house. What can be done is to provide some general
methods for evaluating and reducing aberrations. More detailed texts, col-
leagues, and other designers can provide additional help. What follows is akin
to a map of the country’s major highway system; others will have to provide
local maps.

The differences between the paraxial image height y;,; and the skew ray at
the paraxial image plane is a measure of the aberrations of a system. In Fig. 6.7

Paraxial
image
plane

: LParaxial image

/P",](O, }”‘.1)

Object i
A 4

plane Entrance

pupil

’?n (Xjnr Yjﬂ) /JeXL/

Figure 6.7. Diagram of skew ray trace quantities.
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a skew ray is launched from an object point Py(0, Y;) toward a point in the
entrance pupil P,(X,, Y,). After traversing the optical system the ray pierces the
paraxial image plane at P, ,(X,;, Y¥,;). The differences between the y-
coordinates of the exact and paraxial traces, Y, ; — y;,, and the nonzero X;,

coordinate (x;,, = 0, by definition for the paraxial ray), are a measure of the
aberrations of the system and can be expressed as a mixed third-order

polynomial in the variables Y;, X;, and Yy:

1 f BY2 + X3 (Y,
Yo —Vier=— 2nu[ZBkY1+X—T g —71——?_2

+ g (3¢, + PI)- (}’;) + kil E,‘(yi(‘:) ] +06)  (6.13a)

and
1 Xl 2Y1X1)
X1 = 2nu[ZB"Yl+X‘ +§1Fk )2 yo
J Yo
Z (C, + PkIZ) ( > ] + 0(5), (6.13b)
k=1 Y1 \Jo

where O(5) represents fifth-order and higher terms, I = j n u, — y,n, 4, the
optical invariant (Eq. 5.21), and the barred quantities are paraxial chief ray
values. Each term in the polynomial can be identified with a particular type of
aberration, called a Seidel aberration, and the coefficients of these terms
represent the contribution of that aberration to the overall performance of the
system. One of the most attractive features of this polynomial expansion is that
each of the five third-order Seidel aberrations—spherical aberration (whose
coefficient is B, in the above expansion), coma (F,), astigmatism (C,), field
curvature (P,), and distortion (E,)—may be computed using values derived from
two paraxial ray traces, an axial trace, and a chief ray trace. Another powerful
feature of this expansion is that the effect of each of the surfaces can be evaluated
separately. This enables the designer to determine which elements are contribut-
ing the greatest amount of aberration and to correct a design by balancing out
the contributions for the various surfaces.

6.2.1. Spherical Aberration

In Example 6.A, an exact trace of a ray coming from an object at infinity was
made and compared with the paraxial trace for the same lens. It was found in
the meridional trace that the ray crossed the optic axis 54.65 mm from the
second surface. In Example 5.A, the ray crossed the axis 56.53 mm from the
second surface. Thus, a marginal parallel ray crosses the axis closer to this
positive lens than its paraxial counterpart. The failure of the lens to direct axial
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rays from an object point to the corresponding point in image space is called
spherical aberration (Fig. 6.8). It is the first of the five lowest order, or Seidel,
aberrations, and usually one must correct this aberration before attempting to
reduce the others. From an examination of the ray trace we see that there are
two possible measures of this aberration: (1) the distance between the points
where the paraxial and exact rays cross the axis (longitudinal spherical aber-
ration, or LSA),

LSA = T, — ¢, (6.14)

and (2) the distance between the points where the rays cross the paraxial focal
plane (transverse spherical aberration, or TSA),

TSA = (T, — t)) tan U]

—LSA tan U] (6.15)

il

All of the calculations given above serve to quantify the degree of aberration
at the extreme points of the field, but they do not provide a full understanding of
what is happening. This can be remedied by using a series of graphs of ray data
plotted in different ways.

An axial intercept plot is constructed by plotting the longitudinal spherical
aberration as a function of input ray height. In Example 6.A, it was shown that
the LSA for an input ray height of 10 mm was —1.88 mm, but there is no
information for rays at intermediate heights. If a set of meridional traces is run
for values of, say, 20%;, 40%, 60%,, and 80%, of the maximum ray height, a set of
LSA values may be plotted against y,, as shown in Fig. 6.9. The forward
bending of this curve indicates undercorrected spherical aberration. If the
marginal ray crossed the axis beyond the paraxial ray, the spherical aberration is
said to be overcorrected, and the axial intercept plot would bend backward.

Marginal
image point

TSA~

LSA

Paraxial
image point

Figure 6.8. Spherical aberration. The distance between the points where the paraxial and marginal
rays cross is the longitudinal spherical abberation (L.SA). The distance between the optic axis and
the marginal ray in the paraxial image plane is the transverse spherical aberration (TSA).
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Figure 6.9. Plot of longitudinal spherical aberration (LSA) versus input ray height for Example
6.A.

A more general method of plotting aberrations is the ray intercept plot. Here
the ray height at a reference plane (usually the paraxial image plane) is plotted
against the negative of the tangent of the ray slope angle U,. Thus if a lens has
no spherical aberration, a fan of axial rays would cross the axis at the same
point and Y, , = 0 for all rays, as shown in Fig. 6.10(a). The plot is a straight
line along the x axis (Fig. 6.10(b)). If the reference plane were not at the paraxial
image plane but shifted by an amount Z', the plot would still be a straight line
since the ray height at the reference plane would be equal to —Z’ tan U} and the
slope of the line would be — Y'/tan U; = Z', a constant. Therefore, except for a
change of slope, the choice of reference plane does not affect the ray intercept
plot. From the data listed in Fig. 6.9, the amount of TSA can be calculated using
Eq. 6.14 and plotted against —tan U, for these rays. This gives the characteristic
ray intercept plot for undercorrected spherical aberration (Fig. 6.10(c)). The
deviation from a straight line indicates the presence and amount of spherical
aberration. (What would a plot of overcorrected spherical aberration look like?
[Problem 6.5].) .

A plot of the transverse spherical aberration versus the ray height at the
entrance pupil Y; would produce a plot similar to the ray intercept plot. Both
curves can be approximated by odd-order polynomials. For an image of a point
on the optic axis, the curve can be fitted to a power series

Y, =y = b Yy + b, Y2 + bs Y 4+ 0O(7),

where b, b, are spherical aberration coefficients. Since the curves are plotted in
the paraxial focal plane, b,, the slope of the curve near Y; = 0, must be zero as
discussed earlier. The third-order contribution b, can be calculated using one
paraxial ray trace. Evaluating Eq. 6.13, X, = 0 and Y, = 0 (object point on the
axis), we see that Y;,; = —(1/2n;u;) YJ_, B, Y;}/y}. If the ray height is the same
at the entrance pupil for the exact ray trace as for the paraxial trace (Y; = y,),
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Figure 6.10. Ray intercept plot. (a) Fan of rays exhibiting no spherical aberration. (b) Ray
intercept plot for a reference plane shifted beyond the paraxial reference plane. (c) Ray intercept
plot of the lens in Example 6.A.

then the transverse spherical aberration is just the summation of all surface
contributions multiplied by (— 1/2n;u)). If the object is at infinity this multiplier
is the f-number of the system. In some texts the sum )_ B, is represented as B[Ref.
6.1] or SC [Ref. 6.2] or LA [Ref. 6.3], the Seidel transverse spherical aberration
coefficient. In this text B, refers to the coefficient, while TSA and LSA refer to
the values of the aberration as defined in Eq. 6.14 and 6.15. The expression for
B, for the kth surface can be determined from paraxial ray values from:

B, = S, i (6.16)

and

n,_ .
S, = y,‘n,‘_1< ’; ! l)(uk A 6.17)

k
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where i, is the paraxial angle of incidence before the kth surface,

b = YpCy + Up— 1,

and u, _, is the paraxial slope angle before the kth surface. In Example 6.B, the
transverse aberration coefficient is calculated for the lens in Examples 5.A and

6.A.

EXAMPLE 6.B. Caiculate the Seidel third-order spherical aberration
coefficient for the lens in Example 6.A and compare the result to the
spherical aberration computed from the exact and paraxial ray traces.

Solution: An array format similar to the paraxial ray trace format is used
to order the quantities to be used in the calculation. Some of these are
taken from Example 6.A.

(6.18)

t 4 56.53
System ny 1.517 1.0
g O %6 — 1o
g 10 10 9.6592 0
fdet s nu, —0.1292 -0.1709
e U, ~0.0852 —0.1709
i, 0.2500 ~0.1657
5, ~0.5616 —2.5496
Seidel coefficients B, —0.0351 -0.07000
B =SC =B, + B, = —-0.1051
B 1
Y, =TSA = ~ = - —0.1051
3 2n,u, 2(—0.1709)( )
= —0.3075 mm

LSA = —TSA/u, = 0.3075/—0.1709 = —1.80

This can be compared to a value of —0.3346 mm for the transverse
spherical aberration calculated in Example 6.A. Higher orders of the
power series contribute an additional 10% to the actual transverse
spherical aberration.
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6.2.2. Coma and the Offense Against Sine Condition

Assuming the system has been corrected for spherical aberration, the imaging of
off-axis points may still show aberration. A bundle of rays about the chief ray
will focus in the paraxial image plane. But marginal rays in the meridional
plane, as shown in Fig. 6.11(a), do not focus on the chief ray but come to a focus
closer to the optic axis. The reason is that the local optical powers at the top and
bottom of the lens are different for off-axis rays. However, these are only three
points on the lens. The full aberration pattern is more complicated. It is useful
to label certain rays in the system in order to follow their progress through the
system and to make the analysis of the system more precise. Meridional rays,
because they are confined to a plane tangent to the optic axis, are also referred
to as tangential rays and the plane of confinement as the tangential plane. Skew
rays propagating ina plane and containing the chief ray at right angles to the
tangential plane are called sagittal rays. The corresponding plane is called the
sagittal plane.

marg c

(a)

Tangential plane

envelope of
images
Sagittal
plane

Marginal
zone circle

(c)

Figure 6.11. Comatic aberration or coma. (a) Marginal and chief rays illustrating of coma.
(b) Entrance pupil pattern used to map the comatic image in (c).
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If the entrance pupil is divided into a series of concentric zones centered
about the chief ray (Fig. 6.11(b)), then rays from the object point through that
circular zone do not focus to a point. Instead they form a circular image in the
paraxial image plane (Fig. 6.11(c)). The contributions from the marginal zone
produce the largest circle ; intermediate zones produce smaller circles. The labels
on the marginal zone in Figure 6.11(b} provide a means of seeing how the
circular image is produced. The point (D) on the circle closest to the focus point
(4) of the chief ray is due to the sagittal rays; the point (B) due to the tangential
rays is three times farther away. The other rays in the zone (e.g., C and E) fill in
the rest of the circle. The radius of the circle is equal to AD, distance from the
chief ray focus to the sagittal focus. Together the superposition of these circles of
increasing size and their displacement from the chief ray focus point produce a
cometlike image, or coma, as indicated in Fig. 6.11(c).

A measure of tangential coma is the distance between the intersection of the
two marginal tangential rays and the chief ray in the same plane:

COM, = H' — H., (6.19)

where H' is the distance of the marginal image point from the optic axis and H;
is the chief ray height in the same plane. In Eq. 6.13 the comatic contribution is
denoted by the term with coefficients F,. From the variables multiplying the
coefficient, it can be seen that coma varies as the square of the entrance pupil
diameter, but only linearly with the object height. A relation similar to that for
the optical invariant for paraxial rays can be derived from sagittal rays. As in
the case of the optical invariant, each side of the relation consists of parameters
in one region, and it may be equated to the parameters in the other regions in
the system. If in object space Y, = H, the object height, and in image space (after
jsurfaces) Y;,, = H’, the sagittal image height, then

Hng sin Uy = H'n;sin U] (6.20)
and the magnification for the skew ray image is

= _nosinlo (6.21)
H n; sin Uj

In the paraxial limit, sin Uy = u, and sin U; = u; and we get the paraxial
magnification equation

m= = oo » (5.22)
h n;u;

As noted earlier coma can be considered a variation in the power of the lens
(and therefore the magnification) from one zone of the lens to another. If a
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system has been corrected for spherical aberration, then for a system to be free
of coma also the paraxial magnification m and the meridional magnification M
should be equal:

M:nosin U0=n0u0 —m 622)

n;sin U; n;u;

The relationship for coma-free imaging is called the Abbe sine condition after the
investigator who first derived it:

sin U, _ 623)
sinU/ ’

A measure of coma in a system free of spherical aberration is a deviation from
this equality or “offense against sine condition” (OSC). The amount of sagittal
coma is expressed in a manner corresponding to Eq. 6.19 for tangential coma,

COM, = H, — H, (6.24)
and the ratio of this to the chief ray height H/ is defined as the OSC:

H -~ H' _H;

OSC: Hc/ __ITC/

- 1. (6.25)
If there is no longitudinal spherical aberration, the marginal ray intersection
plane will lie in the paraxial plane and H, = I, the paraxial ray height. If the
first term is multiplied by unity in the form of h/h, then

OSC:EE-E—- =y——1. (6.26)
h W m
Since any nonzero value of OSC indicates a violation of the Abbe sine
condition, this measure of sagittal coma can be justly termed an offense against
the sine condition. This parameter is used for evaluation even when spherical
aberration is present and a contribution from spherical aberration is included in
the OSC.
The third-order comatic contribution in Eq. 6.13 is given by

Y1 = Y1 =—5— Y K =
Ak I 2njuj k§l k ,Vf Yo
and
P QYx) %
Ak 2niu; 'y k % Vo
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The factor of three ratio between the tangential and sagittal aberrations is
evident from these equations. The expression for the Seidel coefficient for coma
is similar to that for spherical aberration:

F, = S,iQ, (6.27)

My -1

Sy :yknk—l( n

_Qw+w 6.17)

k

where S, is the same as for the spherical aberration case and i, = y, ¢, + u,_{ is
the paraxial angle of incidence before the kth surface and i, = j, ¢, + i, is the
chief ray angle of incidence before the kth surface. A calculation of the Seidel
coefficient for coma and a comparison to exact ray trace data is given in
Example 6.C.

6.2.3. Astigmatism

Pure coma is hard to display since it is usually combined with another off-axis
aberration, astigmatism. Consider the diagram in Fig. 6.12. Suppose we
examine a “fan” of rays, rays emanating from an object point that are all
confined to the same plane. A fan of rays containing only meridional rays is
called a tangential fan since the ray plane is the tangential plane. Another set of
rays of importance are another fan of rays in the sagittal plane called the sagittal
Jan. After passing through the lens, the fans come to a point focus at different
points along the chief ray. In most positive lenses the sagittal image falls beyond
the tangential focus, but in front of the paraxial plane. This results in two “line”
images, the two lines at right angles to each other with a circular region between
them that represents a compromise image, a circular blur, called the circle of
least confusion. This aberration is called astigmatism and is the result of the

. Tangential fan Circle of least
Ptic - confusion
is

Tangential Sagittal

\ focis focus

Sagittal
fan

~ _ Op,:
%

Figure 6.12. Astigmatism.
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variation in the power of the lens for two off-axis fans of rays. In Eq. 6.13 the
astigmatic contribution is denoted by the term with coefficients C,. From the
variables multiplying the coefficient, it can be seen that astigmatism varies as the
square of the object height ¥, and linearly with the entrance pupil radius Y,.
Although it is possible to determine the amount of astigmatism by tracing
meridional and skew rays, a simpler method of calculating the astigmatic image
points is to trace a chief ray and then trace two additional rays, one meridional

EXAMPLE 6.C. Calculate the Seidel third-order tangential coma for the lens in
Example 6.A and compare to the results from an exact ray trace. Assume the chief ray
trace makes an angle of 10° with the optic axis and that the entrance pupil is at the
first surface.

Solution: Use an array slightly expanded for Example 6.A.

e 0 4 56.53
System ny 1 1517 1.0
Ck 0 %0 —135
v 10 10 9.6542 0.0
s i, 0 ~0.1292 ~0.1709
y " 0 —0.0852 ~0.1709
iy 0.2500° -0.1657
7 0 0.4602 10.2147
il 0.1745 0.1745 0.1726
Chief k
S i, 0.1745 0.1151 0.1726
A 0.1745 0.1127
5 ~0.5616 ~2.5496
Seidel coefficients ~ Fy ~0.0245 0.0470 Y F,= 0.0231

@ Aperture stop.
For tangential marginal rays, ¥; = y,; X; =0

- 3YF  3(0.0231)
Y — — ] = 4.
3TV = o, T Ta—o.a709) 2028 mm

An exact ray trace gives a tangential focus 9.677 mm above the optic axis. The
principal ray in that plane is 9.450 mm. Thus the coma by a direct ray trace is 0.227.
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and one skew, very close to the chief ray. It is essentially a paraxial ray trace
with a chief ray as the axis. Using the angles of incidence and refraction I, and I}
for the chief ray, one can show that the ray trace equation is

n'cos’I, ncos®’l, ncosl —ncosl,
¢ t R

(6.28)

for the tangential ray, where t" and ¢ are the distances from the refracting surface
to the points where the refracted and incident rays, respectively, cross the chief
ray. (The equation is a more general version of the simple paraxial relation Eq.
6.38 used in the next section.) For the sagittal ray,

n'cosl; —ncosl,

n o n

AL 6.29

s s R (6.29)
The transfer equations are

t=t—-D and s=s —D, (6.30)

where D is the distance along the chief ray between the surface just evaluated
and the next one as given in Eq. 6.12(c). Together these equations are referred to
as a Coddington, or para-principal, trace. Because an exact meridional trace of a
chief ray would be needed before a Coddington trace could be performed,
applications of these equations are left for use in a computer program.

In some optical systems, including the eye, even on-axis rays suffer astig-
matism because the lens surface is not spherical and, therefore, has different
powers in different directions. It is as if a cylindrical lens were placed in
contact with a spherical lens. In the case of visual systems, an ophthalmologist
corrects for astigmatism of the eye by prescribing glasses that compensate for
the additional cylindrical power in one place by reducing the power of the lens
in that direction. At other times astigmatism can be useful and is intentionally
designed into systems to produce an indication of a detector position relative to
a focus, as we will see in some of our examples of laser beam focus designs.
Those systems that incorporate cylindrical power are termed anamorphic
systems.

Using the Seidel coefficients, one can determine the amount of astigmatism in
a system:

1 J Y, [ Y,\?
Yoi — Vg = —— ¥ 3C,-2[2
i1 — Vit 2",-“; k§1 kyl ()70) >

1 4 X, (V)
Xiv1 = ch_1_<_o>

2njujk=1 y1 \Jo '
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The actual distances plotted in most curves are the longitudinal contributions,
which are derived from the transverse values given above by dividing by the
final slope angle of the axial ray. Thus the longitudinal astigmatisms are:

X.

Z, === (6.31)
J

Z, =3z, (6.32)

The distance between the sagittal and tangential foci is

2X.
AZ=Z,—ZS=2ZS=——{(M
Y;
= i %(_?_0)2 (6.33)
k=1njufyl Yo

If the coefficients for spherical aberration and coma have already been
computed, the astigmatism contributions are easily found. The expression for
the Seidel coefficient for astigmatism is similar to that for spherical aberration
and coma:

C, = S,i2, (6.34)

where S, and i, are defined as before. It can be shown that C, = F2/B, for
each surface [Problem 6.6]. Thus the astigmatic contributions for the lens
in Example 6.A are (0.0245)%/(-0.0351) = —~0.0171 for surface 1 and
(—0.0476)%/(—0.0700) = —0.0324 for surface 2. The total contribution is
C=C; + C, =-0.0495.

Just as with spherical aberrations, one can plot a ray intercept plot for off-
axis aberrations. However, instead of plotting the object height versus the ray
slope angle (since all of the points are clustered about an off-axis point), the
values of the ray intercepts, relative to the chief ray, are plotted against the
difference between the tangent of the ray slope angle and that of the chief ray.
Since for coma the points for both the marginal rays above and below the chief
ray are closer to the axis than the chief ray, the comatic ray intercept curve is an
umbrella-shaped curve. In more complex systems, coma may not be as simple as
this and the corresponding ray intercept curve can be more complex.

The ray intercept curve can only be plotted for meridional rays, since only in
the meridional plane can one be assured that the rays will cross the chief ray. To
describe astigmatism graphically, the z-coordinate of the tangential and sagittal
image points are plotted for a range of object heights. The result is a pair of
paraboloidal surfaces centered on the optic axis. A measure of astigmatism is
then the distance between the tangential and sagittal image points for a
particular chief ray. A plot of these surfaces for an uncorrected lens is shown in
Fig. 6.13.
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Figure 6.13. Plot of the image surfaces for a lens with astigmatism.

6.2.4. Field Curvature

A lens corrected for spherical aberration and coma is called an aplanat. If it is
also corrected for astigmatism it is termed an anastigmat. Correction against
these three aberrations does not assure that the system is aberration free. In an
anastigmat the tangential and sagittal surfaces collapse to a single image surface
called the Petzval surface, which unfortunately does not resemble the shape of
the object surface (usually flat), but rather is a forward curving surface, as shown
in Fig. 6.13, in most instances.

Field curvature, as this aberration is called, can be seen even in a thin lens. In
Fig. 6.14 is shown a thin lens with an object at ¢, (t, # 0, here). As was noted in
Chapter 1

1.2 (1.16)

At a point on the object whose height is h from the axis, a chief ray may be
traced. Because the distance t; to the lens center is greater than ¢,, the off-axis
image will be found at distance

L_1 L1 coso
tn f o f &

(6.35)

For a positive lens, a real image will be found on a surface curving toward the
lens. It can be shown [Problem 6.7], that in the case of small angles the axial
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-L 1 ;

Figure 6.14. Illustration of field curvature with a thin lens.

shift of the off-axis image point from the on-axis point, called the “sagitta” or
“Sag’” iS

202
10

A=t —ticosl = o (6.36)

The curve traced out by the points on the object approximates a circle, the
radius of which can be determined from the sag of the circle, the distance
between the arc and a half-chord of length &' [Problem 6.7]:

W W2

or since k' = t,6 for small angles IR

p=F

This radius of curvature of the image plane is called the Petzval radius, and the
aberration is called Petzval curvature or field curvature.

In the paraxial treatment it is possible to derive an even more useful formula,
which expresses the contributions to field curvature in terms of the optical
power of each surface. This can be derived with the help of Fig. 6.15 from the
refraction equation for a paraxial ray trace. We start with an object surface that
is spherical, with radius of curvature r, that has the same center of curvature as
the refracting surface:

(ny — ny)

nuy = Ny + y4 R
1
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Figure 6.15. Derivation of field curvature by paraxial ray trace.

Replacing u, with y,/t; and u, with y,/t,, and dividing out of the common
factor y,, we get
gy np M —Hh

L AP EL 6.
It R, (6.38)

One can see that the image surface will also be a sphere of radius r; centered at
the same point as r, and R,. Substituting for t;, = R, —r; and t, = R, — 1,
and multiplying through all denominators and cancelling terms, we obtain

Ny —hg

L

Mot Myry  mngR,
If there is a succession of surfaces, then a second surface would give

1 n, — ny

1
ngry  nprp nyn R,

Substituting for 1/n,r,, we obtain

[y

ng—nNy Ny — My

1

b
noto  Nary  MiMoRy n,n R,

and for j + 1 surfaces

1 1 _ L (Mers = M)Chrs

- - ’

Roto  Mjpilier k=0 My 1My

where the radius of curvature R, has been expressed using the surface curvature,
¢c = 1/R,. If the object surface is a plane, then 1/nyr, = 0 and ¢, is
the curvature of the final image, its reciprocal of the Petzval radius, r;,, is

Jo(n,,., —n)e
— "'nj+1 Z (k+l k) k+1 (639)

j+1 k=0 Ny 1M

~
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The above is an expression of the Petzval Theorem and the summation term is
known as the Petzval sum. Note that the field curvature is dependent on the
power of the surface divided by the index products, but independent of the
placement of the surfaces. Normally the amount of field curvature is given by
the difference between the edge of the field image plane and the paraxial image
plane, again the “sag” of the curve. For small angles, this is given by

h/2
A.=2Z..— =— 6.40
pc edge Zparax 27'] ‘ ’ ( )
or, using Eq. 6.39 and assuming n;,, = n;, by
A, = — ﬁi n; i (nk_“;@cLﬂ (6.41)
2 5 MMy 41

This represents the longitudinal value of the Petzval curvature. Multiplying A .
by the final slope angle u; and substituting for 4%, the object height using the

optical invariant 1> = k'?n?u?, the transverse Petzval sum is given by

I Jdn, —n
PC = A, u Cert-

=2mu; S My

This can be identified with the term
YRI’Y, <70>2
—2nj“j ¥ \Jo

in Equation 6.13(a), where Seidel coefficient is found to be

p=T o, % (6.42)
My 17 My 11

and we have assumed that ¥, = y, and Y, = j,. Note that the value of the
Seidel coefficient P, must be multiplied by the square of the optical invariant
for this term to be comparable to the other aberration coefficients. Evaluation
of Eq. 6.39 for the lens in Example 6.A gives a Petzval radius of 88.03 mm. For
a chief ray angle of 10° the paraxial image height is 10.215 mm. At that point
in the image plane the sag in the Petzval surface is 0.593 mm.

Using Eq. 6.39 it can be shown that for a thin lens of refractive index n and
focal length f, the Petzval radius is p = —nf [Problem 6.8]. This is similar to the
result derived above for a thin lens. In a system of thin lenses the Petzval
curvature can be written as

¢ =;1—=-i'ﬁ. (6.43)
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The relationship between the astigmatic image surfaces and the Petzval
surface. consists of more than a limiting surface as astigmatism is reduced. As
was noted, the tangential image surface is three times farther from the Petzval
surface than the sagittal surface. To third order the surfaces have the same sign
and therefore are on the same side of the Petzval surface. With the introduction
of fifth and higher-order corrections it is possible to cause the sagittal surfaces to
curve back and cross the Petzval surface at the same point, as shown in Fig.
6.16. The lens has been corrected at zone Z and is always correct on axis at A.
For intermediate image points between Z and A, the astigmatism is not too bad,
but for image points outside the zone the correction for marginal rays
deteriorates rapidly.

6.2.5. Distortion

If field curvature represents a longitudinal bending of the image field along the
optic axis, distortion represents its transverse counterpart. If a rectilinear grid is
used as an object, its image in a system with distortion will be a grid of curved
lines. This is because the transverse magnification in a system with distortion
changes as a function of the distance from the optic axis. If the magnification
decreases as the distance from the axis increases, a “barrel-shaped” image
occurs; if the magnification increases with distance, a “pincushion” image is
formed, as shown in Fig. 6.17. The amount of distortion is the difference
between the actual ray height y, and the paraxial value y,, normalized to the
paraxial value: 100%(y, — y.)/y,- A distortion plot is a graph of the ray height
versus the amount of distortion, as shown in Fig. 6.17. Visually, most people do
not notice distortions of less than 19/. However, in cartography and other
precision imaging applications, such as photomask imaging for large-scale
integrated circuit fabrication, even small amounts cannot be tolerated.

v

M >

Paraxial .
reference Figure 6.16. Plot of image surfaces for an

plane anastigmat.
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Figure 6.17. Distortion of a rectangular grid object. (a) Pincushion distortion. (b) Barrel dis-
tortion, (c) Plot of distortion as a function of object height.

The Seidel third-order contribution, the term E, in Eq. 6.13, varies as the
cube of the object height. The fractional distortion (Y., — J;+,)/¥;+, can be
expressed as the square of the object height. The expression for the Seidel
coefficient of distortion is similar to the expressions for the other aberrations,
but with an additional term

E, = Suigi, + 1@, — @), (6.44)
where

_ _ n, _ B -
S = yk"k—l(;—l - 1>(“k + B, (6.45)

k

the same expression as S, (Eq. 6.17) except with chief ray values, I is the optical
invariant.

As is evident from the examples in this chapter, the Seidel third order
aberration coefficients are a useful means of evaluating a design. However, it
should be pointed out that these are only third order contributions to the
aberrations of the system. When these are reduced to relatively small values the
higher order contributions begin to dominate. At that point other methods of
evaluating the performance of a system need to be employed.
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6.3. REDUCING ABERRATIONS

The purpose of this section is to give some idea of the methods used to correct
aberrations in an optical system. We shall look at a small number of methods
that can be used to eliminate, or at least reduce, the aberrations of a system to
an acceptable level. The adjective “acceptable” should be emphasized. No lens
system can be corrected exactly for all aberrations over an entire field. Instead a
lens designer must set limits on the aberrations to produce the performance
required with a finite amount of money and a small number of elements that can
be fabricated in a reasonable amount of time. This part of design cannot be
taught in a textbook of this level. In fact, it is doubtful if it can be taught
successfully in the classroom at all. Rather, an ability to set limits on aberrations
grows out of real problems presented by the real world. It is possible to describe
each aberration and talk about its correction at that point in the text. However,
it would give a false sense of how aberrations are corrected. A designer is usually
faced with a multi-dimensional crossword puzzle which in many cases cannot be
solved totally, but must be solved in some small region where it will do the most
good.

6.3.1. Bending a Lens

It was pointed out earlier that a thin lens with a particular optical power
¢ = 1/f can be fabricated an infinite number of ways. All that is necessary is
that values of n, R,, and R, in the lensmaker’s equation (Eq. 5.16) give the
required focal length f = 1/¢. Therefore, these degrees of freedom can be used
to correct aberrations in the lens. For example, the shape of a lens affects the
amount of spherical aberration and coma. In Fig. 6.18, the spherical aberration
and coma Seidel coefficients have been plotted for a 58.53-mm lens with a 20-
mm entrance pupil diameter and the aperture stop at the front surface (the same
values as in Example 6.A) as a function of the front surface curvature ¢,
normalized to the total curvature of the lens, c. Note that the spherical
aberration is a parabolic function of ¢, /c with a minimum near c,/c = 0.85 and
that the coma crosses zero in the same region. There is no shape for a single lens
with a refractive index of 1.517 that is free of spherical aberration.

The plot also shows that the orientation of a lens has an effect on the
aberrations. In the figure the aberrations at the value of c,/c equal to that of
Example 6.A are considerably smaller than those for the same lens turned around
(R; = 120mm; R, = —40 mm) so that the longer radius of curvature surface
faces the object. The spherical aberrations are 2.5 times larger and the coma
more than 4 times greater when the lens is oriented with the shorter radius of
curvature surface facing the object than when the lens is reversed. One can also
see from Fig. 6.18 that in the case of an object at infinity, a plano-convex lens
with its curved surface facing the object will show less aberration than if the lens
is reversed (plano surface facing the object) [Problem 6.107.
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Figure 6.18. Lens bending L. Plot of the spherical aberration (B) and coma (F)-of a lens as a func-
tion of surface curvature. The locations of the values for the lens in Example 6.A and the same lens
with its surfaces reversed are shown.

Bending also has an effect on the other Seidel aberrations. Both astigmatism
and distortion change as the lens’ shape is changed, as shown in Fig. 6.19.
Because the power of the lens is not changed, the field curvature remains
constant for all bendings. With combinations of lenses it is possible to correct
several aberrations at the same time by bending lenses in such a manner that the
overall aberrations of the combination are less than the values for the separate
lenses [Problem 6.117.

6.3.2. Moving the Aperture Stop—Stop Shift Equations

An examination of the expressions for the Seidel coefficients shows that three of
the aberrations—coma, astigmatism, and distortion—depend on quantities
derived from a chief ray trace. Since the chief ray is determined by the location
of the aperture stop, relocation of the stop position will change the aberrations
of the system. For Example 6.A, the aberrations were calculated with the stop at
the first surface of the lens. If the stop is moved out in front of the lens the
amount of coma is reduced. If coma is plotted as a function of stop position zero
coma will occur when the stop is located about 12.6 mm in front of the lens. To
provide some idea on how the movement of a stop can affect coma, a schematic
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Figure 6.19. Lens bending II. Plot of astigmatism (C), field curvature (P) and distortion (E) as a
function of surface curvature. Note, that since the optical power of the lens is constant, the field
curvature (P) does not change.

trace of four rays through a thick lens is shown in Fig. 6.20. The three lower rays
correspond to the chief and marginal rays for a stop located at the lens. The
separation between the chief ray ) and the intersection of the marginal rays D)
and () shows that coma is present. When the stop is moved to position B, the
top marginal ray of the previous setup becomes the chief ray. The intersection of
all three of the rays, @, 3, and @), at the same point means the lens with the
stop at this position is free of coma.

Although it would be possible to move a stop, recalculate the aberrations,
and plot the results, there is a simpler method for determining the effect of
repositioning a stop. If a stop is moved some distance, the new chief ray from an

A T
Coma Stop at B
stopat A

Figure 6.20. Stop shifting. Repositioning of a stop from A to B redefines the chief ray of the
system. With the stop at 4, ray @) is the chief ray and coma is evident. By moving the stop to
B, ray (3 is the chief ray and coma is eliminated.
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object of height Y, crosses the plane of the old aperture stop at a height y/, and if
the axial ray in the plane of the old aperture stop is y, the ratio of these two ray
heights Q = y//y is the only parameter needed to compute the aberrations of the
new system from those of the old. Since the entrance pupil is the image of the
aperture stop in object space, the ray heights in the pupil bear the same ratio as
at the aperture stop, Q = y/y, (assuming the entrance pupil is defined as the
first surface in the system, a common practice). The effect of shifting the stop on
the aberrations of a system may be determined from the following equations, the
stop-shift equations (the indices on the summation sign have been omitted).

Y. Bt =Y B, (6.46a)
YR =YF+0Q) B, (6.46b)
YC=YC +20YF + 0’} B, (6.46¢)
YR =P, (6.46d)

YE} =Y E+QYQBC, +PI)+30*Y F, + Q) B,. (6.46¢)

One of the things to be noted in the equations is the method by which coma
in the lens of Example 6. A was reduced. The reduction was based on the fact that
the lens possessed some spherical aberration. (If )’ B, = 0, then from Eq. 6.46b
Y. F¥ =) F,). Infact,since Band F for the stop at the lens have been calculated,
it is easy to find the location of the coma-free stop position from the second of
the stop-shift equations as shown in Example 6.D. When the stop is shifted, the
principal ray defined by the stop is moved closer to the intersection of the
marginal rays thus reducing the coma. If there were no spherical aberration,
however, this shift would not occur and the coma would be the same for both
stop positions.

Besides changes in the curvature of lens surfaces (bending), changes in the
thickness and/or separations of individual elements and their refractive indices
can be used to modify the aberration coefficients. Problems 6.17 through 6.21
provide some practice and insight into the effects of these changes.

EXAMPLE 6.D. Given the values of the third-order aberration coef-
ficients for spherical and comatic aberration B and F, respectively, for the
lens in Example 6.A, where is the coma-free stop position located?

Solution: From Example 6.B, B = —0.1051.

From Example 6.C, F = 0.0231.
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The stop-shift equation (6.43b) is F* = F + QB.
In this case we require F* = 0. That is,

F 0.0231
B S = e — = — [ e————— = . .
F+0Q 0 or B <_0‘1051) 0.2198

Assume a stop position in front of the first surface.

The stop was originally at the first surface and therefore the entrance pupil
and the first surface were identical. Upon moving the surface, the position
of the new chief ray on the old entrance pupil is y, = #yt;. The new chief
ray angle is the same as the old one (i, = 0.17453) since the object is at
infinity. The distance ¢; is to be determined. Since the axial ray was a
parallel ray 10 mm from the axis, it crosses the old entrance pupil at
10 mm (y, = 10 mm).

gttt T
Y2 Y2

Only ¢; is unknown, so inserting values for the other quantities in the
equation

10 mm

0.17453 x 0.2198 = 12.59 mm.

t =

Thus, moving the system stop 12.6 mm in front of the lens will eliminate
coma.

Note that for this calculation, the same chief ray angle i, for the object
at infinity was used for computing the coma-free stop location as was
used to compute F. In the case of finite object distances, the computation
of t; is somewhat more involved, but easily done. It can be shown that
coma will be zero if the new entrance pupil is shifted a distance
t, = Qy,/(iy + Qu,), where Q = — F/B, u, and i, are the original axial
and chief ray slope angles and y, is the axial ray height in the original
entrance pupil.
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6.3.3. Other Correction Technigues

The other parameters of the optical system, refractive index, component
thickness, and separation, may be varied to reduce the aberrations of the system.
Although the choice of refractive index is most useful in reducing chromatic
aberrations, the sequence of refractive indices in a system and their differences
can provide an additional degree of freedom when correcting a system
[Problem 6.12].

Since most optical systems consist of more than one component, the
separation between components can be modified as well as the thickness of the
individual components. For example, in the telephoto lens in Chapter 2, the
separation between the front and back lenses could be changed. This would, of
course, change the effective focal length of the system. Because of the linear
properties of the paraxial equations that determine the Gaussian constants, the
focal length of the revised system is obtained by simply multiplying all
curvatures and thicknesses by a constant equal to the ratio of the old effective
focal length to the new effective focal length. In Example 6.E a ray trace of the
telephoto lens in Example 2.C is run with thin lenses (f,,t; = 0), and the
aberration coefficients computed. Then the separation between lenses is in-
creased, the entire system scaled to the original focal length, and aberrations
recomputed. For the comparisons to be valid, the f~number of the system must
be maintained by changing the entrance pupil diameter.

EXAMPLE 6.E. For an object at infinity, what are the aberrations for
Example 2.C if the separation between lenses is 20 mm ? If the separation
is 40 mm? If the lenses are rescaled to the original 150-mm effective focal
length with the original f-number (f/7.5), what are the aberrations?

Solution: Rather than work out all values, the system parameters and
aberrations will be quoted for each setup. In ali cases, a paraxial ray trace
was done, but the thickness of each lens was set at zero. The lenses were
assumed to be symmetrical lenses:.

Case 1

t o0 0 20 0 90
n 1 1.5 1 1.5 1
¢ 0 1/50 —1/50 —1/45 1/45

Effective focal length = 150 mm, Entrance pupil diameter = 20 mm,
Snumber = 150/20 = 7.5, Chief ray angle = 10 degrees.
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Aberration coefficients:

B = —0.1730, F = —0.0648, C = -0.0578,
PI* = 0.0045, E = —0.0788.

Case 2

t 00 0 40 0 12.86
n 1 1.5 1 1.5 1

¢c 0 1/50 —1/50 —1/45 1/45

Effective focal length = 64.29, Entrance pupil diameter = 20 mm,
JS-number = 64.3/20 = 3.2, Chief ray angle = 10 degrees.
Aberration coefficients:

B = —0.2541, F = -0.1002, C = —0.0968,
PI* = 0.0045, E = —-0.0567.

Note that the f~number of the system is now smaller due to the shorter
focal length of the lens. Thus the aberrations are not truly comparable.

If the entrance pupil diameter is reduced to 8.57 mm, the f~number is
again 7.5. Then the aberration coefficients are:

B = —0.0086, E = —0.0079, C =-0.0177,
PI* = —-0.0008, E = —-0.0243.

t o0 0 93.33 0 30
n 1 1.5 1 1.5 1
¢ 0 1/116.67 —1/116.67 —1/105 1/105

Effective focal length = 150, Entrance pupil diameter = 20 mm,
f-number = 7.5, Chief ray angle = 10 degrees.
Aberration coefficients:

B = 0.0200, F = -0.0184, C = —0.0415,
PI* = 0.0019, E = —0.0567.

In the last case the system was scaled from a 64.29-mm up to a 150-mm
effective focal length and 20-mm entrance pupil diameter. Note in both the
unscaled and scaled versions, the aberration coefficients for a lens system
with the same f-number change dramatically with a change in the
separation of the two lenses.

EXACT RAY TRACES
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A lens corrected for both spherical aberration and coma, as noted earlier is
called an aplanatic lens, or aplanat. Since it is corrected for coma it obeys the
Abbe sine condition. Although one can correct for spherical aberration and
chromatic aberration with a cemented doublet, to produce an aplanat an
airspace must be added between the lenses and the interior curvatures ¢, and c,
made unequal. (Kingslake, Ref. 6.3, has an entire chapter on aplanatic
objectives.)

There are a few special geometries in an optical design that can simplify the
calculations and reduce aberrations. As a very simple example, an object at the
vertex of a surface (Fig. 6.21(a)) has an image at the same point, so there are no
aberrations. More important, a point object at the radius of curvature of a
surface (Fig. 6.21(b)) will suffer no spherical aberration since all rays are
perpendicular to the surface. Most important is the case where the angle of

(a) (b)

(c)

Figure 6.21. Aberration-free geometries. (a) Object at a surface. (b) Object at the center of curva-
ture of a surface. (c) Aplanatic surface, where the angle of refraction I} equals the initial slope angle
—U,.
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refraction I; is equal to the original slope angle for a ray U,, Fig. 6.21(c). Using
Eq. 6.3, it is obvious that if I, = —U,, then U; = —I,.. Referring back to the
meridional ray trace equations

-0k
L’ = =
L=nup

(6.10)

cos Uy + cos I
cos Uy + cos I’

Qi = Qi 6.7)

it is clear that
O = Qi
Using Eq. 6.2 and Snell’s Law, we can write the image distance
o= T-Q;‘, __R sin I,ﬁ‘—— si,n U,
sin U, sin U,

- k
sin I, + sin I} sin I
= R—E—F =R (1 + =—*
, sin I, "< +smIk

= Rk<1 + ni‘i)
e

(e + m_y)
n )

or

L =R, (6.47)

Note that the image distance is independent of the height of the ray, Q,.
Therefore, for this special surface geometry known as aplanatic surface there
will be no spherical aberration due to this surface. The axial intercept distance
of a ray prior to refraction can be shown to be [Problem 6.13]:

I Rkn" t oy

ey

Thus, if the axial intercept distance before refraction by an aplanatic surface and
the refractive indices are known, the required curvature can be calculated.
Moreover, this geometry is coma free in that it fulfills the Abbe sine condition,
since

sin U, sinl; n, U,

sin U, sinl, n_, u
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in the limit of small angles, 4, = —i,, and u, = —i,, and Snell’s Law becomes
n i, = n_ i, or mu, = n,_ u,. The pair of object and image points are known
as the aplanatic points of this surface since there is neither spherical aberration
nor coma for this geometry. (S, = 0 (Eq. 6.17) in such cases.) As we shall see
later, a combination of special geometries (e.g., the aplanatic conjugates) and
symmetrical design can remove or reduce some aberrations before any cor-
rections are applied to a system.

The symmetry argument is particularly true for astigmatism. If a lens is
symmetrical about its aperture stop, then the optic axis is not unique and any
chief ray could serve as an optic axis. Since all rays are meridional rays, there is
no astigmatism. In cases where symmetry cannot be preserved, it may take a
combination of stop movements, bendings, refractive index changes, and
movement of elements to reduce astigmatism.

6.3.4. Correcting Field Aberrations

From the expression for the Petzval curvature (Eq. 6.42), it is evident that the
reduced power of each surface, ¢, /(1 11) = My 1 — B)/(Ryp 1Mis 1) =
Myt 1 — M)Chs 1/ 4 11y cOntributes to the field curvature. Thus a combination
of curvatures and refractive indices must be devised to provide the correct focal
length and still reduce the curvature of field.

As an example, take a simple lens that is split into a positive and negative
doublet, as was done when correcting chromatic aberration. In this case the
controlling equations are

¢=¢+ ¢, =1/f (5.37)
and by Eq. 6.43,¢, = 0,
& + 2 =0. (6.48)
n, o n,

If ¢, is the power of the positive lens, then |@,| > |@,], so that there will be a net
positive power. However, the two terms in Eq. 6.48 must be equal with opposite
signs, and this can only be achieved if the refractive index n, is greater than n,.
The positive lens in the doublet would therefore probably be of flint glass and
the negative lens of crown, as in Example 6.E. If the lens must also be an
achromat then the condition placed on the glasses is that [Problem 6.14]

ny ny

A (6.49)
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EXAMPLE 6.F. Design a lens whose focal length is to be 80 units to be
free of chromatic aberration and have a zero Petzval sum using thin lens
considerations.

Solution: Choose two glasses based on Eq. 6.47. Let the negative lens be
a crown, LaK10(720504): n, = 1.720, V, = 504, n,/V, = —0.03412.
Searching the glass list (Appendix A), one finds a light flint LLF1(548458)
with a ratio n,/V, = 1.548/45.8 = 0.03380.

Since ¢ = ¢, + ¢, = g

¢ my 1720

o, n, 1.548 = -LuL,
¢, = —1.111¢,,
g0 = —L111¢, + ¢, = —0.111¢,,
¢, = —0.1125 (f, = —8.888 units),
¢, = —1.111¢, = 0.125 (f, = 8 units).

Further variation of these two lenses should allow reduction of spherical
aberration also.

In the case of photographic lenses, where the imaging plane is almost always
a piece of flat photographic film, field curvature is a controlling aberration.
Thus designers of photographic lenses pay a great deal of attention to the
Petzval sum in the initial configuration of a design. Since the spacing of the
components has no effect on the sum, one method of correcting field curvature is
to design a lens without the correction and then add a negative element
(assuming a positive lens is being designed) close to the final image surface to
compensate for the curvature from the rest of the system. The concentric shell,
the second element in Fig. 6.22 is an example of this type of correction. If placed
near the final image, the element, known as a field flattener, has only a small
effect on the image location, yet has its full effect in the Petzval sum. In a single
element lens, the field curvature is zero if the radius of curvature, and therefore
the power, is the same for both surfaces. Any focusing comes from the separation
of the two surfaces, and it can be shown [Problem 6.15] that the power of a
thick section spherical shell is proportional to the thickness.

As in the case of an object located at the center of curvature of some optical
surface or the design with the equal radii of curvature of the thick meniscus lens
in the case just noted, the use of the symmetry is useful for reducing distortion. If
a lens is designed that is symmetrical about the aperture stop, it will be not only
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C: Concentric about
aperture stop

A: Aplanatic surface

Figure 6.22. Field flattener. Introduction of an element with negative power near the image plane
provides a small contribution to the image location, but is effective in reducing the Petzval sum,
thereby flattening the image plane.

free of distortion but also free of lateral color and coma for an object at unit
magnification. This can be seen simply by the fact that rays traced through an
optical system are reversible; thus whatever occurs to one ray on one side of the
stop will also occur in mirror symmetry on the other side. Thus a grid object on
one side will be imaged without distortion (other aberrations may get worse) into
a grid on the other side of the stop. When the magnification is not unity the
front and back halves of the system must be scaled to produce the distortion free
condition. One simple method of reducing distortion in a reproducing system
such as a camera-projection system is to project an image with the same lens
that was used to take the picture, since the distortion due to reduction will be
equal and opposite to that for enlargement. In some laser scanning systems,
there is an inherent distortion in the scanning geometry. If the focusing lenses
following the scanner are designed with a compensating distortion (for example,
a built-in barrel distortion to compensate for pincushion distortion in the
scanner), the final scan pattern will be distortion-free.

6.3.6. Aspheric Surfaces

With the exception of a few cylindrical lenses, all of the designs considered so far
have used spherical surfaces. This is because ray tracing through spherical
surfaces is simple and fabrication is easy compared to other surface shapes.
However, there are cases where, because of size, simplicity, or optical speed, the
best design must incorporate an aspheric surface. The simplest example of an
aspheric surface is the corrected reflecting telescope mirror. With an infinite
conjugate a spherical mirror displays spherical aberration. But, by flattening the
edges of the curve of the mirror, turning the sphere into a paraboloid, the mirror
can be corrected for infinite object distance. For other object and image
distance combinations, other conic solids of revolution, obtained by rotating
about a curved symmetry axis, will eliminate spherical aberration.

Because there is a need for some reference surface, an asphere is usually
defined by its departure from some reference sphere. This is expressed as the
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difference between the sphere and the asphere at different heights above the
optic axis, as shown in Fig. 6.23. First the distance between the plane at the
sphere vertex and the sphere is determined. This is referred to as the sagitta or
“sag” of the surface at different distances from the optic axis. For a sphere the
sag may be written as

2

2= — P (6.50)

1+ 1=

where ¢ = 1/R, the curvature of the surface, and p = ./x? + y?, the distance
from the optic axis. If ¢? in the denominator of Eq. 6.50 is replaced by (1 + «)c?,
the equation gives the sag for an asphere, which is a conic section of revolution,
k is the conic constant (x = O for a sphere, k = —1 for a parabola, —1 <k < 0
for ellipsoid, and x < —1 for a hyperbola). Depending on the conjugate
distances and the presence of other elements in the system, different conic
sections are used to construct systems with no spherical aberration. Additional
corrections for off-axis aberrations can be made by introducing surfaces that
can be represented as higher order polynomials of c2p? (i.e., (x? + y?)/R?). The
added degrees of freedom provided by allowing surfaces to be aspheric must be
balanced against the difficulty and increased cost of producing such surfaces.

An example of an aspheric surface in an optical system is the Schmidt
corrector plate used for systems with large light-gathering power, such as TV
projection systems, missile tracking cameras, and wide-field telescopes. The
plate has a fourth-power curve of the form z, = ap? + fp*.

y
Asphere
Sphere

p= x2+y2

R=1/c

Figure 6.23. Aspheric surface. Definition of an
asphere as a departure from a spherical surface.



REDUCING ABERRATIONS 217

For large optics it is less costly to generate a spherical surface and then
correct it by inserting a thin plate with one aspheric surface. The expansion of
the sag of a sphere is given by

4

et

A =cp® + y

+ ...

For distant objects the reflecting surface that is free of spherical aberration is a
paraboloid. This surface has a sag of cp?. Thus it is the second term in the
spherical expansion cp*/4 that must be canceled to approximate a paraboloid.
This would require a surface such as surface 1, as shown in Fig. 6.24(a). If a

(1) (2) (3)
+ =
(a)
M
Image
surface
\
/
R
(S:'ln:,';; T?}:‘ ) Spherical mirror
(b)

Figure 6.24. Schmidt-type aspheric correction, (a) The correction of a spherical surface to elimin-
ate spherical aberration can be done with a correction plate with a fourth power curve (1). If some
spherical power (2) is added, a more producible shape (3) can be used. (b) A Schmidt telescope.
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Paraboloid

Hyperboloid

/

(a) Cassegranian telescope

Ellipsoid

' Figure 6.25. Two aspheric telescopes. (a) Casse-
(b) Richey-Chretien grainian. (b) Richey—Chrétien,

Hyperboloid

weak convex sphere is added (surface 2), a more producible shape (surface 3) is
generated, since the local radii of curvature are much longer than those near the
edge of surface 1 [Problem 6.16]. When the plate is placed at the radius of
curvature of a spherical mirror as shown in Fig. 6.24(b), it takes the place of
parabolizing the mirror surface and also serves as the system stop. Note the
center zone causes rays near the axis to focus short, the intermediate zone
provides no correction, and the marginal zone causes the rays to focus long
compared to an uncorrected spherical mirror. Using the symmetrical principal,
one can see that there will be no coma or astigmatism since all chief rays are
normal to the mirror and there is, therefore, no distinction between tangential
and sagittal planes. Other mirror systems that use aspherics are the Cassegrain
telescope and its aplanatic offspring, the Ritchey-Chrétien telescope (Figs.
6.25(a) and (b)). In many lens systems it is usually simpler to add additional
spherical lenses than it is to achieve the same correction with an aspheric surface.
However, if the lens system is to be made from plastic, only the molds must be
individually fabricated so that it would be economical to use aspherics. One
new technique which has been used to fabricate aspheric mirrors is replication.
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This process transfers a precision optical surface onto a surface that has the
approximate shape of the precision surface and is inexpensive to produce. A
thin layer of epoxy fills in the difference between the rough surface and the
precision surface. After the epoxy sets, the rough surface with its epoxy coats is
separated from the precision surface resulting in a copy or replication of the
desired surface. Beyond the difficulties presented by fabricating aspheric
surfaces, there are the additional difficulties of testing the surfaces or the entire
system and specifying the curves so that they can be fabricated. A good review
on aspherics by Shannon can be found in Ref. 6.4.

6.4. OPTICAL COMPUTATION

The examples presented in this chapter and the previous one were used to show
the type of computation that goes into the preliminary design and evaluation of
optical systems. Those calculations are based on a small number of equations
and concepts that are easily understood yet powerful in their application. For
years such ray tracing was done with aid of tables of logarithms. First adding
machines and then mechanical calculators and finally electronic calculators
were used to reduce the tedium. Most recently computers have been used to
perform ray traces for a rapid evaluation of optical systems. It might seem in the
face of this progress that optical design could be handled by anyone with access
to a computer. However, without some intelligent choices as to the number of
elements, their glasses, powers, and spacings, the computer programs can do
nothing but evaluate a poor optical system. And, without intelligent choices as
to the parameters to be modified when reducing the aberrations, the improve-
ment of optical performance may take a long time. To paraphrase one of the
catch phrases of the computer world: Optical garbage in, optical garbage out.

6.4.1. Predesign

The first stage of lens design might be called the predesign stage. At this point
the focal length, f-number, and other Gaussian constants are decided on. This
initial design can be refined by evaluating the third-order aberration coefficients
and revising the design. Most of this can be carried out on a programmable
calculator or a microcomputer.

Until recently, computation at this stage was done using thin lenses because
the amount of computation could be reduced to a minimum yet the important
factors of the design could still be evaluated. Discussions of thin lens predesign
can be found in Refs. 6.1-6.3. With the advent of the microcomputer paraxial
calculations are easily performed on actual systems and it is not necessary to
start from the thin lens formulations, although the design principles explained in
the references are valid for most thick lens problems. Usually if a lens has been
designed (and perhaps patented) to work in an application similar to the one at
hand, the values for this lens can be used as a starting point for modification and
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refinement. A paraxial ray trace with rescaling to the size and f~number needed
can be followed by an evaluation of the aberrations to provide a baseline
against which future attempts at improvement can be compared. One useful
method for understanding parameter changes is the “double plot” (see box).
Remember the third order aberrations serve only as the lowest-order gauge of
performance.

THE DOUBLE PLOT

The evaluation of lens designs has been simplified by the computer.
Through the use of merit functions and iteration programs a great deal of
data can be generated on a large number of lens variations. The problem
is usually that there is too much information and this leads to a tendency
to run another iteration to see if things get better. It takes very little time
to find out that a mindless use of these techniques usually ends in
incredibly weird designs—most of which are impractical or unwieldy. It is
only through the use of experience and insight that practical lenses can be
produced.

One means of gaining insight into the effect of the variations of lens
parameters on a design is to look at some designs in which only a few
parameters are changed and the results are plotted. For example, a plot of
coma and spherical aberrations as a function of bending the first surface of
a lens would give insight into how this affects the overall design. Then
freezing that parameter at some value (not necessarily at the minimum
points for both aberrations), the effect of changing the first thickness or
second curvature, could be explored. A double plot, as it is called, is shown
for a lens in which ¢, and c, are changed.

1. ¢, = 0.0500,c, = —0.150 F

2. ¢; = 0.0550,c, = —0.150 ol

3. ¢, =0.0530,c, = —0.150

4. ¢, = 0.0515,¢c, = —0.150 0 |

5. ¢, = 0.0515,¢, = —0.180 |

6. ¢, =0.0515¢c, = —0.2 o1 5 o Y

In some instances, an “aim point” is used as an indication of departure
from the ideal result. It is not always the case that the aim point is at the
coordinate point (0, 0).

The choices made regarding the size of the field, the acceptable amounts of
aberration, and other values to be used in evaluating a lens are arrived at by
experience. It is sometimes useful to examine patented lenses by performing
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your own evaluation to see what the designer was able to achieve at various
field angles and apertures. An extensive discussion of the design of an
achromatic objective, a Cooke triplet, and a number of other systems can be
found in Smith (Ref. 6.2).

6.4.2. Design With Computer Programs

Because of the incredible computational speed and memory of large computers,
a first-rate lens design program can provide an enormous amount of infor-
mation about the performance of a lens, There can be so much data that it is
difficult to evaluate it. To provide some method to compare different lens
designs most programs provide some sort of merit function. A simple example
of a merit function might be the sum of the squares of the Seidel coefficients:

MF = B? + F? + C% + P + E~ (6.51)

The idea behind the merit function of this kind is to find a set of system
parameters that minimizes its value. The reason the coefficients are squared is to
prevent the possibility of obtaining a small merit function with large aberration
coefficients of opposite sign.

The simple merit function given above treats all aberrations equally. For
many applications some aberrations are more important than others. At times,
a certain amount of aberration may be desired in a system (see, for example, the
discussion on distortion) and a target value should be assigned. An improved
merit function would be

MF = a,(B — By)’ + ay(F — Fo)* + a5(C — Co)? + a,(P — Py)?
+ ag(E — Eo)? + ag(F'— F,)%, (6.52)

where B,, F,, Co, Py, E,, and F, are the target values for the five Seidel
coefficients and f-number of the system, and a, through a, are the weights
assigned to each of the terms in MF. The f~-number was included as a target
value because one of the methods of reducing aberrations is to reduce the size of
the entrance pupil (“stopping down the system”). To guard against artificially
reduced merit functions, targets such as the one for the f-numbers are included
in the merit function [Problems 6.17-6.21].

But optical design programs can do more than trace a series of rays and then
calculate system performance in the form of a merit function. Most programs
are written so that the system parameters (index, thickness, curvature) are varied
in a systematic way to search for the smallest merit function. This series of
searches is referred to as an iteration, since as the system is evaluated the
parameters change slightly and the evaluation is iterated. Sometimes a designer
will request a sequence of iterations; the program finds a system with a mini-
mum merit function and then uses the newly found system parameters as a
starting point for a new iteration.
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The target values for most merit functions can be formidable. There can be of
the order of 30 to 40 targets for a system. While most can be set to zero, some
must be carefully defined (the f-number, for example). Before an iteration, the
designer decides which surfaces, glasses, and thicknesses he or she will allow to
vary and which will be held fixed. It is usually wise not to vary too many
parameters; otherwise it is difficult to determine why the design is changing and
what would be necessary to produce additional improvement. Most programs
are capable of generating ray-intercept plots, spot diagrams, and other graphic
output that can provide valuable insight into a lens’ performance.

6.4.3. Tilts and Decentration

All optical systems are first designed on paper (or a computer terminal, these
days) to provide image quality with the smallest amount of aberration. The
designs are based on the premise that the axis of each component lies on the
optic axis of the system. But either fabrication or mounting can cause the axis of
a given element to be displaced by an amount Ay (decentration) or tipped at an
angle A6 (tilt), as shown in Fig. 6.26. Both of these errors can seriously degrade
the design performance to a point where a simple design might provide a better
final performance, even if the more complicated design were, on paper, superior
to the simple one.

Thus, beyond the design analysis for aberrations, additional design must be
done on the system to test it for sensitivity to tilts and decentrations, which
reduce the image quality. Beyond the considerations of image correction, a
designer must be aware if small errors in mounting components produce large
image errors. Therefore, most lens design programs include the ability to specify
tilts and decentrations as part of a tolerance analysis. Through the use of
statistical programs that assign random errors, realistic projections of manufac-
turing yields can be made.

Beyond the sophisticated design process that can produce elegant new
arrangements of lens elements, there is another design process that is needed to
specify the barrel size, the spacers, retainer rings, and the lens cells. These must
keep the decentration and tilt errors to a minimum, produce and maintain the
design spacing, and hold the components in a strain-free manner. For a review
of lens mounting and centering see Ref. 6.4.

Figure 6.26. [Illustration of tilt (Af) and decen-
tration (AY).
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6.5. IMAGE EVALUATION

Although the Seidel aberrations give the designer an idea of the performance of
the system, the overall effects of these aberrations on the final image is hard to
visualize. By examining the effect that an optical system has on point objects,
line objects, and periodic objects (gratings), a better evaluation of system
performance can be made.

6.5.1. The Point Spread Function

A lens without spherical aberration will image parallel rays to a single spot on
the axis. It is imaging a point object located on the axis at infinity to a point
image. Ray tracing does not take into account diffraction by the edges of the
lens, which will produce a diffraction pattern of the point source (Section 1.7.3).
In most instances the aberrations account for a larger spot than does diffraction.
For example, when spherical aberration is present in a lens, the size of the spot
in the paraxial focal plane would extend to the point where the marginal rays hit
the plane. For the case of Example 6.A, the radius of the blur caused by
spherical aberration is 0.335 mm. However, if you examine Fig. 6.8 you will
note that there is a point between the paraxial and marginal foci where the rays
form a smaller blur spot. This point of best focus occurs at 75% of the
longitudinal spherical aberration distance {(about 1.41 mm in Example 6.A) and
has a spot radius equal to one fourth of the transverse spherical aberration
(0.084 mm for Example 6.A) (Ref. 6.2).

This method does not indicate how the light is distributed in the spot, but
only where the edges of the spot are. To get information on the light distribution
a spot diagram (Section 6.1) must be generated. If a large enough number of
rays are traced, the center of the spot (x4, y,) can be found by averaging the x
and y coordinates of all the rays traced and the size of the spot can be found by
calculating the root mean square average for all rays intersecting a particular
plane,

X =20 — %)%

where the sum is over all rays traced. The rms radius is then 7 = \/x2 + 2.
This rms spot size is a measure of system performance. As one tries to improve
a system by reducing the third order aberration coefficients the spot size will
also be reduced. However, as the minimum values are approached, it may
be found that the rms spot size at the best focus for a system with small third-
order aberration coefficients is not as good as a system with larger third-
order aberrations. This is because as the correction of the system is improved,
the higher order aberration terms become important. Which, then, is a better
measure of the performance of the system? Since the spot diagram is generated
from exact ray traces and the rms spot size is generated from those traces, the
rms spot size is a better measure of the system performance.



224 EXACT RAY TRACES

Although a single number is an easy method of determining the blur spot
dimensions, it provides no information on how the light is distributed in the
system. However, a spot diagram generated with a large number of rays will
give a better idea of how the light is distributed through the spot. If it is
assumed, as in the case of the encircled energy plots, that each ray carries the
same fraction of the total energy from the object point, a distribution of the
energy in the blur spot can be determined and plotted as a three dimensional
plot of energy versus coordinates in the plane where the spot is evaluated (Fig.
6.27). This function, which represents the spread in light from a point object
caused by an imperfect imaging system, is called the point spread function. A
measure of the blur spot would be the diameter of the circle when the amount of
energy is 50% of that at the center of the spot. This can be very useful for
applications where small separated point objects (e.g., stars in astronomy) are
present.

An experimental test of optical systems is the star test. Although the object
could be a star, in most cases it is simply a small source of light. To test systems
with infinite conjugates the source is located at the focal point of a well
corrected lens to collimate the light going into the system. It is possible with
experience to interpret the on-axis and off-axis image patterns formed by the
optical system and to determine something about the aberrations present [Ref.
6.1].

6.5.2. The Line Spread Function

The point spread function is a two dimensional distribution, one that contains
more information than can be handled easily. In place of the point spread

Figure 6.27. Point spread function. A three-dimensional plot of energy in the image of a point
source as a function of image plane coordinates.
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function, one can use a line object and integrate the point spread function along
that line. This gives rise to a broadened line image whose cross-section
perpendicular to the length of the line is a one-dimensional function, called,
appropriately, the line spread function. If there is astigmatism present in a
system it is necessary to determine two line spread functions for off-axis rays,
one for a line in the tangential plane and another for a line in the sagittal plane.

Suppose instead of a point or a line, the object was a set of three black bars
separated by white bars, all with the same width, as shown in Fig. 6.28. What
would the image of such an object look like? Consider the white bars as made
up of many thin white lines. Each white line will be spread according to the line
spread function. Near the edges of the white bars, some of the image will be
spread over into the region where the black bar is imaged. The effect will be a
“rounding off” the edges of the image and that will produce three dark grey and
two light grey bars.

There is an experimental test that corresponds to this arrangement also. A
group of alternating black and white bars with progressively finer spacing (the

spacing usually decreases as E/i so that every sixth set of bars the spacing has
been reduced by a factor of 2) is printed as a chart somewhat like the chart used
by an eye doctor. A black bar and white bar constitutes one line pair. A group is
labeled by the number of line pairs per unit length (inches or millimeters). The
method is much the same. Examining the image transmitted by the optical
system under test either with the unaided eye or a microscope, the resolution is
determined from the group of bars with the smallest spacing that can just be
resolved. As a simple test of an optical system the resolution chart method is
useful. Its use depends, however, on the subjective judgement of the tester.
There is a way to convert this test from a subjective test to an objective one, a
test that provides additional information about the optical system.

=l
/

Resolution
chart

Imaging
lens

g

Image

Figure 6.28. Resolution of a lens as measured by imaging a series of sets of black and white bars
of equal width.
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6.5.3. The Modulation Transfer Function

The quality of an optical system imaging a multiple-bar object can be
determined from the image contrast. If I, is the highest irradiance reading in
the bar image and I_;, is the lowest, the contrast of the image C is defined by

Imax - Imin 0
C I——-f-—T_ X 100/0 (653)

max min

If the system images a black bar as truly black (I, = 0) and a white bar as
white (1,,, = 1) then C will be 100, . As the bars get closer together, they begin
to fill in and the contrast drops (Fig. 6.29).

The easiest way to express the variation of bar separations is in terms of
spatial frequency. A spatial frequency represents in optics much the same
concept that the temporal frequency of a monochromatic wave does in wave
theory. It is the number of cycles per unit distance. In a way, a spatial frequency
is similar to the number of line pairs (one black bar and one white bar) per
millimeter on the resolution chart, but a pattern having a single spatial
frequency has only a sinusoidal variation. In everyday life, brick walls, railroad
ties, and tiled floors are examples of objects with strong, easily perceived spatial
frequencies.

A low spatial frequency object, with frequency f,, will be imaged by the
optical system with a small reduction in contrast, as shown in Fig. 6.30. The
same optical system will image an object whose spatial frequency is twice as
great, f, = 2f,, with considerably smaller contrast. By plotting the image
contrast as a function of spatial frequency, the response of an optical system can
be determined. For example, our lens might have a response like that shown in
Fig. 6.30. We have plotted our two sample points on the curve for lens A. This
curve, called the modulation transfer function, provides the optical engineer or
designer with an objective measure of the performance of an optical system in a
manner similar to the audio frequency response curve for a high-fidelity music
system. It tells the designer the maximum spatial frequencies the system can

Low-frequency object

Optical
system

Optical
system

Figure 6.29. Image contrast as a function of the spatial frequency of the object.



IMAGE EVALUATION 227

resolve, just as its audio counterpart tells the high fidelity buyer the range of
high and low frequencies that the sound system will reproduce. The modulation
transfer function takes into account all aberrations and the diffraction limits of
the lens. Although the high-frequency cutoff may be one criterion for excellent
performance, it is not the only one. In some cases, the eye prefers images from
systems in which the contrast remains higher at low frequencies at the expense
of a high frequency cutoff. In Fig. 6.30 lens B might be preferred to lens A,
although the latter has the better high-frequency response.

The modulation transfer function need not be determined just in the image
plane. As the plane is defocused, the contrast drops rapidly for high frequencies
and more slowly for low frequencies. One of the methods of determining the
quality of a lens is to measure the contrast at a particular spatial frequency and
then follow the contrast as a function of distance either side of the image plane.
This is called “through-focus transfer function”. It is a measure of the “depth of
focus” of the lens. )

There are experimental techniques for determining the modulation transfer
function of a system. Some techniques image a black and white grating into an
analysis plane and determine how well the grating is imaged onto a slit opening,
to produce a measurement of the contrast. A somewhat simpler optical
arrangement relies on a measurement of the line spread function. A knife edge
slowly cuts the image of a slit. The amount of light passing the slit is detected
and stored as a function of knife-edge motion. The distance derivative of this
function is the line spread function, and its Fourier Transform is the modulation
transfer function. Many firms that use the modulation transfer function for
testing large numbers of lenses employ a simpler technique that measures the
transfer function at a specific spatial frequency. If the contrast for that part is
above a specific level it is accepted, below it, it is rejected.

100%
Lens B

Contrast (%)

Lens A

0 fi f fe

Spatial frequency (mm~?)

Figure 6.30. Modulation transfer function for two lenses. The frequencies f; and f, represent the
two situations illustrated in Fig. 6.29.
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PROBLEMS

6.1.

6.2.
6.3.
6.4.

6.5.

6.6

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

Derive Eq. 6.2 using Fig. 6.3. Show it also true for the primed
quantities in the other side of the surface.

Derive Eq. 6.3 using Fig. 6.1.
Derive Eq. 6.7. (You will need the results of Problem 6.1.)

Calculate the longitudinal spherical aberration for the lens in Example
6.A if the object were placed 114 units from the first surface. (a) Use an
exact ray trace, (b) Use the Seidel coefficients. @, = 114 sin 0.1.

Draw a ray intercept plot for a system with overcorrected spherical
aberration.

Show that C, = F2/B,.

Derive Eq. 6.37 and show that the sagittal distance A, the distance
between the arc of a circle of radius p and its corresponding chord, 2/, is
given by A = W'%/2p,if b < p.

Using Eq. 6.39 show that the Petzval radius for a thin lensis —n + ¢,
where n is the refractive index of the lens. ‘

Calculate the longitudinal spherical aberration for the lens in Examples
6.A and 6.B with the surfaces reversed. (R, = 120, R, = —40.) (a) Use
an exact ray trace, (b) Use the Seidel coefficients.

For parallel light, a plano-convex lens with the curved surface facing the
object is a good approximation of a “best form” (R, = —5R,) lens.
Calculate the fractional increase in LSA in the plano-convex lens with
the curved surface facing the image over the “best form” lens for n = 1.5.

Calculate the curvatures needed to correct the lens in Example 5.E for
both axial color and spherical aberration using the thin lens technique
illustrated in Sections 5.3.2 and a series of bendings on the two
components. (This is not a trivial problem. Use a calculator or short
computer program.)

Determine the effect that a change of refractive index from 1.517 to 1.626
has on the Seidel aberrations for the lens in Example 6.A.

Show that the axial intercept distance of a ray before refraction for an
aplanatic surface is L = Ry (n, + n,_)/n,._.

Derive the relationship for glasses (Eq. 6.49) that must provide both
achromatization and a flat field for a cemented doublet.

Show that the optical power of a thick spherical shell is proportional to
its thickness.
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6.16. If a computer program is available that can handle conic surfaces,
determine the amount of conic correction for a corrector plate to a 30-cm
radius spherical mirror at f/1.

6.17-6.21. The balance of the problems in this chapter consists of exact ray
traces of Problems 5.8-5.12. They should be done with the aid of a
calculator or computer. To the extent that the programming contains
aberration information the aberrations should be determined. Further,
to the extent that the program has the ability to compute a merit
function, variations of the lens parameters should be carried out to
reduce aberrations in the system. While it is time consuming, it is more
instructive to carry out changes in the system in a systematic manner,
manually changing the system parameters, than it is to iterate the
changes automatically. (Note that closing down the aperture stop is not
a valid means of reducing aberrations!)
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Gaussian Beams

(MAKING A LASER BEAM DO WHAT
YOU WANT IT TO)

The output of a laser is very different than most other light sources. Those
sources that have been used in the examples up to this point in the text have
been incandescent or fluorescent lights, or in the case of Example 3.C, a light
emitting diode. The description of collecting light from such sources and
sending it through an optical system was discussed in Chapter 3, Radiometry.
Because lasers are used in many optical systems, a chapter is devoted to a
description of the propagation of laser beams and their modification by optical
systems.

The design of systems incorporating a laser beam should be looked at more
as a problem akin to radiometry than as a problem in imaging. Unless the beam
is interrupted by a slit, aperture, or transparency, there is no image. The ray
optics presented in the first six chapters is insufficient to explain the behavior of
laser beams, since the effects of diffraction must be included right from the
beginning. Because of this, intuitions based on geometrical optics arguments
can be misleading.

After a description of the simplest type of beam, the TEM,, mode Gaussian
beam and its parameters, we look at means of modifying the beam using
equivalent thin lens and paraxial equations for Gaussian beams. The concept of
conjugate distances will be introduced and the effect of higher-order modes on
the calculations will be described. Finally, the variation in beam irradiance
throughout the beam will be described and some methods for reshaping the
distribution to give useful non-Gaussian shapes will be given.

7.1. CHARACTERISTICS OF A GAUSSIAN BEAM

The term Gaussian describes the variation in the irradiance along a line
perpendicular to the direction of propagation and through the center of the
beam, as shown in Fig. 7.1. The irradiance is symmetric about the beam axis
and varies radially outward from this axis with the form

I(r) = Iye™ 2 (7.1)

230
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(1/e*) 1y

(/%) Iy

Figure 7.1. Gaussian beam profile. Plot of irradiance versus radial distance from the beam axis.

or in terms of a beam diameter
I(d) = I e~ 2414t (7.2)

where r, and d, are the quantities that define the radial extent of the beam.
These values are, by definition, the radius and diameter of the beam where the
irradiance is 1/e” of the value on the beam axis, I,.

7.1.1. Beam Waist and Beam Divergence

Figure 7.1 shows a beam of parallel rays. In reality, a Gaussian beam either
diverges from a region where the beam is smallest, called the beam waist, or
converges to one, as shown in Fig. 7.2. The amount of divergence or
convergence is measured by the full angle beam divergence 6, which is the angle
subtended by the 1/e? diameter points for distances far from the beam waist as
shown in Fig. 7.2. In some laser texts and articles, the angle is measured from
the beam axis to the 1/e? asymptote, a half angle. However, it is the full angle
divergence, as defined here, that is usually given in the specification sheets for
most lasers. Because of symmetry on either side of the beam waist, the
convergence angle is equal to the divergence angle. We will refer to the latter in
both cases.

Under the laws of geometrical optics a Gaussian beam converging at an
angle of § should collapse to a point. Because of diffraction, this, of course, does
not occur. However, at the intersection of the asymptotes that define 6, the
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Figure 7.2. Variation of Gaussian beam diameter in the vicinity of the beam waist. The size of the
beam at its smallest point is d,, ; the full angle beam divergence, defined by the asymptotes for the
1/¢* points at a large distance from the waist is 6.

beam does reach a minimum value d,, the beam waist diameter. It can be shown
(Ref. 7.1) that for a TEM,,, mode d, depends on the beam divergence angle as:

dy = — (7.3)

where 4 is the wavelength of the radiation. Note that for a Gaussian beam of a
particular wavelength, the product d,0 is a constant. This means that for a very
small beam waist the divergence must be large, for a highly collimated beam
(small ), the beam waist must be large.

The variation of the beam diameter in the vicinity of the beam waist is shown
in Fig. 7.2 and given as

d? = d2 + 0%22, | (7.4)

where d is the diameter at a distance +z from the waist along the beam axis.
Note that far from the beam waist (6z > d), d = 0z. Thus, at points z, and z,
satisfying z,, z, » dy/0, d; = 0z,, and d, = 0z,. Subtracting yields d, — d, =
0(z, — z,),and if we set z, — z; = t, an axial distance, we can write the equation
as

d, = d, + 01. (7.5)

This is similar to the transfer equation in geometrical optics. Indeed, well away
from the beam waist one can use geometrical optics.

7.1.2. The Rayleigh Range

It is useful to characterize the extent of the beam waist region with a parameter
called the Rayleigh range. (In other descriptions of Gaussian beams this extent is
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sometimes characterized by the confocal beam parameter and is equal to twice
the Rayleigh range.) Rewriting Eq. 7.4 as

2
d=d, [1+ (95> . (7.6)
do

we define the Rayleigh range as the distance from the beam waist where the

diameter has increased to \/5 d,. Obviously this occurs when the second term
under the radical is unity, that is, when

d
R

Z =2Zp

Although the definition of z; might seem rather arbitrary, this particular
choice offers more than just convenience. Figure 7.3 shows a plot of the radius
of curvature of the wavefronts in a Gaussian beam as a function of z. For large
distances from the beam waist the wavefronts are nearly planar, giving values
tending toward infinity. At the beam waist the wavefronts are also planar, and,
therefore, the absolute value of the radius of curvature of the wavefronts must

= 2zpl—
~
~
| ~ |
IR ~ ~ IR Geometrical z
N~ asymptote
o <

Figure 7.3. Plot of radius of curvature (R) versus distance (z) from the beam waist. The absolute
value of the radius is a minimum at the Rayleigh range point, zz. In the limit of geometrical optics,
the radius of curvature of the wavefronts follows the dashed line.
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go from infinity at large distances through a minimum and return to infinity
at the beam waist. This is also true on the other side of the beam waist but with
the opposite sign. It can be shown that the minimum in the absolute value
of the radius of curvature occurs at z = +z;, that is, at a distance one Rayleigh
range either side of the beam waist. From Fig. 7.3, the “collimated” region of
Gaussian beam waist can be taken as 2z.

The Rayleigh range can be expressed in a number of ways:

From this we see that all three characteristics of a Gaussian beam are dependent
on each other. Given any of the three quantities, d,, 0, zg, and the wavelength of
the radiation, the behavior of the beam is completely described [Problem 7.1].
For example, if a helium—neon laser (A = 633 nm) has a specified TEM,, beam
diameter of 1 mm, then 6 = 41/nd, = (1.27 x 6.33 x 10""m)/(1 x 107 °m) =
0.8mrad and zz=d,/0 =(1x107°m)/(0.8 x 10" *rad) = 1.25m. The
Rayleigh range of a typical helium—neon laser is considerable.

The initial Rayleigh range (and, therefore, beam waist and divergence) is
determined by the radii of curvatures of the laser mirrors R and R, and by their
separation L. If the same sign convention used earlier in the text is retained, the
Rayleigh range of a laser is given by

LR, + L)(R; — L)(R, — R, + L)
(R, — R, + 2L)*

(7.8)

2
Zp =

(The expression is the same as in Ref. 7.2, except that the sign convention for the
radii of curvature is the opposite of standard ray-tracing conventions.) It should
be noted that there are some geometries for which the value of z% would be
negative. These mirror arrangements are referred to as unstable resonators. 1f we
define g, = (1 — L/R,) and g, = (1 + L/R,), it can be shown that [Problem
7.2] the condition for stable resonators based upon the requirement that z% be
positive is that 0 < g,g, < 1. This is known as the stability condition for laser
resonators (Ref. 7.3).

7.2. MODIFYING A GAUSSIAN BEAM

There are many design situations in which the “raw” beam as it comes out of the
laser cannot be used. The beam must be modified in some way—expanded,
focused, recollimated. This modification can be performed by lenses, mirrors,
prisms, or even slabs of glass. For our example, we will use a lens, but the focal
length or surface power of any optical element can be substituted into the
equations in the appropriate place.
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The thin lens equation was expressed in Chapter 1 in both the Gaussian form

1 1 1

(1.16)

4ot
where t, and ¢, are the object and image distances, respectively, and in the
Newtonian form [Problem 1.13]

—xx' = f? (7.9)

where x is the distance from the front focal point to the object and x’ is the
distance from the back focal point to the image. For Gaussian beams we can use
the Newtonian form with some minor redefinitions and the addition of a single
term to account for the effects of diffraction.

7.2.1. Thin Lens Equation For Gaussian Beams

In Fig. 7.4 the relevant distances are shown. Note that in contrast to the neatly
subscripted variables used to trace a ray through a system, a series of unprimed
and primed variables is used. This is done because the Gaussian beam is most
easily described by locating the origin of the coordinate system at the beam
waist. In contrast, the ray-trace coordinate origins are located at the vertices of
each element or in the plane of interest. The beam waist always has a zero
subscript. Other beam diameters have other subscripts, usually d, is to the left
of dy and d, to the right. If there is more than one lens, each additional region
between lenses is given another prime. Also unlike conventional ray tracing,
beam waist distances relative to the lens position are positive if on the input side
of the lens the beam narrows down to a waist before striking the lens, and
negative if the beam is intercepted by the lens before the beam waist occurs.

If the positions of the input beam waist and output beam waist are replaced
by the object and image distances in Eq. 7.9, the thin lens equation in New-
tonian form becomes (—x —» z, — f; X' > z| — f)

(@ =NE=-N=1"-15 (7.10)

Figure 7.4. Transformation of a Gaussian beam by a thin lens.
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where f¢ is the term introduced to account for diffraction. There are a number
of ways of writing this term since it is an expression of the beam properties on
both sides of the lens. The most symmetric form is

& =z, (7.11)

but other useful forms are

o= (7.12)

4
T nO'0

Another useful relation between the beam waist diameters and their
locations, derived in Ref. 7.1, is

(z, = f) _ dg
G=0 & 7

Using Eqgs. 7.10 and 7.13, a set of simple relations can be derived between the
positions of the beam waists and the beam parameters. Solving for (z; — f) in
Eq. 7.10, inserting it into Eq. 7.13 and rearranging terms one has

(z, — f)z dg )

f7-dger o dg
Multiplying by the left-side denominator,

¢ d?
(zz—f)2=f2;ﬁ———f2 i,

and then by d;?

Az, — ) + 28] = f?d3,
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One obtains the new beam waist dy in terms of the old beam waist d:

2d2
E:-fT)zg::Z—lzz = Otzdg, (714)

d =
The parameter «, given by

o= Ul R (7.15)
(z, — ) + 2%

is a function of axial quantities related to the input beam (z), the lens (f) and
the beam—lens position (z, — f). Once « is evaluated for the arrangement at
hand, the output parameters are quickly determined since

dy = od,, (7.16)
. 4l 4 0
0 =k mad, (7.17)
, _do ady
=G 9/oc = a’zg. (7.18)

Using Egs. 7.13 and 7.16, the position of the new beam waist z} can be
expressed as

72
dg

(@ =) ="pl-= Yz, — /)
0

1z =) 7.19)

Zy=f + ¥z, — f) =f+m-

In the thin lens approximation, all of these equations are quite general. Now we
will look at some approximations.

7.2.2. Focusing of a Collimated Beam to a Small Spot

Since « is directly proportional to f, a small spot requires a short focal length
lens. Since the beam is collimated z, and z; are large compared to f,

a = f/\/z% + z3. There are two limiting cases:

1. The lensis well inside zg (z, < zg). Then a = f/z, = f0/d,. This gives

d, = ad, = f9, (7.20)
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a simple equation for finding d;,. Also

0 0dy d

e'=a=-f7=7°, (7.21)
2 2
Zh = a’zg = —i—g—-zk = %’ (7.22)
L2
2y =f+ 0¥z, — f) = f+ Z—Zz—z—fa ~ f (7.23)

R

2. Thelensis well outside zg (z, > zp; beware, the lens may be overfilled if it is
too far away). Then « = f/z, and

d
PAL (7.24)
Z;
z,0
g, = 2~ 7.25
0 f ( )
(note z,0 = d at the lens),
2
2h = alzg = LA (7.26)
Z3
z. — L f2 2
z’1=f+£2—{)—[*:f+{—~;f. (1.27)
2 2

In Example 7.A three situations are illustrated. Note that the placement of the
lens relative to the size of the Rayleigh range has a dramatic effect on the spot
size.

It should be understood that we do not always know where the beam waist is
in a laser. In many cases the beam waist is at or near the output mirror, and for
an initial attempt to design a system this is a reasonable initial assumption.
However, later in the design, the sensitivity of the design to the initial beam
waist location should be checked. If the sensitivity is high, a more precise
calculation can be made. Given the radius of curvature of the two laser mirrors
R, and R, and their separation L, the distance between the beam waist and the
first mirror is

L(R, + L)
Zy =

=, 7.28
RI_R2+2L ( )



MODIFYING A GAUSSIAN BEAM 239

EXAMPLE 7.A. A helium-neon laser beam with a divergence of
0.8 mrad is focused with a 100-mm focal length lens. What are the beam
diameters in the cases

(@ z; < zx
(b) z, =124
) z; > zx?

4
Solution: Since 6 = 0.8 x 10™%rad, d, = “_ I mm. Therefore zz =

nd
do/0 =1x1073/0.8 x 107% = 1.25m.
(@) z; €zg,dy=f-0=10""mx 08 x 1073 = 80 um.
(b) z, = zg. The complete expression must be used.

) fd, 10-1.1073
do = > > = = =2 6
S =)+ 22 (125 = 0.1)7 + (1.25)

0 um

() 2z, > z;. Let us assume z, = 12.5 m. The beam diameter there is
about 10 mm

, _ fdy _ 0.1 5
dy = Z —12‘5x1x10 m = §um.

Note the distance between the beam waist and the lens is extremely large.

The distance between the beam waist and the second mirror is z, = L + z,
(z; < 0) [Problem 7.3]. If the outside surface of the output mirror is not flat,
then the effect of the optical power of this surface must also be calculated using
the paraxial method given in Section 7.2.6.

7.2.3. Refocusing a Beam Waist to a New Beam Waist

This is a case of magnification or demagnification of the beam waist. Since
dy = ad,, o is the magnification constant for the waist. At the same time the
beam divergence will be demagnified by 6/a, and the Rayleigh range will be
multiplied by o2. (This parallels the relation between the transverse magnifi-
cation and the longitudinal magnification for imaging: M, = M2.)

Once the value of « has been decided on, there are still two degrees of
freedom in the system: the focal length of the lens (/) and location of the lens
with respect to the beam waist (z,). While there is one independent input
parameter and one independent output parameter, there is an infinite combina-
tion of the focusing geometries that will provide the required beam waist. There
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are some restrictions, however, on the choice of the focal length. Assuming the
value of « has been chosen, then we can solve (7.15) for z,:

e L FEN Ly (7.29)

Thus, f may be chosen to be any focal length practical (or handy) subject to the
limitation that f2> f* = zzz} [Problems 7.4-7.6]. In Example 7.B, the use of
Eq. 7.29 is illustrated by a practical problem. ‘

EXAMPLE 7.B. Reduce the beam waist of a helium—neon laser
(dy = 1mm; § = 0.8 mrad; zz = 1.25m) to 184 pm. Assume waist is at
the output mirror.

Solution:

do 184um
d,  1mm

= 0.184 = g,

zpg =125m  zj = a’zz = 42 mm,
f¢& = zgzg = 1250 x 42 mm?,
Jo = 230 mm f > 230 mm.
(a) Choose f = 300 mm, then

1 2 2 _
= 300 + g7ez+/(B007 = (2307 = 1347 mm.

The positive root was chosen since the laser would get in the way for the
negative root. This is an extremely long distance.
(b) Then choose f = 235 mm and

1 2 2 _
= 235 + 577 /2397 — (2307 = 497 mm,

7, = 235 + (0.184)2(497 — 235) = 244 mm.

Total distance from laser to focus: z, + z| = 741 mm.

(o) For the shortest distance, choose f = f, =230mm. Then
z, = z} = f. Total distance: z, + 2z, = 2f = 460 mm. Thus by choosing
the correct lens a practical laser-to-new—focus distance can be provided.
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A special case of the transfer of focus is that of relaying the waist without
magnification (¢ = 1). Starting with the definition of « (7.15),

2

2 S

0 = e =1,
(Zz*f)z‘*'zzzz

and solving for z,, one obtains

=+t Uf*— 2k, (f22) (7.30)

or, in terms of f,

2 2
z3 + zx
f=—

2z,

The distance between original beam waist and the lens is found to be equal to
the distance between the lens and the new beam waist as would be expected for
unit magnification [Problem 7.7].

fy=f+aXze,~f)=f+z2,—f=1z.

Thus the total distance between waists in terms of f and zg is

2y, =2, + 2, =2f +2./f* —z3. (7.31)
In addition to this general case there are two special cases (Fig. 7.5)

1. f>» zz. Then z,, = 4f. This is similar to the relaying of objects and
images in geometrical optics, where the unit magnification occurs at
t; = —t, = 2f. Note for this to occur for any reasonable focal length, z,
must be <f and therefore the beam must be strongly divergent.

2. f=12zg. Then z, =z, = f and z,, = 2f. This is obviously different than
the previous case. The beam waists are separated by only 2f. Since it is not
always possible to match f to z;, some prior beam conditioning is usually
done. This second case is sometimes called a Gaussian relay.

At one time this type of relay was considered for information transmission over
some distances. Since the advent of low loss optical fibers this is no longer
considered to be a realistic method of transmitting laser radiation.

7.24. Collimating a Gaussian Beam

If one cannot achieve truly collimated light, 8 = O (since d, would have to be
infinite in extent), then what should be the definition of collimated light? There



242 GAUSSIAN BEAMS

(b) 2p =3, =f

Figure 7.5. Gaussian beam relays. (a) Case 1. Highly divergent beams, similar to an image relay.
(b) Case 2. Rayleigh range equal to the focal length.

are two possible definitions. One is that the divergence be as small as possible,
the other is that the distance to the next beam waist be a maximum. In the first
case, one can show [Problem 7.8] that z} is a maximum if z, — f = 0. (Thus,
o?= fYz% and zj = f%zg.) In the second case z| is a maximum when
z, = [+ zx. That is, the beam is considered collimated when a positive focal
length lens is positioned such that its focal point is one Rayleigh range beyond
the beam waist. Inserting this condition into Eq. 7.15 yields

_ 1] _ I
Ve -+ A V2

and this result in Eq. 7.19 determines the location of the new beam waist:

(7.32)

o

f? f?
Z’1=f+“2(22 _f)=f+2z_z(zk)=f+§;- (7.33)

From Eqs. 7.32 and 7.33 we see that 2} and zj, will be large if z, is small. Thus, a
long focal length lens accepting a highly diverged beam (small zp) will give
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fe b - ‘do . \_£¢ %
>< : : 4
fe f; gt
(a) (b)

Figure 7.6. Gaussian beam collimation. (a) Keplerian telescope. (b) Galilean telescope. Eyepiece
focal length, f, ; objective focal length, .

excellent collimation. If the initial beam is well collimated, however, then the
beam must be focused with a short focal length lens before being recollimated
with the long focal length collimation lens. This arrangement is nothing more
than an inverted telescope (light goes in the eyepiece and out the objective (Fig.
7.6a)). It is also possible to reduce z; with a diverging lens that forms a virtual
beam waist in front of the negative lens. Together with the collimating lens this
system is an inverted Galilean telescope (Fig. 7.6b).

We can use the information gained so far to calculate the increase in the
collimation distance. The input beam is assumed to be well collimated.
Therefore, the beam diameter at the eyepiece lens (focal length, f,) is approxi-
mately equal to d, and the lens is well inside the Rayleigh range. This is the
same as Case 1 of Section 7.2.2. so that

/ Focused for lowest divergence

Focused for maximum z,
- . —

=
—_— —
- ——
——

—_— dIV2 _ _— \750,

—
-
—~—

—

Figure 7.7. Comparison of two definitions of a collimated Gaussian beam. The bold lines show
the asymptotes and 1/e? points for a beam focused for smallest divergence, §”. The fine lines indicate
the asymptotes and 1/e? points for a beam focused for maximum lens to beam waist distance. For
a distance of about 2z, from the lens this second definition maintains a smaller beam.
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and
do = ady = f,0,
d
o =-2,
fe
fz
Zp ==, so that zj <€ zg
Zr
zy = f,.

For maximum collimation we want z;, = f, + zi, where f, is the focal length of
the telescope objective. It is not to be confused with f,, the diffraction term in

Eq.7.10. Using Eq. (7.32), @’ = f,/V2z's. The output beam waist is then
dy = o'dy = dady = o"d,

and the overall magnification is

fo S _ L L

o' =od'a=Fx

R 2y 2k J2ASHz)

o Je M (7.34)

e

Vo V2

where M = f /f, is the magnification of the telescope. The collimation has

increased by a factor of M /ﬁ, since the divergence has decreased to 6" = 6/a”
and the Rayleigh range has increased by

MZ
Zh = o"?zg = —zp. (7.35)

2

Finally, it can be shown [Problem 7.9], that the beam waist is located at

M2
ZI{ =fa + —Z—ZR =_ﬂ, + Z;’{ (736)

In Example 7.C, the collimation of a helium-necon laser by a 40 power telescope
is illustrated [Problem 7.10].

If instead of a maximum lens to beam-waist distance (z}), a minimum beam
divergence is required, the above results are changed by replacing o” = M, /ﬁ
by o” =Mand z}] = f,+ (M*2)z; by z{ = f,. Thus the beam waist is at the back
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EXAMPLE 7.C. Collimate a helium—neon laser beam (d, = 1 mm,
6 = 0.8 mrad, zz = 1.25m) using a 40-power telescope (f, = 160 mm,
f, = 4mm (40x microscope objective)).

Solution: First,

02
" Jo = 2828 and (¢")? = L = 800.
J2f, 2

The new beam characteristics are:

dg = o”dy = 28.28 mm,
6" = 6/o" = 28.28 prad,
Zg = (")zg = Lkm ().

Unless extreme care is taken with collimation optics, this diffraction
limited performance cannot be achieved. Even with simple lenses, how-
ever, the collimation can be quite good.

If minimum divergence is required, then «” = 40 and («")?> = 1600. In
this case dj = 40 mm, #” = 20 prad, and z; = 2km.

focal point of the telescope objective lens and the divergence is a factor of \/5
smaller. In Fig. 7.7, the two cases are compared. As one can see from the figure,
if collimation is needed close to the optical system, the beam waist can be
smaller by a factor of 1/\/5 and collimated over a distance some 2z from the
lens. If collimation is needed in the far field (i.e., smallest beam divergence) then
the focal point of the lens should be located at the original beam waist.

Of the two telescopes pictured in Fig. 7.6, the Keplerian type should be used
if there is a need to spatially filter the beam (Ref. 7.10), a method for removing
any spatial irregularities introduced by the optics before the collimator by
putting a pinhole slightly larger than dj, at the focus of f,. For high power lasers
focusing the beam to a small diameter could result in breakdown of the air by
the high electrical field strength at the focus. In such cases, a Galilean type
telescope should be employed (Fig. 7.6b).

7.2.5. Combinations of Lenses
It is possible using the above equations to calculate beam waist positions for a

combination of lenses in a manner similar to the special case of beam-
collimating telescopes. Instead of the ray-trace technique of the preceding
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chapters, the approach is similar to the thin lens calculations used in in-
troductory physics. The equations are applied once, an intermediate waist is
found, then the equations are applied again (Example 7.D). In the example note
that the final beam characteristics are the same as those in Example 7.B.
In that example the lens was nearly 500 mm from the laser and the focal length
of the lens had to be greater than 230 mm. By using two lenses, a similar result
was achieved with shorter focal length lenses placed closer to the laser. In
addition, the ability to move one lens relative to the other allows one to adjust
the output beam parameters easily.

EXAMPLE 7.D. Using two lenses, obtain a “long” focus from a
helium—neon laser. Assume beam waist at output mirror.
Helium-neon laser output:
dy = 1mm, # = 0.8 mrad, z; = 1.25m.
System dimensions:

z, = 135 mm, t = 58.42 mm,

fi=-50mm, f, =889mm.

"

Solution: For the first lens:

=50 =4x10"2

(1857 + (1250

dy=4x 1072 x 1mm=40pm; 6'=20mrad; zz=2mm

z, — f; = 185 mm, o =

2y = f, + 0¥z, — f,) = —50 + 16 x 10~%(185) = —50 + 0.3 = —49.7 mm

7, is negative (i.e., virtual), since the beam is diverging.

Zy =t — 7, = 58.42 — (—49.7) = 108.1 mm.
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For the second lens:
f, =889 and 2z, —f, =108.1 —88.9 = 19.2mm.

88.9

Ja92% + 22

do = o'dy = 4.605 x 40 pm = 184.2 pm.

!

4.605.

8" = 20 mrad/4.605 = 4.34 mrad.
Zg = ()2 = 42.4 mm.
z7 = f, + (@)*(zy — f) = 88.9 + (4.605)*19.2 = 496 mm.
Total distance:

laser to beam waist = 135 4+ 58.4 + 496 = 689 mm.

The method given above is only one of several methods for calculating beam
waist parameters. There are matrix based approaches (see Refs. 7.1 and 7.2) and
chart based approaches (Ref. 7.4). In the case of periodic lens structures, such as
a series of relay lenses, the matrix based approach may be more compact,
whereas the chart-based approach may yield some insight as to poor choices of
lenses and placements. The method given here is attractive because it is
straightforward with certain useful approximations.

7.2.6. Paraxial Equations for Gaussian Beams

Following much the same mathematics used for the thin lens equations, it is
possible to derive similar equations for the propagation of Gaussian beams at
the interface of two media having optical power. Just as the paraxial equations
for ray tracing bear a resemblance to the thin lens equations, so also are these
paraxial equations similar to Egs. 7.10 and 7.13. They are

W — z2iP)(n — z,P) = nn — zgzyp P> (7.37)

and

n-z¢ _ (7.38)
T A |

where ¢ = (' — n)/r is the optical power of the interface as it is in paraxial
optics (Section 4.1) and »’ and » are the refractive indices of the refracting and
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Figure 7.8. Paraxial ray trace of a Gaussian beam. The radius of curvature of the interface is r;
the refractive indices of the incident and refracting media are n and n’, respectively. The optical
power of the surface is ¢ = (n' — n)/r.

incident media, respectively as shown in Fig. 7.8. The distances z, and z| are
defined as before. Multiplying these equations by ¢/nn, one sees that 1/¢
replaces f and z/n in the respective media. Using these two equations, we may
we may solve for a? = zi/z and find that

’

nn

o =
V(-0 + 2% &

(7.39a)

and that

/

7, = Q;M_ (7.39b)
n—z,¢

These are the paraxial counterparts to Egs. 7.15 and 7.19. In Example 7.E, a
Gaussian beam focused by a biconvex lens is analyzed two ways, a paraxial
treatment and the thin lens method. The differences are small but significant
[Problems 7.11-7.13].

For the special case of focusing a beam through a flat surface (¢ = 0),
o = /n'/n, where n is the incident medium refractive index and »’ is that of the
transmitting medium. If the incident medium is air (n = 1) the values of the
beam parameters in the second medium are djy = ﬁdo; ¢ = 9/\/r7 ;
zx = n'zgx. The quantities preserved in all media are do/ﬁ, \/;(5, and zg/n,
where d,, 6 and z; are the values for the beam in a vacuum.

If a Gaussian beam is focused inside of a material through a plane surface,
where is the beam waist located? Setting ¢ = 0 in Eq. 7.39b, z| = —n'z,. In
terms of ray tracing the refraction of a ray of light along the asymptote at an
angle of f with respect to the surface normal, as shown in Fig. 7.9, is refracted to



MODIFYING A GAUSSIAN BEAM 249

~
-~
-~
-~
-~
~
-~
~
~
-~
L~
_ dy=Vn'd,
NS —
_ ~ T~ o o 0= \/_'
- S ey - =0/Vn
-
////)\/ \\L
-~ ~
~
-~ ’\\\
- ~
-~ o
- ~
~
\\
'
e ey L I L I T R —— ~
1 2 -
~
(a)
= -~
-~
-~
-~
-~
-~
~
-~
-~
~
~
~
™~
~
~
~
~
\\
[ ,
Pt e = — -
24 "22
(b}

Figure 7.9. Focusing of a Gaussian beam into a plane interface. (a) Gaussian beam asymptotes,
(b) ray trace of incident asymptotes. Both locate the beam waist at the same point.

an angle §', where sin §' = sin f/n’ (n = 1). If d is the diameter of the beam
at the surface then y is the radius of the beam at the surface, then

d
t = d t "= .
an f 72, and tanf’ = — 27,

For small angles, setting the sines and tangents equal to their arguments,
B = v'B, we can write

Zy = —n'z,y, (7.40)
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EXAMPLE 7.E. A biconvex lens (n =15 R =-R =100mm,
t = 20mm (thick!)) is placed 100 mm from the output mirror of a laser
(dy = 1mm, 0 = 0.8 mrad, zz = 1.25m). Find the position and size of the
beam waist after it passes through the lens. Compare it to the thin lens
values.

Solution:
2,¢, = 100 mm, ¢, = (1.5 — 1)/100 = 1/200 mm.

2,6 =L zx¢, = 1250/200 = 6.25.

«= V1S e VAT NP 195,
J =D+ 6. 25) Ji+ (62572 6. 27
= 0.0382.

dy = 59 pm, # =335mrad, zj =47.7mm, Z} = 296 mm.
The distance from the beam waist at the next surface is:
Zy =1t — 2y =20 — 296 mm = —276 mm.
¢, = (1 — 1.5)/—100 = 1/200 mm = ¢,.
z5¢, = —1.381, n—zy¢, =15 —(—-1.381) = 2.881.
7 ¢, = 47.7/200 = 0.2385.
1.5 1.5
of = \/(2.88)\2/:—(0.239) \\//8—3—6 = 0.424, o'? =0.179.
dy =827um, 0" =9.6Tmrad, zg=856mm, zj=96.56 mm.
Also

Ogorar = 00 = 0.195 x 0.424 = 0.0827.

In the thin lens treatment:
=15-D(ts— =) =3X15 =15 S = 100mm.

=f.0 = 100mm x 0.8 mrad = 80 um — « = 0.08.
0" = 6/a = 0.8/0.08 = 10 mrad.
zj = 1250 mm x (0.08)* = 8 mm.

zi = f + a*(z; — f) = 100 + «*(0) = 100 mm.

Thus, the thin lens values in this case give a good approximation to the
paraxial figures.
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the same relation just derived using Eq. 7.39b with ¢ = 0 and n = 1. Thus, the
position of a Gaussian beam waist after passage through a plane interface can
be computed as if the asymptotes were refracted as ordinary light rays with their
intersection locating the waist. As was shown earlier in the case of displacement
of an image (Section 5.1.4), the beam waist is displaced by a parallel plate of
thickness ¢ and refractive index »n by an amount

—1
Ar=""1

n

An example of a calculation for focusing through parallel slabs of material is
given in Example 7.F.

EXAMPLE 7.F. A helium-neon laser beam (z; = 1.25 m) is focused by
a short-focal-length lens (f = 8 mm) located well inside the Rayleigh
range. The beam waist is located at the surface of a microscope slide. If a
drop of water (n = 1.33) is put on the surface and covered with a 500 pm
thick cover glass (n = 1.52) and the water entrapped between the glass and
slide also has a 500 pm thickness, where is the new beam waist located?

n=1.0 n=1.52 n=1.33 n=152

s

\‘\
~
& \\\ \
/// /
’/
,//
F<- 500 pm <500 pm =

Solution: In this case « = /n'/n for each interface. Since the power of
the surfaces multiply the Rayleigh range in the expression for o, Gaussian
beams can be treated very simply. All we need to do is follow the
asymptotes of the beam in each region to their crossing at the beam waist.

1. Since zgz,z, > f, we may use Case 1 in Section 7.2.2. The original
laser beam has (as we have seen earlier) the parameters d, = 1 mm,
0=08mrad, 2zp=125m. If f=8mm, then dy=0-f=
08x107>x8x107% = 6.4um. 6 = 0.125rad; 2z = 51.2pm, and
zy = f = 8§ mm.
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2. In the paraxial approximation, a parallel plate displaces an image a
distance [(n — 1)/n] x t, where ¢ is the thickness of the plate (Example
5.1.4). Thus, to find the position of the beam waist we need only add the
additional contributions to each layer.

(a) The first glass surface is 1 mm from the original waist. The cover slip
adds a distance of [(1.52 — 1)/1.52] x 500 pum = 171 pm.

(b) The water layer adds an additional [(1.33 — 1)/1.33] x 500 ym =
124 pm.

() Therefore, if there were air beyond the water, the beam waist would
be 295 um beyond the water—air surface. However, since the glass
substrate is beyond this, the increase in distance into the surface will
be nd, where d is distance in air, 295 pm. Therefore the final beam
position is 1.52 x 295 um or 448 pym beyond the original substrate
surface.

3. An alternate calculation:
z) = —1.52(—1000 pm) = 1520 pm.
Zy =t — 2z, = 500 — 1520 = —1020 pm.
z7 = —1.33(—1020)/1.52 = 892.5 um.
Z =1t —z{ =500 — 892.5 = —392.5 um.

20 = —1.52(~392.5)/1.33 = 448 ym.

7.3. CONJUGATE DISTANCES

As was pointed out in Example 7.D, the replacement of a single lens by two
lenses provides the flexibility to change the position and size of the new beam
waist. By moving the positive lens toward the negative lens, the beam waist is
moved away from the two lenses. For example, by changing z), in Example 7.D
by 19.2 mm, from 108.1 to 92.9 mm (z%, — f = 3.97 mm there), the beam waist
moves out to 1.69 m (see Example 7.G(a)). Since the distance between lenses was
chosen to give o’ =20 the beam waist is 0.800 mm. (dy =20 x d; =
20 x 40 um = 0.8 mm). If we erect a target at the beam waist (z] = 1.69 m), the
spot will be as small as possible with this lens configuration. But it is not the
smallest achievable spot at this target distance! If the positive lens is now moved
away from the first lens by 0.8 mm so that (z; — f) is changed to 4.77 mm, o’ is
reduced to 16.8 and the beam waist is reduced to dj = 0.672mm.
(@ = 1.12 mrad) and is now located at 1.44 m from the positive lens, between the
lens and the target. What is most interesting is the size of the spot on the target.
The target is 1.69 m — 1.44 m, or 0.25 m beyond the new beam waist, so that
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using Eq. 7.4, d; = 0.734 mm (see Example 7.G(b)). The spot beyond the beam
waist is smaller than the beam waist when it was located at the target! It might
seem that if focusing inside the target produced a smaller spot on the target,
then an even shorter focus would produce even better results. But this is not so.
Moving the second lens to a point where o’ = 15(z3 — f = 5.58 mm) resultsina
smaller dy = 0.600 mm, but d; = 0.759 mm. Thus, there is something special
about the second configuration that was used. This effect is explained by the
concept of conjugate distances.

EXAMPLE 7.G. (a) If the second lens of the combination in Example
7.D is moved from a point where z, — f = 19.2mm to a point where
z5, — f = 3.97 mm, what is the beam diameter at the waist (dg) and where
is it located (z7)?

Solution:

o= __ 89 = 20.

(3.97) + (2)°
dy =20 x 40 x 107° m = 0.800 mm.
2= f + a3z, — f) = 88.9 + 400(4) = 1.69 m.

Thus the spot is 0.8 mm at ~ 1.7 m from lens.

(b) How does the spot size change on a target located at the beam waist
location in part (a) when the lens is moved to a point where z, — f =
4.77 mm?

Solution:

889
JB17)? + 2
dy = 16.8 x 40 x 107%m = 0.672 mm, 6" = 1.19 mrad.

2 = 88.9 + 283(4.77) = 1.44m.

1

16.8.

At the target
z7 =1.69 — 1.44m = 250 mm

and the spot size is

d; = \/(0.672)2 + (1.19 x 1073 x 250) = 0.734 mm,

smaller than when the beam waist was located at the target.
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7.3.1. Conjugate Distance Equations

To illustrate this, some simple differentiation is necessary. However, if you are
not familiar with calculus, the end result of this short derivation is still of use. In
Fig. 7.10 we have set up the geometry for this derivation. Let d, be the diameter
of the beam at a fixed distance » from the exit pupil of an optical system. The
angle subtended by the spot at that distance is f = d,/r. While r is fixed, z, and
z, are not (i.e., the beam waist can be anywhere between the exit pupil and the
target). The basic relations are (all of the primes on the variables have been
dropped):

r=2z;+ z,,
dZ =\/dg +0222’
/3=fi£ Jd¢ + 6%22

=y 72 (7.41)

r zZ, + 2z,

Since we wish to minimize f, let us take the derivative of § with respect to z, or
z, and set it equal to zero:

g1 20%z, ( 1 >_~/d§+0225_0
dz, 2  Jd? +6%22 \z; + 2, (z; + 2,)° '

Rationalizing, we obtain

0%z,(z, + z,) = dg + 0722

2 _ g2
0%z,z, = d§

and
dz
2,2, = 0—‘; =z}, (7.42)
|
Pupil \—
diameter
d1
—'T_r
l 14

Figure 7.10. Geometry for the derivation of conjugate distances.
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Thus, the minimum spot occurs when the product of the two distances (pupil
to waist (z,) and waist to target (z,)) is equal to z2. When related in this manner,
these two distances are called conjugate distances. The other distinguishing
feature of these conjugate points is that the radius of curvature of the wavefront
R is the same value for both points except for a change in sign and it is equal to
their sums. That is,

R =|z,| + |z, (7.43)

The benefit of analyzing a Gaussian beam system by computing and using
the conjugate points is that one can calculate optimum values on the basis of
input parameters. One can show that beam diameters at the conjugate points
are related by

4)R
dyd, = HR (7.44)
T
and that [Problem 7.14]
dz 2
d_d_ 6°R. (7.45)
Zy 2z,

Although the optimum focal length for a lens may not be equal to the lens—
target distance, in the case of tightly focused beams for cutting or welding
(zg < z,), z, is so small that one might as well consider the conjugate point at
the beam waist [Problem 7.15]. But in cases of scanning systems and
collimating problems, the conjugate point can be removed a considerable
distance from the waist and this must be taken into account in a design
problem. The most extreme case is the Gaussian relay case, where z, = z, = z,.

7.3.2. Calculation of Conjugate Distance Parameters

There are two general cases that should be considered. The first of these cases
assumes that the size of the new beam waist or the focal length of the lens and its
position are known. With either condition the value of a can be calculated.

Since z, is already known and 2z}, = a?z,, the product of the conjugate distances
is found from

242y = zi¥ = a*z}. (7.46)

Also, since

Zy=f+oaXz, — f), (7.20)
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z3,d5, and R’ can be easily determined [Problem 7.16]. Beyond a certain point
it does little good to carry out the calculations if « is small and z;, > zj. In such
a case z, = zj¢/zy < z| and we may as well set z, = 0 and z|, = R. But, even if
4 is substantial, the calculations are simple.

The more difficult case to compute is one in which only the target distance,
which is equal to R, and the beam diameter at the exit pupil, d; (=d,), are given.
Using Eq. 7.44 one can immediately check to see if the value of the spot at the
conjugate point d5 is small enough for the application at hand:

_ 4R

d, = .
2 nd]

This can be used to find the ratio of the conjugate distances z,/z,. Using Eq.
7.45 and setting the ratio equal to y, we obtain

‘ '\2 4AR'\?
y = Z_,z = (Z-j"’-) = (ﬂ_—d{f) . (7.47)
1

Zy

The quantity y is useful in determining how important the effect of conjugate
distances is. We can express z| in terms of y:

’

! ! ! !
zy =R —z), = R’ — yz,

(7.48)

If y < 1, we can ignore the effect of conjugate distance and set z; = R’ and
z, = 0. Note that y = (4AR/nd?)? is a product of the initial quantities and thus
can be determined first. If, however, y is determined to be close to or greater
than unity, then zj can be determined from (zz)* = z{z} = z{-yz'; = YR'(1 + v)
and from this one can calculate that « = /zy/z [Problem 7.17].

74. LASER BEAM ILLUMINATION

Although most of this chapter has been concerned with finding the beam
parameter relative to the waist region, not all problems require that the beam be
focused on the surface in question. In some applications such as annealing and
surface hardening, it is not necessary or useful to place the target at the beam
waist. Such considerations as uniformity of illumination and tolerance of
placement will play a part in the final design. It may be necessary to determine
irradiance distribution in three dimensions to determine the best set up for a
particular application.
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7.4.1. Best Case Illumination

In contrast to those problems in which conjugate distances cannot be ignored,
there are those in which the y is small, and the new beam distance is
approximated by zj, = R’ = f and d) = d,. These approximations in Eq. 7.44
gives

4AR'  4Nf

d’ﬁd’=—=—.
° T qdy T nd)

(7.49)

We see that, up to a point, as the lens is filled (4} is made larger), the spot
becomes smaller and thus the peak irradiance increases. Beyond this point the
lens is overfilled and the focus spot begins to take on an Airy diffraction pattern
(Section 1.7.3). In this region the spot size is the diameter of the central spot of
the Airy diffraction pattern:

Af

dy =244, (7.50)
D

OAiry

where D is the diameter of the focusing lens. The problem is this: If the lens is
underfilled (d; < D) then the spot size will not be a minimum, yet the lens is
overfilled (4}, > D) then there will be a loss of power through the lens. Obviously
there is some maximum point where the beam irradiance at the focus is a
maximum.

Following Rhyins (Ref. 7.5) we define a truncation ratio as k = dj/D. That is,
when k = 1, the 1/e? points on the Gaussian beam are at the edge of the lens.
For k < 1 the lens is underfilled; for k > 1 the lens is overfilled. Comparing the
Gaussian and Airy cases:

1. Gaussian case. d, = kD, where k <1, dy = 4/nk-Af/D = (1.27/k)AF,
where F = f/D, the f-number of the lens. Because the lens is underfilled, the
power through the lens would be, except for reflection losses, the total
power in the beam P,. Thus the irradiance of the spot is (using Eq. 7.49):

4P, 4P, nk?Py P,
I= nd? 16 , ., 4\2F*" ¥R (7.51)
T X —=A°F
n’k

as plotted in Fig. 7.11 in the region k < 1.

2. Airy case. dy = 2.44)f/D = 2.44)\F. The power through the lens can be
calculated by integrating the Gaussian distribution over the lens area. As an
approximation, we assume

D> P,D* P,
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dy, P,

Airy spot

Underfill | Overfill \\

0.0 1.0 2.0 3.0
k =dyD

Figure 7.11. Plot of power (P,), spot size () and irradiance (1) as a function of lens filling factor,
k = dj/D (d, = Gaussian beam diameter at the lens; D = lens diameter). kK < 1 corresponds to
an underfilled lens; k > corresponds to an overfilled lens.

Since the spot size is constant, the irradiance is approximately

_ 4P, 4 P, 4 P, 1 F

I= iz =z e~ o aairE - @ 2P

(1.53)

as plotted in Fig. 7.11 for the region k > 1.

Thus in both regions the irradiance falls off as the truncation ratio departs from
unity. More precise caiculations show that maximum irradiance occurs at
k = 0.93, a slight underfill. However, with this illumination, the spot has Airy
rings and these may not be acceptable in certain applications. So the decision as
to the size of a lens and the filling of its exit pupil is one that rests with the details
of the application (including cost). In those cases where the Gaussian profile
must be preserved, the lens must be underfilled to prevent any substantial
diffraction due to the edge of the lens. As a rule of thumb, the beam diameter at
the lens (d}) should be less than 3 of the lens diameter (Ref. 7.6) corresponding to
a truncation ratio of k = 0.625 [Problems 7.18 and 7.19].

7.4.2. The Irradiance Distribution of a Gaussian Beam

Equation 7.4 describes a boundary of the Gaussian beam, the hyperboloid of
revolution for the focus of irradiance point of 1/e? of the axis irradiance. This
does not give a complete picture of the irradiance variation in the vicinity of the
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beam waist. The irradiance distribution there can be described by an expression
in terms of dy and zg:

_ Iy exp(—(2d%/d5)/(1 + (2%/z}))
N 1+ (z%/22)

I(d, z) (7.54)
where I, = I(0, 0), the irradiance at the center of the beam waist. A plot of the
lines of constant irradiance (isophotes) is shown in Fig. 7.12. Note that thereis a
change in the character of contours from an elongated ellipsoid to a “dogbone.”
This inflection point occurs when I/I, = 1/e = 0.36788. In terms of optical
design, any effect that has an irradiance dependent threshold, such as in a
photographic medium, will be more tolerant of a shift of the target out of the
focus area if the beam power is adjusted to maintain the threshold value at
~37% of the central irradiance. The distribution shown here and the equations
given here are for loosely (as opposite to tightly) focused beams; beams for
which 6 < 4 rad (or 14°).

7.4.3. Beam Shaping

For some applications a circular Gaussian beam shape is not the most effective
irradiance distribution. There are a number of methods of converting beam
shapes from one form to another. The first of these, the cylindrical telescope, is
used in some of the beam deflection schemes described in Chapter 8. In acousto-
optic deflectors, the beam must be expanded and collimated, but only in one
direction. If negative and positive cylindrical lenses are arranged to form a
one-dimensional Galilean telescope, as shown in Fig. 7.13(a), the beam can be
expanded and recollimated in one direction, while the original beam divergence
and small beam cross sections are preserved in the other direction. It might
seem easier to just use standard spherical lenses and expand the beam in two
dimensions, but the economics of the beam deflectors require that the beam
remain small so that it can pass through a thin slab of deflector material.
Obviously, any telescope, when reversed serves as a beam compressor.
Remember, however, that even though a telescope can compress and recol-
limate a beam, the divergence increases with decreased beam waist diameter.
The restriction on the d,6 product holds.

Another device for changing the beam size in one direction is the prism beam
compressor (Ref. 7.7). Two prisms, arranged as shown in Fig. 7.13(b) reduce the
beam width by refraction at the second slanted interface. If the refractive indices
of the prisms are n, and n,, the compression due to the first prism oriented at
the Brewster angle (Section 1.6.1) ¢, = d,/d, = 1/n, [Problem 7.20] and that
due to the second prism, ¢, = 1/n,. The overall compression is the product of
the two compressions and thus the product of the reciprocals of the two
refractive indices,

(7.55)



(b)

Figure 7.12. Irradiance distributions of Gaussian Beams near a beam waist. (a) Contours of equal
irradiance for three orders of magnitude; (b) between 0.1 I, and I,.
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d1 dz

[

Figure 7.13. Beam expansion and compression. (a) One-dimensional telescope of cylindrical
lenses used as a beam expander, (b) A two-prism beam compressor. Reversing the direction of light
propagation changes the device from an expander into a compressor.

(b}

It is possible to arrange the prisms so that the output beam is parallel to the
input beam. Since the prisms are cut to work at the Brewster angle, reflection
losses are reduced. Some advantages to this assembly are that it is less costly to
construct and more compact than a telescope, especially for modest compres-
sion ratios. Although the system can be used to vary the compression ratio by
changing the angles of the prisms relative to the beams, this is done at the
expense of reflection losses, especially if the surfaces where the beam is normally
incident are anti-reflection coated. As was noted with the cylindrical telescope,
the function of the system can be reversed by reversing the direction of the
beam. The beam compressor is turned into a beam expander.

The two examples given above produce a fan-shaped beam, a beam with
different divergences in two orthogonal directions. The beam spreads more
rapidly in one dimension than in the other dimension, that is, 6, is § times larger
than 6, (6, = p6,). This same situation is present in most semi-conductor diode
(injection) lasers. In many designs it is necessary to convert the fan-shaped beam
into a circular beam, with the same divergence for both dimensions. One
method would be to use a cylindrical telescope or prism beam compressor to
increase or decrease the divergence in one beam direction to match that of the
other direction. Another method, shown in Fig. 7.14, uses a hybrid system,
composed of both cylindrical and spherical lenses. Here a cylindrical lens
increases the divergence of the beam in the more collimated direction to that of
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Figure 7.14. Hybrid system. A cylindrical diverging lens is used to diverge the more collimated
of two divergences in a fan-shaped beam. A spherical lens then collimates the divergent beam.

Collimated beam

beam in the less collimated direction. That is: 8, = 6, = p0,. The lens must
increase the divergence of 6, by B. Since « = 6/6" and 6, = B0,, a, = 1/8. In
addition, since a circular beam cross section is desired, the cylindrical lens
should be located at a point where d,, = d,,. It can be shown that this location
is zy, = Pzg,. Since the divergences in the two directions are different 6, = f0,,
so are the Rayleigh ranges. One can easily show that

Zg, = B?2g,. (7.56)

The Rayleigh range of the more collimated beam direction is large compared to
the other direction, so that the cylindrical lens used to increase the divergence
by f times would be inside of zg,. Thus the simple approximation of a short
focal length lens inside the Rayleigh range can be used. For that case, = f/z,
and a, = 1/B determine the focal length of the lens: f, = zp /B = B*zr./B =
Bzg., where we have used Eq. 7.56 for the second equality. Once the divergences
of the beam directions and the emerging beam diameters are the same, a
spherical lens can be positioned, as in the collimation case, at z, = f + zy, to.
produce a collimated spherical beam.

In some cases, (e.g., the diode laser), not only are the divergences different,
but the location of the beam waists d,,, d,, are different. In this instance
additional cylindrical lenses must be used to produce a common beam waist
location and divergence (Ref. 7.8).

7.4.4. Flat-Top Distributions

Another irradiance distribution that is useful in some applications is the “fiat-
top” distribution, a variation across the beam that, at one edge, rises rapidly,
remains constant across the center of the beam and falls just as rapidly, as
shown in Fig. 7.15(a). If this distribution is rotationally symmetric about the
beam direction, it is sometimes referred to as a “top hat” distribution, since a
three-dimensional plot of irradiance in the X, y plane resembles a top hat (Fig.
7.15(b)). There are a number of different methods of producing this distribution.
The simplest method is to use a mask to absorb or reflect the center of the beam
and the edges of the beam. This method is inefficient since it reduces the total
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Figure 7.15. Non-Gaussian distributions. (a) Flat-top distribution; (b) Top-hat distribution.

energy in the beam. It also is difficult to use with high power lasers that could
damage the mask. The work region must be located close to the mask, otherwise
the distribution caused by diffraction will change in the far field.

One ingenious device that suffers only one of the drawbacks of the other
methods (difficulty to produce) is the phase grating. The idea behind the phase
grating is that a flat-top distribution in the far field is produced by an electric
field distribution that has-the form sin ¢/¢, as shown in Fig. 7.16(a). If a
Gaussian beam illuminates a phase grating, a distribution of transparent
material, which retards some parts of the beam by 180° with respect to the
other parts, the transmitted electric-field amplitude will resemble the sin ¢/¢
function. In the far field, the distribution will close to a flat-top distribution,
Fig. 7.16(b) (Ref. 7.9). By changing the periodicity of the grating and reducing
the retardation to 144°, the flat-top distribution is enhanced. By combining
the phase grating with a prism beam compressor a narrow flat-top distribution
can be produced in the far field. Finally, it should be noted, a phase grating
can be used to approximate other distribution. Since the relation between the
phase grating output and the far-field pattern is that one is the Fourier transform
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Figure 7.16. Binary phase grating. In an ideal system (a), a beam with an amplitude variation of
sin ¢/¢ near a diffracting aperture will, in the far field, produce a flat-top irradiance distribution.
An approximation (b) may be produced by illuminating a binary phase grating with a Gaussian
beam.

of another, one must determine the closest phase grating approximation to
the necessary output and construct a grating to produce it.

7.5. HIGHER ORDER MODES

The Gaussian beam is not the only irradiance distribution of radiation that can
be produced by a laser, but it is the most fundamental. The resonant cavity
referred to earlier may be able to support a number of other stable distributions,
or modes, but none are as compact as the Gaussian beam and all contain nulls
(regions of no radiation) within the irradiance distribution. The Gaussian beam
is also called the TEM,, mode, a notation taken from the descriptions of
electromagnetic field distributions in microwave cables and cavities. The other,
higher order modes are labeled TEM,,,, where either m or n or both are greater
than zero. In Fig. 7.17 there are shown a number of these distributions along
with the TEMg, mode. Note the null lines in the distributions of the higher
order modes. Calculations based on the electromagnetic field equations show
that their intensity variations are described by polynomial functions multiplied
by a Gaussian. A number of these have been plotted in Fig. 7.18. The



HIGHER ORDER MODES 265

Figure 7.17. Transverse mode distributions.

descriptions of the propagation of higher order modes parallel those of the
TEM,, modes, and many of the results can be derived by using the TEM,,
mode values (Ref. 7.2).

For a higher order mode TEM,,, the beam spot size is a best fit to a rectangle
of dimensions d,(0) by d,(0). There is a relation between the spot size and the
divergence for higher order modes similar to that for the fundamental mode
(Ref. 7.10).

L0 = 2 0m 41, (7.57)
408,y = 20n + 1) (1.570)

where d,,,(0) and d,,(0) are the beam diameters at z = O for the m and n orders
respectively and

d,(0) = \/2m + 1d,, (7.58a)
d,,(0) = \/2n + 1d,, (7.58b)
0,, = /2m + 16, (7.58¢)

0, =./2n + 16, (7.58d)

¥



266 GAUSSIAN BEAMS
n=2

' do,,

_—/ —

Figure 7.18. The profiles for higher-order modes. These are products of a Gaussian distribution
and a polynomial (Hermite) function.

and d,, 0 are the TEM,, mode values [Problem 7.21]. Thus higher order modes
have a larger spot size and divergence, but, by definition, the Rayleigh range

=]
—
S

)

remains the same. One difficulty with this measure of higher order mode spot
size is that most of the energy is outside of the rectangle of dimensions d,,,(0) by
d,(0). A practical alternative definition for higher order mode beam dimensions
is the distance between the outermost radiance peaks (e.g., n» = 10 in Fig. 7.18).

PROBLEMS

7.1. If the beam waist diameter of a TEM,, output of an argon laser
operating at the 514.5 nm line is 1.5 mm, what are the divergence and
Rayleigh range of the beam?

7.2. Derive the stability condition for laser resonators, 0 < g,g, < 1, based
on the definitions of g, and g, given in the text and the requirement that
2
z5 > 0.

7.3. A laser has mirrors whose radii of curvature are 3.33m and —1.5m. If
they are 1 m apart, where is the beam waist located and what is the
Rayleigh range?

74. A dye laser operating in the TEM,, mode at 620 nm has a full angle
beam divergence of 1.2 mrad. The beam is to be focused to a diameter of
32 ym. Assume the initial beam waist is at the output mirror of the laser.

(@) Ifa 32-mm focal length lens is chosen, where should it be located ?

(b) If a lens must be positioned 160 mm from the beam waist of the
laser, what focal length is needed to produce the 32 pm spot size
and where would the beam waist be located ?
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7.5.

7.6.

7.7.

7.8.

7.9

7.10.

7.11.

7.12.

7.13.

7.14.

A 100-um beam waist must be positioned 7.5m from a CO, laser
(4 = 10.6 um) which has a divergence of 10 mrad. Find the focal length
of the lens needed to accomplish this. (Assume beam waist is at the
output mirror.)

A helium—cadmium laser (1 = 442 nm) has a full angle divergence of
0.562 mrad. A positive lens is to be used to produce a 10 pm spot at a
distance of 50 mm from the beam waist which is located at the output
mirror of the laser. What is the focal length of the lens and where should
it be placed?

Determine the relay geometry for two cases other than those given at the
end of Section 7.2.3. (a) z, = 3f/2 and (b) z, = f/2. Express the distance
between beam waists in terms of z,.

Show that (a) the Rayleigh range is a maximum when z, = f and that (b)
a refocused Gaussian beam has a maximum lens—waist distance, z,
when z, = f + z;. Note that z, is always positive.

Plot the beam waist position as a function of lens position along the
beam axis in the vicinity of z;, = f, + z (collimation point). Show that
the collimation point is located at z] = f, + z.

What is the maximum collimation distance for an argon ion laser
operating in the deep blue at 457.9 nm with a 2 mm beam diameter given
a 10x telescope made up of a +5 mm lens and a +50 mm lens?

A Gaussian beam whose wavelength is 442 nm and divergence is 3 mrad
has its divergence increased by a thick plano-convex lens whose flat
surface 15 cm from the beam waist faces the input beam, whose second
radius of curvature is —30 mm, whose refractive index is 1.61 and whose
thickness is 7.5 mm. What are the new beam characteristics and where is
the new beam waist located? Use a paraxial calculation. How do these
compare to a thin lens ray trace for an equivalent lens?

A 10 x microscope objective (f = 16 mm)is used to focus a helium-neon
laser beam into the center of a 100-um thick specimen (n = 1.359)
mounted on a microscope slide of crown glass (n = 1.517). If a 0.5-mm
thick cover glass (crown, n = 1.517) is laid on the specimen, how will this
affect the focus? Use the paraxial form to determine the effect.

Compare the results (d, 6, zg) of focusing an argon laser {1 = 488 nm)
beam (0 = 1.2 mrad) with the lens in Example 5.A as a thick lens using
the paraxial treatment with that of a thin lens. The lens is 75 mm from
the laser beam waist.

Using the expressions for d,d,, R, and the conjugate relation z,z, = z%,
derive Eqs. 7.44 and 7.45.
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7.16.

7.17.

7.18.

7.19.
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Show that under the conditions of a strong focus: z; < z,, that the other
conjugate distance z, is effectively located at the beam waist.

Using the equations presented in this chapter and the conjugate
condition, 7,7z}, = zj, show that for a beam refocused by a thin lens of
focal length f, that the conjugate variables in terms of the original beam
variables d,, z,, zg are

. i
2 [(zz—f)2+z§][z§+z§—fzz]’
o 45f25 + 27)
2 [z% + 2122 —fzz]z,

. J@ +z)
R T2t 2~ fr,
2 R 2

You are contracted to produce a laser show at an amusement park.
Unfortunately, the best area for exhibit is a large sheet of cloth on the
side of the park’s star attraction, a roller coaster called “The Great
National Screech Machine.” The management would like to know how
small of a spot you are going to project onto the sheet. To produce the
size of display you want, you have to be 250 feet from the surface. The
largest scanning mirrors you can use without slowing down the display
noticeably are 10-mm-diameter mirrors. If you have a 5-watt argon ion
laser whose output beam diameter for 1 = 488 nm is 1.2 mm, what is the
smallest spot you can project and what is the irradiance at the center of
the spot? Is it useful to use conjugate distances here?

A helium—neon laser (A = 633 nm, 6 == 0.8 mrad) is collimated by a 10
power telescope to illuminate a circular scanning mirror. How large
must the mirror be so as not to change significantly the Gaussian
profile?

A 10 power microscope objective (f = 16 mm) is used to converge a
laser beam to a spot and then diverge. Variations and deviations
in the irradiance of the beam profile causes light to be directed away
from the central spot and into an area some distance from it. If a pinhole
of the appropriate diameter is inserted at the beam waist, the Gaussian
beam will be transmitted while light due to the non-Gaussian irradiance
variation will be blocked leaving a smoothed Gaussian beam. This
technique is called spatial filtering (Ref. 7.11). Assuming that a helium-
neon laser (A = 633 nm) has a 1 mrad divergence, what is the diameter of
the smallest pinhole that can be used to filter the beam without intro-
ducing Airy rings into the pattern ? Show, in general, that for a laser witha
Imrad beam divergence, the product of the power of the lens
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(¢ = 160 mm/f) and the diameter of the pinhole in microns is approxi-
mately 250 micrometers. (The power of a microscope objective, as
defined here, is a dimensionless quantity.)

7.20. Show that the compression in dimension of a beam diameter by a prism
oriented at the Brewster angle 0 is equal to the reciprocal of the
refractive index of the prism.

7.21. How much larger is the beam area at a distance of 10 m from a laser that
is tuned to TEM 4, than one tuned to TEM,,?
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Modulation and Scanning
(PUSHING A LASER-BEAM AROUND)

Until this chapter we have been concerned with the behavior of light in optical
systems consisting of passive components, lenses, mirrors, and beamsplitters,
that redirected or reformed the wavefronts. In all cases, the wavefront at a point
in the system was constant in space and time. Now we will consider active
components, components that can change the direction or amplitude of light as
a function of time.

The intent of this chapter is to give a description of each technique and the
limitations in the hardware that is used. The discussion should enable you to see
the major considerations that must be addressed and provide guidelines for
choosing between alternative approaches to a design. One of the difficulties
presented by this subject is that the discussion is related to hardware, which is
constantly being improved. Not all devices can be covered in a short chapter.
Although most of this chapter will explore the modulation and scanning of laser
beams, many, if not all, of the principles can be applied to imaging systems. The
modulation of light, which will be explored first, will lead directly to scanning
applications and finally to an example that includes both.

8.1. MODULATION OF LIGHT

The modulation, or control, of the irradiance of a beam or image can be
represented schematically as in Fig. 8.1. A continuous source of radiation emits
light that passes through a modulator; a signal sent to the modulator is
impressed upon the light by causing some property of the light to vary in time.
A simple signal, such as the square wave shown in the figure, helps to illustrate
two basic characteristics of a modulator: contrast, or extinction ratio, and
frequency response. Both of these characteristics measure the ability of the
modulator to faithfully reproduce the input signal on the transmitted light
wave.

The contrast refers to the depth of modulation on the beam compared to the
signal modulation. Contrast may be expressed as it was in Section 6.5:
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Figure 8.1. Modulation of a light beam.

where I, and I ;. are the maximum and minimum values of the modulated
signal as shown in Fig. 8.2. Obviously if the contrast falls below a certain value,
which usually depends on the noise in the system, the signal imposed on the light
beam will be difficult to detect. Another way of expressing this same quantity is
to give the ratio of the irradiance at maximum transmission in arbitrary units to
that at minimum transmission, or extinction. This is usually expressed as a ratio
such as 100:1, meaning the background signal is 1% of the maximum
transmitted value.

In the modulation of light the frequency response refers to the ability of the
system to reproduce a time-varying signal just as it does for other signal bearing
systems. As indicated in Fig. 8.2, this property can be measured by the rise time
of the system, the time 7, it takes for a signal to go from some low value (such as
10%;, of maximum signal) to some high value (such as 90%, of maximum signal). It
may also be expressed by a frequency, which is the reciprocal of the rise time
(v = 1/T,). While this single number may be useful, it does not fully characterize
the response of a modulator. Perhaps the best description of the operation of a

Figure 8.2. Parameters of a modulated signal.
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modulator is a frequency response curve, a plot of contrast versus the signal
frequency, as shown in Fig. 8.3. Thus the signal shown in Fig. 8.2 could be
represented by point A on the curve at frequency v’ with contrast C'. Using this
type of plot, the maximum frequency response of the system is determined by the
minimum required contrast in the design. For example, if a contrast of
C" = 159 were needed then the maximum frequency response of the system,
based on Fig. 8.3, would be v". In addition to the above characteristics, the
throughput (see Eq. 3.14), the power capacity, and the wavefront distortion of a
modulator must be considered.

There are a number of properties of the electromagnetic wave that can be
used in controlling the irradiance of a light beam: direction, polarization, phase,
and amplitude. All of these will be used in some form in the modulators
described here.

8.1.1. Source Modulation

In some systems the source itself is modulated. Usually these are not in-
candescent sources, since the maximum frequency response of an incandescent
source is very low. This is because changes in light output are controlled by the
thermal conductivity and heat capacity of the heated metals. Gas discharge
sources including gas lasers can be modulated more rapidly. Limited by atomic
collision processes, a gas laser can be modulated to about 500 kHz; this value
varies with the type of laser and the excitation-versus-output curve. In
comparison to the gas discharge lasers, semiconductor diode lasers can be
modulated quite rapidly. Most commercial devices have rise times in the
neighborhood of 10 nsec (100 MHz), but special devices can be obtained with
frequency responses beyond the 30-GHz range.

In addition to direct modulation of source excitation, there are a number of
methods involving intervention in the lasing process. Techniques known as
modelocking and cavity dumping can provide nanosecond and picosecond long
pulses at rates beyond 40 MHz. The actual repetition rate is governed by the
length of the laser and is usually some submultiple of the frequency of oscillation
of a light pulse traveling in the laser cavity, v, = ¢/2I (I, the length of the laser).
Normally this pulsed output is further modulated by techniques to be discussed

100%

50% [—

15% pm

{
- 0 v’ »" Y Figure 8.3. Frequency-response curve.
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later. The advantage of such a combination is that it provides narrow pulses of
high peak power, yet it only requires modulation at the much slower repetition
rate of the pulse train. For further details, the reader should consult texts on
laser operation for general principles (Ref. 8.1) and the specifications of
individual laser systems for operating values.

8.1.2. Mechanical Modulators

For many years ship-to-ship signaling was done using a hand-operated shutter
in front of a bright light. While the contrast was excellent, the frequency
response was usually limited by the abilities of an operator to send Morse Code.
Current mechanical modulators are mainly used to put a periodic signal on a
beam. For example, many signal-sensitive, background-rejecting amplifiers
(fock-in or phase-sensitive amplifiers) use some form of “chopper” to impress a
frequency signature on a signal in the presence of extraneous radiation. The
simplest of these is a slotted rotating wheel in front of a slit through which the
light passes. Its advantage is its simplicity. By placing an LED and detector
combination on opposite sides of the wheel, a reference signal can be easily
generated. Obviously the frequency response of a motor-driven chopper is
somewhat better than the early ship-to-ship signal device, but it leaves a lot to be
desired. It shares a disadvantage common to all higher-frequency mechanical
modulators; the modulation signal is confined to a single modulation frequency.
In the case of the chopper, it equals the number of slots in the wheel times the
rotation frequency of the motor. Another disadvantage of a chopper modulator
is that it is bulky because of the motor and slotted wheel.

An alternate device that can be used for mechanical modulation is a
mechanical scanner operating in a resonant frequency mode that directs light
into the vicinity of a narrow slit. The exact form the modulation takes depends
on the scanner, the shape of the beam, the slit, and any beam focusing optics. In
Fig. 8.4 two modulation schemes are illustrated. In the first, a collimated beam
is scanned across the slit to produce a quasi-sinusoidal signal. The exact

('L_J___x(

(a) (b)

Figure 84. Mechanical modulators. (a) Quasi-sinusoidal modulation, (b) Square wave
modulation.
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modulation of the beam will depend upon the shape of the beam on the slit
(uniform, Gaussian), the motion of the scanner (sinusoidal, sawtooth, ramp), and
the shape of the aperture (pinhole, slit). The second scheme produces a square
wave signal since the beam is focused onto the slit plane. If the slit is larger than
the focus spot, the output will be a square wave whose rise time is approximately
equal to the spot size at the slit divided by the beam scanning velocity at the slit.

These scanning mechanical modulators are smaller than most choppers and
have a higher oscillation frequency. Although the scanning frequencies can be
changed, they are usually fixed and are in the neighborhood of a few kilohertz.
One must take into account the beam motion in the fixed slit device and the
divergence of the light beyond the slit for the square-wave-type devices. These
devices are somewhat more expensive than simple choppers. Thus mechanical
modulators, whether rotating wheel choppers or scanner-slit combinations, can
be used in optical design to produce square wave or near-sinusoidally modu-
lated light beams in a simple and relatively inexpensive manner.

8.1.3. Electro-Optic Modulators

The concept of birefringence has been described in Section 1.6. In that section
we assumed the amount of birefringence was set by the index of birefringence,
[Pext — Moral, and by the axes along which the crystal was cut. For example, by
choosing to cut the crystal with optical axis in the plane of the plate and with a
thickness d whose product with the index of birefringence equals a quarter
wavelength of light, a quarter wave plate can be constructed. With the
appropriate input polarization, linearly polarized light is converted to circularly
polarized light with this device. By doubling this thickness a half wave plate, a
polarization rotator for linearly polarized light can be made.

Since the retardation is the product, d|n,,, — 1.4, an easy method of varying
the transmission is to vary the index of birefringence. There a number of liquids
and crystals called electro-optical materials which, when a voltage is applied,
will become birefringent. The degree of birefringence depends not only on the
particular material but also on the strength of the electric field in the material.
Thus, applying a voltage to an electro-optical material creates a variable wave
plate that modifies the polarization of the incident light. If incident radiation,
linearly polarized, either because of its origin (as in the case of many lasers) or
passage through a polarizing filter, traverses a variable wave plate, the amount
of light transmitted by a polarizer located after the wave plate and crossed to the
original polarization direction will depend on the phase difference introduced by
the waveplate. Thus the amount of light passing through the system is
modulated by the applied voltage. Figure 8.5 shows a sequence of states of an
electro-optic modulator. The curve of transmission versus applied voltage,
shown in Fig. 8.6, is given by

—rsin = 8.2
I = I;sin [2 VAIZ], (8.2)
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Figure 8.6. Transmission of an electro-optic modulator as a function of voltage impressed on
the crystal.

where V), the half wave voltage, is the voltage that produces a 180° phase
difference. Obviously the curve is nonlinear. To obtain an approximately linear
response, the system is biased at V4, the quarter wave voltage. This can be done
electrically or it can be done optically by making the incident polarization
circularly polarized through the combination of a linear polarizer and a quarter
wave plate [Problem 8.1].

The frequency response of electro-optical modulators is considerably greater
than that of mechanical modulators. It is limited by the RC time constant of the
electrical circuit, the capacitance is due largely to the capacitor formed by the
electro optical material sandwiched by the electrodes. The contrast of these
modulators is limited by the extinction coefficient of the crossed polarizers.
Together with the high voltages needed to provide the degree of birefringence,
the relatively small attainable contrast ratio constitute the major disadvantages
of an electro-optical modulator. When incorporating these devices into an
optical design, care must be taken to see that the transmission properties and
optical quality of the materials and the limiting apertures of the medium do not
conflict with other requirements for the system.

8.14. Acousto-Optical Modulators

To understand acousto-optical modulation, it might be useful to return to
Chapter 1 to review the material on diffraction gratings. In the case of normal
incidence the light is diffracted according to the grating equation

mA =dsinf, (m = an integer) (1.34)

where 0, is the angle of diffraction and m is an integer. If the periodic variation in
the grating profile is sinusoidal, only the zero and first orders (m = 0, 1-1) will
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occur. For non-normal incidence, Eq. 1.34 is modified to include the angle of
incidence (Fig. 8.7):

ml = d(sin 6, — sin 6,) m=0, +1 (8.3)

If the grating is a three-dimensional structure, a series of equally spaced planes,
the constructive interference condition becomes more selective. The interference
of radiation due to three dimensional grating is known as Bragg diffraction. A
strong maximum occurs only if the angle of diffraction is equal to the angle of
incidence (6; = —8,), giving form = 1,

A = d(sin 8; — sin(—8,)).
A =2dsin6,. (8.4)

This is the same Bragg equation used to analyze the results of x-ray diffraction
from atomic planes in crystals.

Most diffraction gratings consist of rows of grooves in a material or a series of
alternating transmitting or nontransmitting lines. However, any periodic spatial
variation of the refractive index of a medium can also act as a grating. For
example, if pressure is applied to a medium, the refractive index of the medium
will change by some small amount. If this pressure is applied sinusoidally by
sending a single-frequency sound wave through the medium, the moving
sinusoidal refractive index variation that is produced in the material will act as a
grating (Fig. 8.8). When the transverse extent of the sound wave is much greater
than the wavelength of the sound, the sound waves in the medium serve as a
Bragg grating, and light passing through it is subject to Bragg diffraction.

As an example, an ultrasonic sound wave at a frequency of 40 MHz is
propagated through a block of fused quartz, whose sound velocity is 6 km/sec.
The wavelength of the sound is then

13
A=%=6X 0 m{:sec=150um.

Figure 8.7. Diffraction of light by a sine
grating.
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Sound
absorber

Figure 8.8. Diffraction of light in an
acousto-optic modulator.

This spacing between compressions or rarefactions of the medium represent the
grating constant of the thick grating created by the sound waves, thatis,d = A
in the grating equation. The deflection angle 8, can be found from

sin, = (8.5)

ﬂ-

If a helium-neon laser (A = 0.633 pm) beam is incident upon this grating, some
of the beam will be deflected through an angle 20,, where

: A 0633 x107°m
sin Bd = 5]{ = m = 0.00211.

Since sin 0, is small, sin §; = 0,, and
20, = 0.00422 radians
= 4.22 mrad

= 0.24 degrees.

As one can see, the diffraction angle is quite small in this case, but it is sufficient
to create the modulation we require. (Note that the vacuum wavelength was
used in the above calculation. It can be shown [Problem 8.2] that this is stiil
correct after the beam has excited the acoustic medium, by using the law of
refraction.)

If no ultrasonic wave is present in the medium, no light will be diffracted. As
the sound-wave amplitude is increased, the amount of light diffracted into the
first order increases. Thus, by modulating the amplitude of the ultrasonic wave
the light beams (both zero and first order) are modulated. Beyond a certain
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sound amplitude the grating becomes nonsinusoidal, and light is introduced
into higher (m = +2, +3,...) orders.

The frequency response of an acousto-optic modulator is usually limited by
the velocity of sound in the medium and the size of the incident light beam. Until
the sound reaches the light beam there is no diffraction of light into the first
order, since there is no disturbance present. The rise time of a signal will be equal
to the time it takes the sound wave to cross the beam, that is, the beam
dimension divided by the velocity of sound in the modulator:

4

Us

T =

r

8.6)

For example, the rise time for a 1-mm diameter beam in a modulator whose
sound velocity is 6 km/sec is 167 nsec. If the beam is focused to a small spot
inside the modulator, the rise time can be reduced further, as shown in Example
8.A.

EXAMPLE 8.A. An acousto-optic modulator is to be used to put a 50-
MHez signal on a light beam. Assuming a velocity of sound of 6 km/sec,
what is the maximum beam diameter in the interaction region?

Solution: To transmit a 50-MHz signal requires a rise time
T, < 1/(50 x 10%) = 2 x 1078 sec
and
d=T, xv,=2x 1078 sec x 6 x 10> m/sec
=12 x107°m = 120 um.

Note that if the beam is a Gaussian beam from a helium-neon laser, we
would want to use the beam waist so that the divergence of such a beam is

42  4x633x10"°m

0=—=
ndy, 7wx12x107*m

= 6.7 mrad.

and the Rayleigh range is d,/6 = 18 mm.

Since the beam is diverging rather strongly in the modulator, the Bragg
condition will not be fulfilled for certain rays near the edge of the beam
and therefore the amount of light diffracted into the first order will be
reduced. (This phenomenon is explored in Example 8.B.)
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EXAMPLE 8.B. An acousto-optic modulator (n = 1.68) has a trans-
ducer length of 55 mm and an acoustic wavelength of 0.1 mm. The input
laser beam has wavelength A = 0.633 pm (helium—neon laser).

(a) What is the ultrasonic beam spread?

(b) What would be the diffracted laser beam profile if the initial Gaussian
beam divergence is 10 mrad?

(c) How much misalignment would reduce the power of a 1 mrad beam
to 509 of the power obtained when the beam is aligned?

Solution:
(a) A minimum in I(«) occurs when
2zLsin of2A = =.

There is considerable reduction when the quantity on the left is equal
to (n/2) (=L sin a)/A = =/2). Thus, the beam spread is given by
sine = A/2L = 0.1 mm/2 x 55mm = 1 mrad.

(b) We assume the input beam has a Gaussian profile with 1/e? points at
+5 mrad. Let this equal 6, so that « = §/n = 5 x 1073/1.68. This
cannot be done in a closed form, but we can find the beam irradiance
at various points and plot the two profiles (see below).

Input Beam Reduction Output Beam
Angle, Irradiance, Factor, Irradiance,
0 I, I(et)/I, I(2)
1 mrad 0.9231, 0.6935 0.6401,
2 mrad 0.7261, 0.1843 0.1341,
3 mrad 0.4871, 0.0003 0.0001,
4 mrad 0.2781, 0.0403 0.011],
5 mrad 0.131, 0.0312 0.0041,

Note that the 1/e? point of the diffracted beam is Z of the input beam.

Note 1/e? of

diffracted beam
is & 2/5 of input
beam.

Input
profile

Output
profile




MODULATION OF LIGHT 281

(¢) Here (sin*)/x* = 0.5 and x = 1.39 rad (from tables or by trial and
error). Hence x = wL&/nA = 1.39 or § = 1.39 nA/arL = 1.35 mrad.
Thus the tolerance on positioning of an acousto-optic modulator can
be severe.

It has been assumed in the above example that the sound waves emanating
from the transducer are parallel waves. Actually, sound suffers the same
diffraction effects as light. In the case of sound of acoustic wavelength A
produced by a transducer of length L, the irradiance of the diffracted beam as a
function of angle falls off as

sin?(2xL sin o/2A)

=1
I0) = Lo = T sinaany? >

8.7)

where sin o represents the angular deviation of the acoustic beam from that
required for Bragg reflection. (If « = 0, then all rays intersect the sound waves
at the Braggangle and I(x) = I, i.e., no reduction of deflected beam irradiance.)
There are a number of reasons why the power of the diffracted beam may be
reduced. They are:

1. A small transducer of length L, resulting in a large acoustic beam spread.
A large divergence of the light beam (Bragg angle only partially satisfied).

3. A misalignment of the modulator relative to the beam by an angle é. This is
equivalent to a beam misalignment in the modulator material of é/n.

We can compute the reduction in irradiance in the first order due to a non-zero
o, whether it is

1. Intrinsic—due to transducer length L (o« = A/L),
2. Intentional—due to large input beam divergence (x = 6/2).
3. Instrumental—due to a misalignment (o = 6/n).

These effects are explored in Example 8.B. Note that in part (1) of the example,
the angular divergence of the sound waves is smaller than the divergence of
the helium-neon laser beam divergence given in part (2). Because of this only
the central portion of the input beam is diffracted out of the zero-order beam,
as illustrated in part (2) of the example (researchers use the appearance of a
black band at the center of the undeviated beam as a sign of good modulator
alignment). Note that in part (3), the tolerancing on the positioning and the
maintenance of alignment must be carefully considered in any optical design.
One further note on item (1) above: For best use of modulator and beam for
modulation, the divergence of the light beam, which can be easily adjusted,
should match the divergence of the acoustic beam.
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TABLE 8.1. Comparison of Modulators

Maximum Visible
Frequency Rise Power
Transmittance  Response Time Capacity
Type ) (MHz) (nsec)  Contrast (W)
Mechanical 100 0.005 1000 < 00 S<
Electro-optic 70 100 10 160:1° 5
Acousto-optic 80 50 25 1000:1 20<

9 The alignment of the electro-optic modulators affects the extinction ratio. This alignment
includes the polarizers and analyzers of the system.

The acousto-optic modulator has a maximum frequency response that is a
large fraction of the ultrasonic frequency, although the contrast is considerably
reduced from that at lower frequencies. Overall the contrast in the diffracted
beam is quite high since the light is diverted into a direction away from the
initial beam direction. A contrast of 1000:1 is not unusual, but care must be
taken with the surfaces and components of the system to prevent scattering light
from reducing this ratio. Table 8.1 lists some of the features of the various
modulators that have been discussed. All of these figures may be improved with
time, so the table should be taken only as an indication of relative modulator
performance.

8.2. SCANNING

Beside changing the power in a light beam, we would also like to be able to
change its direction with time. The ability to scan a light beam is useful in
applications ranging from laser displays to materials processing. After some
basic concepts are examined, mechanical scanning systems, followed by
acousto-optical and holographic scanning systems, are described. (Although it is
possible to scan a laser by internal methods, the method is rather specialized and
is not included here.)

8.2.1. Resolution—The Scan Equation

Scanning can be achieved in a number of ways: mirror galvanometer, rotating
mirrors, and acousto-optical deflectors are among them. For the present all
scanners can be characterized by three numbers. The first is the width of the
scanner mirror or aperture, D, in the direction of the scan. The second number is
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the aperture shape factor g, which determines the diffraction angle A¢ in the
scan direction. That is:

Ap =a (8.8)

A
D

The values of a for a number of different aperture or mirror shapes are listed in
Fig. 8.9. The values for slot and rectangular apertures were discussed in Section
1.7.3 and illustrated as Fig. 1.29. The third number is the maximum scanning
angle. For example, in a mirror scanner, the maximum scanning angle is twice
the mirror rotation angle.

One method of characterizing the quality of the scanning system is to
determine the number of separately resolvable spots that could be produced by
the scanner. By stating it in this manner, the parameter is independent of the
optical system that follows the scanner providing the system does not reduce the
maximum scan angle or cause additional diffraction by reducing the beam size
at some point. The criterion for a resolvable spot is that used by Lord Rayleigh
and was given in Section 1.7.3: the central maximum of one spot falls on the first
diffraction minimum of the neighboring spot. For our case, this can be shown to
be

Ap ~sin Ap = a

. (8.9)

ol >

a, Aperture

shape Scanner
Aperture a
D Rectangular 1
© Round 1.22
Q Keystone 1.5
A Triangular 1.67

Figure 8.9. Parameters of scanners.
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The number of spots N, and therefore the resolution, that the scanner can
achieve is then (Fig. 8.9)

_ total scan angle _ 9 (8.10)
~ smallest resolvable angle A¢’ '
Substituting for A¢,
N9 (8.11)
al

This simple relation is sometimes called the scan equation. It shows that the
resolution is limited by both the source (1) and the scanner (a, ¢, and D) if the
aperture is fully illuminated [Problem 8.3]. If the aperture is not fully
illuminated (also referred to as underfilled), as in the case of laser scanning, then
the beam divergence would be used. Except in some very exceptional cases, the
aperture-shape factor will be a number comparable to those listed in Fig. 8.9,
and the diameter will be the size of the beam within the aperture so the
resolution will be less than in the case of a fully illuminated aperture. The
considerations discussed in Chapter 7 for maximum focused spot irradiance
apply here, although there may be a need to modify the results slightly to take
into account noncircular scanner apertures.

8.2.2. Types of Scanning Geometries

Scanning geometries can be divided into three categories: objective scanning,
post-objective scanning, and pre-objective scanning. The first of these, objective
scanning, is quite simple: move the lens. The method has the obvious advantage
of needing no separate scanner, but only some form of translator to produce the
necessary scan. One example of objective scanning is shown in Fig. 8.10. The
optical axis of a lens of focal length f is located a distance x from a collimated
beam. Because the light is collimated and directed parallel to the optic axis it is
focused a distance f beyond the lens and deflected a distance x onto the focal
point. When the lens is now rotated about the beam axis, the beam focus will
trace out a circle of radius x. Thus, by adjusting the distance between the lens
axis and the beam axis, any size circle smaller than the diameter of the lens may
be traced. More generally, any motion of the optic axis of the lens will produce
exactly the same motion of the beam, as long as the beam remains within the
lens aperture. When this system is used to cut holes in materials processing it is
referred to as trepanning.

In Fig. 8.11 is shown a schematic of post-objective scanning. The beam enters
the focus lens on axis. Beyond the lens, a scanner (here represented by a rotating
mirror) redirects the beam to the target. There are several advantages to this
system and one big disadvantage. The advantages are (1) the diameter of the
focus lens need be only slightly larger than the size of the beam; (2) the scanning
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Beam
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M-~ Motion of lens axis
( N
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“Jlens

Figure 8.10. Objective scanning. This technique
is called trepanning.

mirror can be somewhat smaller than the beam diameter, its size depending on
the position of the scanner with respect to the mirror; and (3) the scan is linear
with the scan angle (L = R¢). The disadvantage is that the scan field is curved.
For many applications, particularly in image scan systems and- materials
processing this characteristic will disqualify this type of scanning.

One means of achieving a flatter field is to use pre-objective scanning. A
simple system is shown in Fig. 8.12. Although it is possible to obtain flat-field
scanning using this system, the requirements on the components are con-
siderably greater. The focus lens diameter must be considerably larger than the

Rotating mirror or
o (\ other scanning device

D Laser \FS
b o = ~
beam V ~
I o ¢y K )‘\Mirror rotation ¢/2
/A AN\ N
T 24N S\
7.7 LA
Focus /7 / W\
lens / /,/ \\\\
10/ AR
1/ R \\\\\
///;“\(ﬁ AN
Yy \

Figure 8.11. Post-objective scanning.
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Figure 8.12. Pre-objective scanning.

beam diameter and well corrected for off axis images. Also, the scan distance is
not a linear function of the scan angle unless care is taken to design a scan lens to
provide for it.

One special pre-objective scanning geometry is the telecentric geometry
shown in Fig. 8.13. In this geometry, the pivot of the scanning system is located
at the front focal point of the lens. This means that the central ray from any
beam will be refracted to a parallel ray by the lens, thus the beams all arrive
normal to the target approximately one focal distance away. For Gaussian
beams the target will remain inside the Rayleigh range reducing the tolerance on
the target position. Notice that although the spot sizes are calculated using
Gaussian beam relations, the beam directions and the scan lengths are calculated
using standard geometrical optics with the central ray of the beam serving as
the traced ray for each angle of the scanner [ Problem 8.4 and 8.5].

fe f ‘LI«‘ f
e —
- - - T ———
Ds e —

Figure 8.13. Telecentric scanning.
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2D scan

Figure 8.14. Two-dimensional scanning using two scanners with orthogonal rotation axes.

As noted earlier, moving the objective lens can provide a limited scan in two
dimensions, covering an area slightly smaller than the area of the lens. For two-
dimensional displays and pattern generation, the other two methods may be
used. An x—~y scanner can be constructed by combining two linear scanners at
right angles as shown in Fig. 8.14. Another method of producing such a scan,
especially for reading or writing two-dimensional information, is with a linear

==

X-scan (

Figure 8.15. Two-dimensional scanning using
a single scanner plus motion of the scanned
medium. The moving medium may be curved
to fit the path of the focused beam.
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scan in one direction plus a target medium moving in an orthogonal direction.
For post-objective scanners, the medium may be curved to fit the focal path, as
shown in Fig. 8.15.

8.3. MECHANICAL SCANNERS

There are a number of different types of mechanical scanners. The choice of the
specific type of scanner depends on the requirements of the optical system. For
example, if an extremely high-speed, repetitive system is needed, a rotary
scanner would be useful. On the other hand, a galvanometer scanner might be
used in a system that required random access to specific points. In the following
section we will look at two types of mechanical scanners, rotary scanners and
nodding scanners.

8.3.1. Rotary Scanners

The simple mechanical scanner is a mirror rotating on a motor shaft. However,
a single mirror, even if silvered on both sides will be unusable for a considerable
portion of any rotation period. In place of a single mirror, one can use a series of
mirrors attached to the faces of a symmetrical polyhedron to provide additional
sequential reflecting surfaces. A variety of these mirror prisms is shown in Fig.
8.16.

Assuming the motor provides a constant angular velocity with a nearly
wobble-free shaft rotation ( < 3”/arc), the performance of a mechanical scanner
is determined by the precision of the construction of the mirror prism. The
specification of the mirror prism for a rotary scanner, or the evaluation of a
manufacturer’s stock scanner prism to see if it will meet the requirements of a
particular optical system, is the major task to be performed when incorporating
such a scanner into the design.

(a) (b) (c)

Figure 8.16. Three rotary scanner prisms.
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Some of the considerations are listed in Table 8.2. In Example 8.C, the
maximum number of facets for a given beam diameter and resolution is
calculated. Usually the number chosen is smaller than the maximum, but too
large a scan angle puts extreme requirements on the aperture sizes of the
imaging systems and may reduce the amount of time the system is actually
scanning (lower the duty cycle). The number of facets is usually some factor of
360 (6, 8, 10, 12, 18, etc.), simply because the fabrication of the corresponding
angles is easier. Although it is possible to get a 17-facet mirror, there had better
be a good reason why 18 facets would not work!

The perpendicular distance between the center of the prism and each facet
surface must be held to a very tight tolerance (+0.002 in.) if it is used in a post-
objective scan, since the focus point will move in and out of the target plane if
the facets are not equidistant from the rotation axis. It is better to specify this
dimension with loose tolerance on the scanner radius (5.25 + 0.025in.), but
require that all facets on a single prism be within +0.002in. In a pre-objective
scan system, the facets are usually illuminated by collimated or near-collimated
light and the relative placement of the facets is not as critical (3 0.005in.). The
facet height is usually dependent on the facet width and must accommodate the
beam size. The prism should be thick enough to prevent warping of the piece
after finishing and leave enough space to account for “roll-off >—the unusable
portion of the facet around the edges caused in the fabrication of the surface.
The angular tolerance on any facet is specified as 360°/n + m, where #n is the
number of facets and m is the angular tolerance. Sometimes the value of m can
be a good fraction of the facet angle (360°/n), since angle variations can be
compensated for by start-and-stop scan sensors. One of the most critical
specifications is the tolerance on the angle between the facet and the mounting

TABLE 8.2. Rotary Scanner Specifications

Number of facets (n}—usually a common factor of 360°.

Facet to center distance.

Facet width.

Facet angular tolerance—360°/n + m.

Mounting hole diameter.

Facet to mounting surface angle-—determines tracking accuracy.
Mirror flatness—usually 1/4.

Reflectivity.

Surface—scratch and dig.

© M N A e

—
e

Material-—usually aluminum—more eXotic materials (¢.g., beryllium)
at higher scan rates.
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EXAMPLE 8.C. A rotary scanner is to reflect a collimated beam from a
helium-neon laser (A = 0.633 um). The beam diameter at the mirror prism
is 5 mm. If we assume that a single facet is illuminated by the beam over a
rotation angle equal to one half the prism facet angle (therefore the scan
angle equals the prism facet angle), what is the number of facets needed to
achieve a minimum resolution of 1000 (Rayleigh criterion)?

Solution: The scan equation requires that

¢D $x5%x107*m
= 1000 = 2=~ =
N 00 al 1x0633x107%m’

¢ = 0.127 radians = 7.25°.

If we choose ¢ = 9° then n = 360°/9° = 40 facets. Note that fewer facets
will give higher resolution since ¢ will be larger, but the scan angle will
also become large.

surface. This specification determines if the facet normals all intersect the
rotation axis at the same angle. The variation in this angle (called pitch angle
error) introduces a beam wander from scan to scan, so that successive scans do
not overlap one another. If there are no optical corrections (one will be shown
later), the angle must be held to less than 10 arc seconds. In some applications,
however, the design may require successive non-overlapping scans. In those
cases, the specification must call out the sequence of angles and their tolerances
[Problem 8.6].

The radius of the prism scanner depends upon the number of facets and the
length of the facet. For example, in the case explored in Example 8.C, the
number of facets was found to be 40. If the 5-mm beam were to stay on a single
facet during the scanner rotation of ¢/2 = 4.5°, the facet would have to be at
least two beam diameters long, or 10 mm. Since the length of the facet can be
seen from Fig. 8.16 to be equal to 2R x sin ¢/2, then R = 10 mm/¢, using
sin ¢/2 = ¢/2. Thus, the radius of the prism is about 80 mm. This is a good-
sized prism and if facet lengths much larger than 10 mm were needed or if
extremely high speeds were required, the scanner design might have to be
recalculated. The reason is that at very large radii and/or very high speeds, the
centrifugal forces can be large enough to distort the optical surfaces, if not tear
the prism apart. The dilemma comes from the fact that a large facet size gives
good resolution, but it also increases the size of the prism, which increases
strains. In some instances, these design values are accepted and a stronger
material such as beryllium is specified as the scanner material.

The advantages of mechanical scanners is a constant scan velocity, which can
also be quite high. This is combined with a low light loss and low distortion. The
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disadvantages are cost and inaccessibility to triggering-—in the sense that the
scans cannot be started at a particular time, as is necessary when scanning a
television raster. The high cost arises from the extremely tight tolerances
required for many applications and from the stability required of the motor
drive to maintain constant angular velocity.

In addition to the disadvantages cited above, there are a number of problems
that must be considered if rotating prism scanners are to be used. Because of the
high speeds, the greatest problem is the bearing wear, which limits the lifetime of
most scanners. Even if the bearings do not fail, after some time a wobble may
appear that can impair the usefulness of the optical system. All rotary scanners
have a certain amount of scan dead time and most have long starting times
because the moment of inertia and the required rotational velocities are large.
Scanners sometime introduce vibration into the system and, in some cases,
produce siren-like sounds. At very high velocities, air bearings and air turbine
drivers must be used, which means that a compressed air source as well as
electricity must be supplied to the optical system.

Some applications of mechanical scanners are listed in Table 8.3, and a
number of optical design configurations is shown in Fig. 8.17(a), (b), and (c).
Figure 8.17(a) shows a simple scanner system. It suffers from a large dead time.
By using a truncated pyramid as shown in part (b), this drawback is removed,
however the incident light is spread into six beams. By focusing the light onto
one facet, the power delivered to the target could be increased. Part (c) of the
figure shows a simple double-pass design that illuminates the scanner with
parallel light yet allows the beam to enter the scanning region as a focused spot.
This would be useful in systems where space is at a minimum. We will look at

TABLE 8.3. Applications of Mechanical Scanners

High-speed laser printers.

Web inspection.

Universal product code scanners.
Optical character recognition.
Facsimile.

Computer output microfilm.

Color print processing.
Phototypesetting and platemaking.
Map making.

Automated production, inspection, and testing.
Display.

High-resolution, large-screen projection.
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(a) (b)

Rotating prism

Scan surface

(c)

Figure 8.17. Three scanning geometries using rotary scanners. (a) Simple rotating polygon,
(b) fully illuminated pyramidal scanner in a converging beam, (c) double pass scanner.

further considerations for a rotary scanner and certain optical compensations in
an optical-design case study.

One problem with polygonal scanners not addressed so far is one brought
about because the point of reflection moves as the prism moves. Figures 8.12
and 8.13 showed scans in which the point of rotation of the beam, also called the
center of deflection, was in the plane of the mirror. This is usually true for the
nodding scanners that will be discussed next, but it is not true for prism
scanners. For example, in Figure 8.17(a) the beam is shown illuminating the
center of the facet. At a later time, the edge of the facet will intercept the beam
closer to the source as the edge of the facet swings into the beam so that the
center of beam deflection moves closer to the source. Thus, for very small



[ 1

MECHANICAL SCANNERS 293

changes in angles this center of deflection is located at the point where the beam
intersects the facet. It can be shown that this point moves along the incident
beam path between two extremes, the point where beam illuminates the center
of the facet and that where the beam illuminates the edge. The maximum
distance of motion of the beam rotation point can be shown [Problem 8.7] to be

A = R(l —~ cos 9) - R(l — cos 5), (8.12)
2 n

where R is the radius of the prism and ¢ is the facet angle, as illustrated in Figure
8.16(a), and n is the number of facets. From this one can see that the more facets
on the prism, the smaller the amount of wandering of the center of deflection.
But an increase in facet number also reduces the maximum scan angle and,
therefore, limits the resolution that can be achieved. Another problem that
arises is that the motion of the center of deflection in any scanning geometry
such as a telecentric scan will complicate the simple analysis, which assumes the
scan pattern is generated from a stationary deflection center.

8.3.2. Nodding Scanners

While the rotary scanner is one of the fastest scanning methods providing
reliably repetitive scans at a fixed frequency, it cannot be used for every scanning
application. There are less-expensive and more-flexible methods of scanning,
which can be lumped under the general heading of nodding scanners—units that
rotate a single mirror through a limited angle.

Four different types of these scanners are shown in Fig. 8.18. The torsion rod
scanner (Fig. 8.18(a)) consists of a mirror mounted on a slender rod that can be
sent into torsional oscillation by introducing a periodic signal into coils around
a magnetic core. The changing magnetic field causes the armature that holds the
torsion bar to rotate. The taut band scanner (Fig. 8.18(b)) is a more rugged
scanner than the torsion-bar type. The mirror is mounted on a taut band or
spring with a magnet attached to it. The magnet is positioned inside an
electromagnetic coil. Just as in the case of a magnetic relay, the presence of a
current in the coil will cause a movement of the magnet. The third type of
scanner (Fig. 8.18(c)), the galvanometer scanner, also uses an armature-coil
mechanism. The mirror is mounted on a rod attached to a moving element in
the mechanism. One version, the moving coil type, uses the D’Arsonval
movement found in ammeters and other rotating-pointer electrical meters. The
other version, the moving iron type, is akin to a motor in that the coils are
wrapped around the stationary piece, the stator, and the mirror is mounted on
the motor shaft, the rotor. The second of these types is the more rugged and is
used on most galvanometer scanners. The fourth scanner type (Fig. 8.18(d)), the
piezoelectric scanner, has no coils or rotors and is therefore the most rugged of
those illustrated. It consists of a mirror mounted on a two ceramic wafers that
are bound together. A high voltage applied to the ceramics causes one ceramic



294 MODULATION AND SCANNING

{c) (d}

Figure 8.18. Four nodding scanners. (a) torsion-rod scanner, (b) torsion-bar scanner, (c) galva-
nometer scanner, (d) piezoelectric scanner.

to expand, while the other contracts, and since they are bonded together, this
results in a bending of the structure. The angular motion of the mirror mounted
on the wafer causes a scan with a center of deflection some distance from the
walfer.

All of the nodding scanners can be described by certain common parameters
that enable one to determine which type would best fit a particular application.
They are:

1. Maximum Rotation Angle. This is usually the maximum angle through
which the mirror can be rotated (peak-to-peak), rather than a center (no-
signal position) to peak angle. The value can be only a few degrees for
piezoelectric scanners or as much as 60° for some galvanometer scanners.

2. Load-Free Resonant Frequencies. These are the natural resonant frequen-
cies of the scanner. Starting with an unloaded scanner (one without a mirror
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attached), the effect of the added inertia of a particular mirror is calculated
and a loaded frequency is found. It is this frequency that determines the
limits of the response of the scanning system.

3. Sensitivity. The amount of voltage or current needed to produce a unit
deflection will determine the size and cost of the electronic interface to the
scanner system.

4. Linearity and Repeatability. These parameters specify how linear the
mirror rotation will be. If the scanner is used without some feedback to
check the position of the mirror, the repeatability specifies the tolerances on
the location of the mirror if the same signal is applied at a later time.

Given the choices of scanners multiplied by numerous models for each type, it
is useful to describe the calculations needed to evaluate a set of scanners. Rather
than do this for all types of scanners, we will choose one, the galvonometer type,
and determine the performance for a loaded scanner. After that, it will be easier
to make some broad statements about the different scanner types.

With any scanner system, we require a minimum frequency response and
resolution appropriate to the application. Stating the minimum frequency
response of the system does not immediately give the required loaded resonant
frequency for the scanner since a scanner can be operated under three different
conditions, as suggested by Fig. 8.19. If the scanner motions correspond to
frequencies below its resonant frequency, it is said to be operating broadband,
since the operation is not greatly affected over a wide range of frequencies. In
some cases the ability of a scanner to follow a complicated wave pattern can be
increased by providing feedback circuits that modify the input signal on the
basis of the position and velocity of the mirror. As a rule of thumb, a mechanical
system can be considered to be operating broadband up to a frequency that
is 859 of the resonance frequency. If it is operated in the region around the
resonance frequency it is said to be operating narrowband, since signal deviations
outside the resonance frequency region are difficult for the scanner to follow. At
resonance, the required driving power is a minimum and the scan amplitude
is greatest. Above the resonance region, the scanner will respond to fast rises,
but more power is needed to achieve the necessary scanner motion, and there
is a significant lag between signal and response. In this region, it is said to be

Amplitude

Narrowband
(resonant)

Broadband Batlistic

=

o
0 Figure 8.19. Frequency response of a periodic

Driving Frequency (Hz) scanner.
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operating ballistically. All of the above assumes the scanner has a single
resonance frequency. If there is more than one resonance, the situation is
complicated. For our purposes, we will assume a single loaded resonance at
a frequency, vg.

As an example, let us assume that we have decided that we need a scanner
that has a broadband response up to 900 Hz and that our application also
requires a resolution (¢/A¢) of 1500 or better. Table 8.4 lists specifications for a
number of commercial galvanometer scanners made by General Scanning and
the moments of inertia for three round mirrors. The effect of the mirrors on the
natural scanner frequency can be determined from Fig. 8.20. First, the ratio of
the inertia of the mirror plus mount to the inertia of the armature must be
determined. (Note that the effect of the mount inertia can be sizeable. If the
moment of inertia is not given for a present or projected mirror mount, it can be
determined by using the methods and formulae found in any college physics
text.) The reduced (loaded) resonant frequency can be determined from the
inertia ratio just calculated, the graph in Fig. 8.20, and the no-load frequency
given in Table 8 4. For example, a 10-mm diameter mirror mounted on a G0606
scanner causes a reduction of the resonant frequency to 860 Hz (see Example
8.D).

The choice of a mirror diameter partly determines the resolution, as given by
the scan equation (Eq. 8.11). The choice of scanner determines the total scan

Table 8.4. Specifications for General Scanning Galvanometer
Scanners and Mirrors

Natural Mechanical Armature
Model Frequency, v, (Hz) Rotation, § Inertia, I, ,, (g cm?)

’ “arm

G0606 3200 6° (0.1 rad) 0.0016
G0612 2100 12°{(0.21 rad) 0.0019
G102 2400 2°(0.03 rad) 0.0011
G108 1500 8°(0.14rad) 0.0011
G112 1200 12°(0.21 rad) 0.0011
Mirror Mirror Mirror +
Diameter Thickness Mirror Mount
(mm) (mm) Inertia, I, Inertia® I}
5 0.5 0.00034 0.01234
1.0 0.0030 0.0150
10 1.0 0.0109 0.0229

¢ Small mirror mount: I,, = 0.012 g cm?.
Note: Specifications reproduced with permission of General Scanning Inc.
Models 0606 and 0612 are no longer current models.
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Figure 8.20. Curve for determining the loaded frequency of a General Scanning galvanometer
as a function of the loading (mirror inertia/armature inertia). (Reproduced with the permission
of General Scanning.)

angle ¢, another factor in the equation. Thus another array of values can be
calculated for the different mirror—scanner combinations. A 10-mm’ diameter
mirror on the G0606 scanner has a resolution of 2590 (see Example 8.D).
Although we could tabulate all of the combinations, the most useful way to
display all the data is to plot the values for the combinations, as given in Fig.
8.21. From the plot we can see that there are a number of combinations that will
be useful. They range from the Model G108, 10-mm mirror with a resolution of
3600 and with a resonance at 900 Hz to the same scanner with a S-mm mirror
that provides 1800 spot resolution and a 1075 Hz resonance to the G0606

EXAMPLE 8.D. Calculate the loaded resonant frequency and reso-
lution for a 10-mm-diameter mirror mounted on a General Scanning
GO0606 scanner from the specifications given in Table 8.4 and the
frequency response plotted in Fig. 8.20. Assume 4 = 633 nm.

Solution: The inertia of the 10-mm diameter mirror plus mount is given
as 0.0229 g cm?. The armature inertia for the G0606 is 0.0016 g cm?. Their
ratio, 14.3, indicates from Fig. 8.20 that the G0606 resonant frequency of
3200 Hz will be reduced to 279 of this, or 860 Hz.

The resolution for this system is determined from N = ¢D/al. Here,
¢ =2 x0.1rad = 0.2rad. (Note that the scan angle is twice the
mirror rotation angle!) D = 102 m, a = 1.22 (see Fig. 8.9), and
A =0.633 x 107 % m. This gives

02 x 1072

N =
1.22 x 0.633 x 10°°

= 2590.
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Figure 8.21. Resolution versus frequency for a number of galvanometer scanners with different
mirror sizes.

model with a 960 Hz resonance and a resolution of 1800. Since we require
broadband response at 900 Hz, 85 % of the resonance frequency must be greater
than our required response. The only scanner capable of this is the Model G108
fitted with a 5-mm mirror. The other two scanner-mirror combinations fall
below the frequency requirements for broadband operation. The calculation
for the G0612 scanner has been left as an exercise [Problem 8.9].

Similar calculations need not be made for taut-band and torsion-bar
scanners, since these are operated in the narrow band (resonant) modes. They
are restricted to applications requiring sinusoidal scanning. Piezoelectric
scanners can be used in broad band operation, but they have two drawbacks:
the high voltages that are required to provide significant bends, and even
“significant” bends do not amount to more than a degree or so. However, for
high-frequency operation, they can approach the frequencies of the rotating

polygon.

84. ACOUSTO-OPTICAL SCANNERS

Much of theory needed to describe an acousto-optical scanner has already been
given in the section on acousto-optical modulators earlier in this chapter
(Section 8.1.4). As was pointed out there, a beam sent through an acousto-
optical modulator will be deflected through an angle of 26,, where

20, = 2sin @, = —j—;—, (8.5)
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A is the wavelength of the light and A the acoustic wavelength. If we write the
above equation in terms of the temporal frequency of the acoustic wave,
v, = /A,

(8.13)

29d=v—s><v

s

then it is obvious that the amount of beam deflection is directly proportional to
the frequency of the ultrasonic wave, v, . Also the lower the speed of sound in the
medium, the greater the possible scan angle. Once the material is decided upon,
a beam may be scanned by scanning the frequency of the ultrasonic wave. Since
one can also change the amplitude of the ultrasonic wave, it would seem that an
acousto-optic scanner could be used simultaneously as a scanner and a modu-
lator. However, the conflicting requirements of response time and resolution
usually do not allow this.

While acousto-optic scanning appears to be a simple and elegant method of
scanning a beam of light, there are problems. Because the scanner is being used
to change the beam direction, it would appear that it could only be used over a
limited range since the Bragg condition could not be fulfilled for all angles.
Example 8.B showed how critical beam misalignment could be. The problem is
solved by manufacturing the scanner with a row of acoustic transducers
attached to the side of the material rather than a single long transducer. It is
then possible to introduce a frequency dependent phase difference between
adjacent transducers. This results in an acoustic wave front which can be
“steered” to the correct angle to deflect the input beam with maximum efficiency,
as shown in Fig. 8.22.

Figure 8.22. Steering of a light beam in an acousto-optic scanner. (a) incident beam and acoustic
wavefronts oriented at the Bragg angle at frequency v, (no phase delay imposed), (b) deflection
of the same beam through a layer angle with a higher acoustic frequency v,. (Phase delay between
transducers to steer the acoustic wave so the Bragg condition is satisfied for the same input beam
geometry as in (a)).



300 MODULATION AND SCANNING

The magnitude of the scan is not very large. If v; and v, are the maximum and
minimum ultrasonic frequencies during the sweep, then the scan angle is given
by

A A
b =20,—20,=2( —v)=""22, (8.14)

Us g

For example, if a helium-neon beam is sent through a glass whose ultrasonic
sound velocity is 6 km/sec and the acoustic wave frequency can be generated in a
range of frequencies from 40 MHz to 70 MHz, the scan angle is 3.17 mrad. If a
more exotic (and costly) material like tellurium dioxide is used, which has a
sound velocity one tenth that of the figure given for the glass (v, = 0.62 km/sec),
the scan angle would be ten times larger, 32 mrad or 1.8°. There are a number of
materials that are used for acousto-optic scanners and modulators. Depending
on the time response, resolution, or cost requirements of the system, different
materials are chosen.

Just as in the case of the other scanners, a large scan angle does not guarantee
good resolution. As before we must compare the divergence of the beam with the
scan angle. Using Egs. 8.14 and 8.8,

¢ A D DxAv
a

s (8.15)

Note that the resolution is independent of wavelength, but dependent on D/v,
which is the time 7 it takes an ultrasonic wave to cross the beam. Thus the
resolution can be increased by increasing the beam width in the direction of

2z

///i Beam compressor
B

A-O Scanner

Scanned RF input

Beam expander

Figure 8.23. Beam expanders and compressors in an acoustic-optic deflection system.
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sound propagation. Since scanners tend to be narrow perpendicular to the
directions of sound and light propagation, to conserve material, space, and
power, the beam is usually not expanded in both directions. Thus, a one-
dimensional telescope made of cylindrical lenses (Section 7.4.3) may be used to
recollimate the beam, increasing the beam diameter and thereby the transit time
as shown in Fig. 8.23. Once the angular scan is imposed on the beam, it may be
“down-collimated” using a similar cylindrical telescope in reverse. Now it is
possible to see why scanning and modulation is not done using a single acousto-
optic cell. A high frequency response is in direct conflict with the highest
resolution, since the first requires a short transit time while the second requires a
long one. A calculation of the resolution of an acousto-optic scanner is given in
Example 8.E.

EXAMPLE 8.E. Given an acousto-optic scanner with a frequency scan
from 40 MHz to 70 MHz and a sound velocity of 6 km/sec, what is the
resolution:

(a) If the beam output is directly from a helium-neon laser (4 = 633 nm,
dy =1mm, a =1.27)?

(b) Ifa 10x collimator is used?

() Ifa10x collimator and tellurium dioxide (TeO) is used?

Solution:

(@) 7 =1mm/6km/sec = 0.167 usec,
N = tAv/a = 0.167 psec x 30 x 10° sec™!/1.27 = 3.9.

(b) D =1mm x 10. Therefore N = 39. Note that to get a 1000-spot
resolution the material would have to be  m wide.

(c) Since v, = 0.62 km/sec for TeO, T = 10 mm/0.62 km/sec = 16 psec,
N =16 x 107 ¢ sec x 30 x 10% sec” !/1.27 = 381. For a resolution of
1000 the beam would be 26 mm wide.

A clever application of an acousto-optic scanner involves its use as part of a
rotating prism system. One of the design restraints of a rotating prism is that the
facet length must accommodate the scan length. If the facet is too small the
beam will fall onto another facet before the scan is finished. But, as was noted
earlier, larger facets increase the size and cost of the scanner. This can be
remedied by introducing an acousto-optic scanner between the incident beam
and the scanner. By synchronizing the acousto-optic scanner to the facet
position it is possible to deflect the beam onto the center of the facet throughout
the useable duration of the prism scan (Fig. 8.24). This is sometimes called facet
Jollowing [Problem 8.10].
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Figure 8.24. Facet following. Through the use of an acousto-optic deflector, a small beam can
fully illuminate the facet of a rotating prism.

8.5. HOLOGRAPHIC SCANNERS

An alternative to a prism scanner is a scanner constructed of holograms. The
holograms in this case are diffraction gratings made by interfering two laser
beams in the surface of a photographic emulsion (Fig. 8.25(a)). The interference
pattern that is formed in the film becomes a three-dimensional grating (Ref. 8.1),
not unlike the grating formed inside an acousto-optic modulator. The efficient

\ —// Incident
Photographic emulsion beam

{a) (b)
Figure 8.25. Holographic beam deflection. (a) construction of a holographic grating with two
parallel beams, (b) reconstruction of one of the beams by illumination of the grating by a beam
at the same angle as the other original beam. (Copyright 1982 by International Business Machines
Corporation; reprinted with permission.)
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Figure 8.26. Mosaic holographic scanner. (a) Disk layout and dimensions, typical scan pattern
(b) in a horizontal plane, (c) in a vertical plane. (Copyright 1982 by International Business Ma-
chines Corp.; reprinted with permission.)

diffraction of light in these gratings occurs only if the incident beam angle
satisfies the Bragg condition (Fig. 8.25(b) and Eq. 8.4). If one of the beams used
in construction of the hologram is a diverging beam, then the gratings not only
redirect the beam but also focus the beam to a spot, so the hologram serves also
as a lens. When the grating is moved, the beam is scanned through some
distance.

A single hologram cannot replace a multifaceted scanner. However, a
collection, or mosaic, of holograms with different orientations arranged on a
circular disk, as shown in Fig. 8.26 produce a multiple scan pattern when the
disk is rotated. This pattern can be considerably more varied than that of a
prism scanner. It has the added feature that each of the scans can be focused to a
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different point in space. The technique used to design these scanners is discussed
in some detail in Ref. 8.2.

The use of holographic scanners in optical systems offers many advantages.
One is the small volume of the scanner, another the ability to tailor the design to
a specific application. Many tilt angles, focal lengths, and facet sizes can be easily
placed on the same disk. In addition, the flexibility of the process allows changes
to be incorporated in the design process. An example of one such design is a
supermarket scanner, shown in Fig. 8.27, used to scan the Universal Product
Code (UPC), the multiple bar pattern found on most consumer items in the
United States. The beam from the laser is expanded, recollimated, and directed
through a series of mirrors M,, M,, M,, and M, onto the disk at the appropriate
angle of incidence. The diffracted and focused beam is redirected to the scan
volume by mirrors M; and M. The light scattered from the multiple-bar
product code on the item is collected by the scanning facet and mirrors M and
M and directed onto a detector by a focusing lens placed behind the input
mirror M. The light pattern detected by the scanning system is decoded to
provide the cash register computer with the correct UPC number.

Because of the initial complexity of designing and fabricating a scanner for a
particular application, a holographic scanner is not the answer to all scanner
designs. Provided there is sufficient volume to justify the initial design and
production costs, the holographic scanner may be the best choice. Once a
master has been made and tested, the replication of additional copies is

Disk

|
Beam
Detector expander
Laser
— }_.
C -2

Figure 8.27. Supermarket scanner optical design. (Copyright 1982 by International Business
Machines Corporation; reprinted with permission.)
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relatively easy, since a replica is little more than a contact print of the original
hologram. If there is not enough volume to justify its design, then a prism
scanner is probably the best choice for repetitive, periodic scans.

8.6. ADDITIONAL TOPICS

Having listed the specific types of scanners and noted their characteristics, it is
now possible to take a look at some topics that apply to most of these scanners.
First, it is useful to compare and contrast the types of scanners we have
discussed. In Table 8.5 we have listed the scanners we have discussed. Please
note there is no attempted ranking of scanners according to resolution since this
parameter is the result of a trade off between the design parameters, as we have
seen in the case of the galvanometer scanners in Section 8.3.2. There is no magic
choice of scanner for a particular application. The requirements of the
individual design will limit (in some cases, force) one’s choice of scanner.

8.6.1. Scan Magnification and Relay

For systems with relatively small deflections, a substantial scan length can be
achieved by putting the target far away from the scanner (Fig. 8.28(a)). This
gives rise to the dual problems of maintaining stability with long optical lever
arms and constructing a workable system in a reasonable volume. While
mirrors and heavy struts may accomplish the job, another approach is to
increase the scan angle by adding additional scanners operating in synchronism
with the initial scanner. For example, keeping in mind the Bragg condition for
acousto-optic modulators, it is possible to magnify the deflection angle of the
first modulator, by sending it into a second deflector that includes additional
phase compensation to account for a changing input angle (Fig. 8.28(b)).
Another method uses ganged mirror scanners (Fig. 8.28(c)). Note that each
successive scanner must have larger mirrors, so that the speed of the entire
system is governed by the last stage of magnification. There are many other

Table 8.5. Comparison of Scanners

Rotating Acousto-
Galvanometer  Prism® Taut-band Piezoelectric optic

Scan angle 12° 90° 30° 2° <t°
Approximate maximum

frequency (MHz) 0.010 0.05 0.001 0.50 20
Nature of scan Random Periodic Harmonic  Harmonic  Random

4 Also holographic scanners,
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Figure 8.28. Scan magnification. (a) Increase scan length by putting target at a large distance
from the scanner. (b) Ganged acousto-optic deflectors. (c) Ganged mirror scanners.

systems for scan magnification including the use of clever confocal mirror
systems. The reader is referred to the references, especially Ref. 8.3, for specific
examples.

In certain cases the problem is not really one of magnification, but translation
of the center of deflection to a particular point in space (Fig. 8.29). This can be
accomplished by a two-element relay system that translates the effective
center of deflection a distance equal to four times the focal length of the imaging
lens. The field lens is used to recollimate the beam after it had been focused
by the first lens. By using different kinds of lenses in an afocal system a relay
can be combined with scan magnification [Problem 8.11].
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Figure 8.29. A scan relay.

8.6.2. Pattern Generation

It would be impossible to describe or list all of the various patterns that scanning
systems can generate. Some are fairly simple to understand, others are highly
elaborate and are generated by patented components. Beyond the single line
scans as shown in the previous sections, we will look at two relatively simple
patterns, a cross pattern and a double cross pattern.

In Fig. 8.30 we show the top and side view of a rotating prism scanner. The
perspective and scan distances have been distorted for clarity. The mirrors (A4
and B) on either side of the lens are tilted upwards to direct the reflected raysto a
common region above the plane of the prism so that the line scans cross in the
focal region of both rays. Since the mirrors are at an angle with each other, the
rays cross giving a single “X” as one facet illuminates one mirror and then the
other.

If a tetrahedron is rotated about one of its threefold axes, in a square array of
mirrors, as shown in Fig. 8.31(a), a double cross scan will result. The
tetrahedron is irregular in that it is squashed to give 45°-angle mirrors with
respect to the laser beam that illuminates all three mirrors from below. Note
that any one facet and any two mirrors will form a single cross in a manner just
described above. Thus each pair of mirrors properly oriented will form a cross.
While it is possible to tilt the mirrors to give a common crossing point and a
single “X,” usually they are tilted in such a way that two “X”s forming an
overlapping double cross pattern in the focal region. By putting mirrors on the
polygon at different angles (say 40°, 45°, and 50° mirrors), the complexity of the
pattern can be increased to six crosses. Because the beam is illuininating all three
facets, two or three of the mirrors are producing a scan line at any one time.
Figs. 8.31(b) and (c) show a top view and illumination schedule for this system. A
designer must consider whether simultaneous scans are the best method for his
system. In some cases, the system could lead to ambiguous signals if more than
one scan beam were picked up by a sensor. For one solution to this problem, see
Section 10.7 on retrocollective geometry.

Multiple line patterns can be achieved by increasing the number of facets and
putting a different tilt on each facet and then tilting each folding mirror by a
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Figure 8.30. Scan pattern generated from a rotating polygonal prism.

different amount. The result, however, may resemble a spinning mirror ball in a
dance hall more than an optical design element. And then, how does one
interpret the resulting scan pattern?

8.6.3. Distortion

In many cases the scan velocity of a beam is constant with time. The information
being imposed on the scanning beam is usually produced in a linear data stream
(i.e., data rate is constant with time). Most lenses are corrected for distortion, so
that the magnification is constant for all off-axis points. But most x~y scanners
have a built in pincushion distortion if the scan image is projected on a plane
rather than the interior of a sphere. Scanning lenses can be designed to include
compensating barrel distortion, so that the resulting combination gives a scan
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Figure 8.31. Scan pattern generated from a rotating tetragonal prism. (a) side view, (b) top view,
(c) mirror illumination sequence.

line that is proportional to the scan angle. Thus scanning lenses have unusual
characteristics making them undesirable for any application except the one for
which they were designed.

8.6.4. A Scanning System for TV Display

One application that combines both acousto-optical and mechanical scanning is
a laser television display. In Fig. 8.32 is shown one possible optical train for such
a display. The beam from the laser is focused into (lens L,) an acousto-optic
modulator (A-OM) to increase the rise time of the modulator and provide better
contrast. Rather than completely collimate the beam before the next stage,
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Figure 8.32. Laser television display. L-—spherical lenses, CL—cylindrical lenses, A-OM—acousto-optic modulator, A-OD—acousto-optic
deflector, GS—galvanometer scanner, BS—beam stop.
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horizontal deflection, the cylindrical lens (CL,) is used to return the collimation
back to the original beam divergence in the vertical plane. Since CL, has no
power in the horizontal direction the beam continues to expand to the width
needed to achieve the required resolution (as indicated in Section 8.4, Eq. 8.14)
in the horizontal direction. The large cylindrical lens (CL,) provides the colli-
mation before the beam enters the acousto-optical deflector (A-OD). Because
of the different divergences in the two planes, two cylindrical lenses are needed
to focus in the vertical beam dimension (CL,) and to image the horizontal
scan pattern (CL;) for the zero and first orders of the deflector. A beam stop
removes the zero order while the line that contains the horizontal scanning
information is collimated by a spherical lens (L,) before illuminating the mirror
of the galvanometer scanner (GS). The vertically deflected light is then focused
by L, to give a small two-dimensional television display. Two additional lenses
(L, and L;) act as a projection lens to produce a large two dimensional display
of the raster pattern. By clever design some of these components can be
combined to produce a more compact system. Additional refinements can be
made by adding more components.

PROBLEMS

8.1. Describe how an electro-optic modulator can be biased to the linear
operating point of the modulator by passing the radiation through a
polarizer and quarter-wave plate combination.

8.2. Show that the expression for the diffraction angle 6, (Eq. 8.5) is correct
both inside and outside the acousto-optic modulator provided the
wavelength of the light in the medium in which 6, is measured is used in
the calculation.

8.3. A helium—cadmium laser (A = 442 nm) fully illuminates a rectangular
scanning mirror whose width in the scan direction is Smm. If the
maximum rotation angle of the mirror is 5°, what is the maximum
resolution one could hope to achieve with this system?

8.4. Sometimes it is impossible to place a scanning mirror in a particular
point but a beam must be scanned at that point. Using ray sketching,
show that the center of rotation of a mirror can be transferred to another
point in a system. What happens to the angular rotation of the mirror as
the object and image distances are changed?

8.5. A TEM,, mode argon ion laser beam (4 = 488 nm) is focused to a 175-
pm beam waist spot on a scanning mirror. The scanned beam is to be
relayed to an inaccessible point with no change in the beam waist or the
original rotation angle of 5.7°. What must be the focal length and
location of the lenses? Also sketch the system for maximum deflections.
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8.9.

8.10.

8.11.

MODULATION AND SCANNING

A 12-sided polygonal prism is to be designed to provide a 1-in.-square,
12-line raster pattern with a helium-neon laser beam (6 = 1 mrad). The
spot size at the screen is to be 100 um. If the scanner is operated in a
telecentric mode, what should be the call out for pitch angles of the faces
to produce the raster? What fraction of the total time that the beam is
illuminating one face is needed to produce one line of scan?

Show that the maximum movement of the center of deflection along
incident beam for a prism of radius R is given by Eq. 8.12.

Draw the path of the center of deflection by carefully drawing an octagon
whose center to face distance is 50 mm.

(a) The incident beam direction intersects the rotation axis of the
octagon.
(b) The incident beam direction misses the center of rotation by 20 mm.

Calculate the resolution and loaded resonance frequency for the Series
G0612 scan for each mirror and plot on a copy of Fig. 8.21.

Design a facet follower for a rotating octagon whose center-to-face
distance is 20 mm. The octagon is illuminated by a helium—neon laser.
Include assessments of the maximum scan angle, minimum scan angle.
Calculate the resolution of your system. The lowest-sound-velocity
material available to you is tellurium dioxide and the highest acoustic
frequency change Av, is 40 MHz. You may not include in your resolution
figure any part of the beam that would reflect back into the deflector. The
location of the deflector relative to the prism axis and the beam direction
must also be specified. Attempt to optimize this for maximum resolution.
You will have to make reasonable assumptions on any requirements not
specified above.

Design an afocal system of lenses to translate the center of deflection and
magnify the scan by a factor of four. In terms of the initial input lens, give
the total translation of the center of the deflection and the placement and
focal lengths of all the lenses required for the task.
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9

Spectrometers
(HOW TO FIND OUT WHAT YOU'VE GOT)

In many optical systems the light must not only be collected and imaged as
perfectly as possible, but also analyzed into its colors. Spectroscopy, in most of
its forms is the physical separation of light according to its wavelengths. Some
examples of this are:

1. The analysis of the origin or content of a light source as in forensic analysis
and astronomy.

2. The analysis of a material by absorption spectroscopy.

3. The detection of a spectral signature in the presence of other radiation, as in
the infrared spectral analysis of croplands.

The purpose of this chapter is to show some of the methods that can be used to
analyze spectrally the radiation in an optical system. This is useful not only for
the techniques themselves, but also because spectrometers represent somewhat
more complicated optical systems than we have considered thus far. Many
optical systems incorporate some spectral analysis components and some are
built specifically for spectral analysis. Most of these systems can be classified on
the basis of the component used to resolve the light into its components: filter,
prism, or diffraction grating. We will not cover spectroscopic techniques that
employ multiple beam interference, such as Michelson and Fabry—Pérot
interferometers. However, these techniques can be used to construct extremely
high resolution spectrometers (Ref. 9.1).

9.1. FILTER SPECTROMETERS

One of the simplest and least expensive methods of isolating a spectral band is a
filter. While it can be as simple as a piece of colored glass or as elaborate as a
multilayer dielectric filter, it is always compact and easy to mount. For this
reason, a spectrometer built around a filter or series of filters can be a very
attractive solution for certain spectral analysis problems.
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9.1.1. Bandwidths and Optical Density

The width of the band of color passed by a filter or other spectrum resolver, can
be expressed either in terms of the band of wavelengths or frequencies passed by
this element. We start with the relation between frequency and wavelength,

v =, (1.3)

where v is the velocity of light in the medium. The relations between wavelength
and frequency bandwidths, assuming that AA and Av are sufficiently small, are

Av = ~;—2Al and AL =—2 Av. (9.1a,b)

V2

On substituting Eq. 1.3 into Eq. 9.1a, one obtains the relationship

il 9.2)

showing that the fractional bandwidth is the same, whether expressed in terms of
wavelength or frequency. The negative sign only indicates that Av = v, — v, is
negative when AA = 1, — A, is positive. All of the above assumes that Av or A4
is small compared to v or A [Problem 9.1].

Just as in electronics, one can think of a light filter in terms of the band of
frequencies that transmits. A high-pass filter will pass higher frequencies (shorter
wavelengths); for the visible region this would be a blue or blue-green filter,
whose transmission curve is shown in Fig. 9.1(a). A low-pass filter passes lower
frequencies (longer wavelengths), and in the visible region this would be a red or
yellow filter (Fig. 9.1(b)). A band-pass filter passes a narrow region of the
spectrum around some central wavelength (Fig. 9.1(c)).

Although many transmission curves of filters and spectrometers are plotted
as the percent transmission versus wavelength, some applications require that
the transmission be plotted over several orders of magnitude. A logarithmic
scale in units of optical density is used in such cases. The optical density of a
material is defined as

D = —log, . 9.3)

where 7 is the transmission of the material. When the transmission is unity, then
its log is zero and the optical density is zero. If the transmission is reduced to
109 (r = 0.1), the log will be —1 and the optical density will be 1. For each
power of 10 reduction in the transmission, the optical density increases by one
unit. Thus if only one thousandth of the incident light is transmitted by a
photographic emulsion, for example, its optical density would be 3 [Problem
9.2].
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2o % Blue—ge A
(a) High-pass filter

Ao A Yellow orred )

(b) Low-pass filter

Ao Color depends on A
(c) Band-pass filter

Figure 9.1. Transmission curve for filters. (a) High-pass filter, (b) Low-pass filter, (c) Band-pass
filter. The characteristic wavelength, 1,, locates the cut-off, cut-on, or center wavelength of the
filter, respectively.

9.1.2. Absorption Filters

Any absorbing material dissolved in a medium can be used as an absorption
filter. The gelatin sheet used in theatre lighting is an example. However, such
filters are not stable over a long time and can deteriorate under high
illumination levels (sometimes rather spectacularly!).

In most optical designs, the filters are made of glass since glass filters are
stable and well characterized with standard absorption curves. A set of these
filters mounted on a rotating wheel can be used to measure the transmission
characteristics of samples. Other designs incorporate an array of filters in front
of several detectors for simultaneous measurement.

In some cases the filter can be made part of another optical element. For
example, the plastic focusing lens in a laser scanner was made with a plastic that
had been dyed red. Thus, the lens served as a low-pass filter, absorbing most of
the ambient light but allowing the lens to transmit and focus the red light of a
helium—neon laser (1 = 633 nm) onto a detector.

9.1.3. Dielectric Filters

As was noted earlier, the deposition of a thin layer of a dielectric can sharply
change the reflective properties of a substrate. The effect is even more dramatic
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Figure 9.2. Structure of a dielectric mirror. All layers have an optical thickness of a quarter of a
wavelength. The alternating structure of high and low refractive indices provides the additional
phase changes to give constructive interference between all reflected rays.

when a series of layers of alternating high- and low-refractive-index materials
are deposited on a surface.

9.1.3.1. Dielectric Multilayer Reflector. In Fig. 9.2, the structure of a multi-
layer dielectric coating and the phase changes due to reflection and transmission
at each interface are illustrated. This figure is similar to Fig. 4.9 in Section 4.2.2.
The reader is referred to that section for a more detailed discussion. An
examination of the structure shows that at the design wavelength, ,, the phase
changes from alternating interfaces are 180° out of phase with each other. Since
all of the layers have an optical thickness of a quarter of the design wavelength,
two passages through a layer adds an additional 180° phase change. The
combination of interface phase changes and optical path-length phase changes
produces constructive interference between all reflecting rays and creates a
mirror of extremely high reflectivity and very low absorption at 4,.

What happens away from the design wavelength? At half the design
wavelength, for example, all of the layers will cause a 180° phase shift, and since
a reflected wave passes through a layer twice, all reflected waves are shifted by a
multiple of 360° and therefore there is no net phase change except that occurring
upon reflection from the interface. Since the refractive indices of the layers
alternate, reflections from successive interfaces are out of phase with one
another causing destructive interference. So at A,/2 the reflectivity is small
compared to that at the design wavelength. A plot of the reflectivity as a
function of wavelength is shown in Fig. 9.3. Note that there are regions of the
spectrum above and below 1, where the multilayer dielectric coating acts as a
high pass or a low pass filter, depending on the band of incident wavelengths.
Filters can be designed to provide just such properties throughout the visible
spectrum and beyond. Only the absorption of the materials and the substrate
limit the design.
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Figure 9.3. Transmission as a function of wavelength for a dielectric mirror. The mirror was
designed for high reflectivity at 1,. At wavelengths other than 1,, this multilayer can act as a
filter that passes high frequencies (for wavelengths in the vicinity of 1,) or passes low frequencies
(for wavelengths in the vicinity of 1, or 43).

9.1.3.2. Fabry—Pérot and Multiple-Cavity Filters. A Fabry—Pérot spectro-
meter is an optical instrument that can be used as a variable band-pass filter or a
spectrometer. It consists of two highly reflective mirrors parallel to each other
and separated by a distance, d (Fig. 9.4(a)). This arrangement forms a resonant
optical cavity that transmits specific frequencies and rejects all the rest (Ref. 9.1).
The condition for resonance is that the mirror separation be an integral number
of half wavelengths. The transmission of such a filter is shown in Fig. 9.4(b). The
frequency difference between adjacent transmission bands can be shown to be
[Problem 9.3]

Ao = — 9.4)

where ¢ = speed of light.

A dielectric filter similar to a Fabry—Pérot interferometer can be constructed
of two highly reflective multilayer mirrors, like those described above, separated
by a thick dielectric layer, as shown in Fig. 9.5(a). A somewhat different
structure is made up of a set of two or three smaller cavities as shown in Fig.
9.5(b). The performance of these filters is dependent on the number of layers and

M, M,
— Lo
l | Transmission
—
—_—
e e
r—————
—_—
—
_,.| d |,<_

N

All v's Transmitted »'s
v

Figure 9.4. Fabry-Perot filter. (a) Consists of two highly reflective mirrors separated by a distance
d and aligned parallel to each other. (b) Transmission of light through a Fabry-Perot filter.
The transmission occurs at frequencies spaced ¢/2d apart.
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Cavity #1 Cavity #2

(b)
Figure 9.5. Structure of band-pass dielectric filters: (a) single cavity Fabry-Perot type;
(b) multiple cavity type. Each layer is one quarter wavelength optical thickness (nd = 2,/4).
H-high refractive index; L—Ilow refractive index.

their arrangment. The pass bands can be as small as 0.1nm with peak
transmittances above 50%. In addition to these values, a designer should be
aware of the amount of rejection of unwanted radiation away from the pass
band. Some multilayer dielectric filters are mounted on glass filters to block
radiation from neighboring transmission bands.

Even though these filters are designed to transmit about a particular
wavelength, it is possible to “tune” a filter by tilting it with respect to the
direction of incident light. The center of the pass band can be shifted to shorter
wavelengths: from A, to A’ = A, cos 6, where 6 is the angle between the filter
normal and the direction of light propagation [Problem 9.4]. It should be

Filter or filter array

¥ Detector 2
v Electronics
Collimation Focusing
Optics Optics

Figure 9.6. A simple filter spectrometer.



PRISM SPECTROMETERS 319

pointed out that although this procedure is convenient for small tilts, there is a
considerable reflection loss at higher angles of incidence.

Pictured in Fig. 9.6 is a spectrometer built around a set of filters. The
spectrometer could be used to investigate either a source or the transmission of a
sample. Although this design would have limited resolution, it could be an
inexpensive solution to a spectral analysis problem that did not require much
data. Dielectric filters could also be used to scan a narrow band of wavelengths
by repeatedly tilting the filter through a range of angles corresponding to the
range of wavelengths to be scanned.

9.2. PRISM SPECTROMETERS

The basic design for a prism spectrometer can be illustrated by Figure 2 from
Newton’s Opticks published in 1704. It is reproduced in Fig. 9.7. The
spectrometer contains a source, the sun; a dispersing element, the prism; and a
detector, the eye. All prism spectrometers are variations on this arrangement.

9.2.1. The Dispersion of a Prism

The passage of light through a prism deviates the beam by an angle §. If the
light is monochromatic, then é will only have one value, but if the beam contains
many wavelengths, the beam will be dispersed into its colors. For, as was shown
in Chapter 1, the dispersion of glass, the variation of refractive index with
wavelength, causes light falling at an angle on an air—glass interface to be
separated into its colors. A calculation of this separation for a flint glass (670472)
was given in Example 1.A.

In that calculation and in succeeding work on achromatization of lenses, the
dispersion was given in terms of the V-number, defined in Eq. 1.5. The
dispersion can also be written as the change in refractive index as a function of
wavelength, dn/di. To be able to find this quantity would require a detailed
knowledge of the refractive index function, n(1). However, dn/dA can often be
approximated by

An  np — ng

Vi 9.5)

which can be calculated from the V-number as shown in Example 9.A.

Figure 9.7. Figure 2 from Newton’s Optiks,
published in 1704, contains all of the basic
components of a spectrometer: source, dis-
persing element, and detector. The dispersion
is indicated by the elongated image of the sun
representing its spectrum.
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EXAMPLE 9.A. A flint glass (670472) (Table 1.1) prism with an apex
angle of 30° (Example 1.A and Problem 1.5) is used in a spectrometer at
minimum deviation (§ = 56°50"). Calculate the angular dispersion and
resolution at the center of the visible spectrum if the base length of the
prism is 60 mm.

Solution: Because data (Table 1.1) is available we can do somewhat
better than the Eq. 9.5. It is useful to compare the approximate value with
a more accurate one.

From Eqgs. 9.5 and 1.5

An  np —n¢. 1 ngp—nc

AL A= VT —1

An _ ny -1
AA—V()\F—)\C)

3 0.67
T 47.2(0.4861 — 0.6563)

= —0.083 um~*.

Using Table 1.1 in the vicinity of 550 nm (e line at 546.1 nm),

An_n,—n,  1.67341— 1.67003 _ 0.00428

AL~ A, — 4, 05461 — 0.5876  —0.0415
= —0.103 ym™,

An _ng—n, _ 168000 — 1.67431 _ 0.00569

AL~ Ar— A 04861 — 05461  —0.0600
=—0.095m™1,

As can be seen from these calculations, the dispersion changes con-
siderably across the visible for some glasses. Eq. 9.5 is only an approxi-
mation. The average of the dispersion values is 0.099, suggesting dn/dA be
approximated by 0.1 pm ™,

The angular dispersion is

dé  sin30°-0.1pym~!
dl ~ cos 56.84° cos 56.84°

= 0.167 rad/um~*.
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The resolution for the prism is

th%-B:O.lym_1 %x 60 mm = 6000.

The ease of separation of light into its colors by a prism is measured by the
angular dispersion of the prism—the rate at which the final refraction angle
changes with wavelength, d&/dA. This quantity is made up of two contributions,
one due to geometry, the other to the material dispersion just described, that s,

dé _dédn

It can be shown that when the deviation ¢ is a minimum that y = ¢ in Fig. 9.8
and using the geometry illustrated in Fig. 9.8 and Snell’s Law [Problem 9.5]
that the geometrical contribution has the form

dé _ sin o

o 9.7
dn cosycosd’ ©-7)

where o is the apex angle of the prism and y is the angle of refraction. There-
fore, the angular dispersion for a prism is

do sin o dn

dl~ cosycosd di’ ©8)

9.2.2. A Prism Spectroscope

In order to sort light into its various wavelengths, all rays from a source must be
incident upon the prism face at the same angle, that is, the incident light must be
collimated. If the incident light were to have a range of angles of incidence, there
would be no unique angle of refraction for each wavelength and the purpose of
the spectroscope would be defeated.

Figure 9.8. The geometry of refraction of
light by a prism. The angle o between the two
faces is called the apex angle.
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In most spectrometers these problems are solved by imaging the source onto
a narrow slit and placing a lens one focal length away from the slit to collimate
the emerging light before it passes through the prism. A sketch of a simple prism
spectrograph is shown in Fig. 9.9. The collimating lens then provides a beam of
light whose angle of incidence is constant across the prism so that the refraction
angle is the same for all rays of a given color. On the other side of the prism
another lens focuses the refracted beams. Because each color is incident at a
different angle to this lens, each is focused to a unique location in the focal
plane of the lens, forming monochromatic images of the slit. The slit is chosen
because its image for one color will not overlap with images due to other colors.
Note that if the focusing lens is not achromatic, the focal length will vary with
wavelength and the image plane must be tilted to provide a focused image at all
wavelengths [ Problem 9.6].

The ultimate limitation on the resolution of any spectrometer (assuming a
sufficiently narrow slit) is the diffraction of the light by one of the elements. If we
assume all of the lenses in the system are larger than the prism face, then the
resolution is determined by the size of the prism. In spectroscopy the resolving
power is defined as the ratio of the wavelength being observed to the smallest
wavelength difference that can be resolved:

R=—". 9.9

As before we use the Rayleigh criterion as a convenient means of determining
the resolution of a prism instrument. It is argued that if two wavelengths are
deflected by angles that differ by less than the diffraction angle due to light
passing through the prism, they cannot be resolved. Thus we need to equate the
difference in deflection angle Ad to the diffraction angle 8 to derive an expression
for the resolution.

Collimating Focusing

lens

Collecting \
lens

\ Dispersing

prism

Extended source Detector
plane

Figure 9.9. A simple prism spectroscope. The source is imaged onto a narrow slit and the emerging
light is collimated by a lens. The refracted beams, emerging at different angles are focused by a
second lens to give produce separate monochromatic images of the slit.
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From diffraction theory we know that for large apertures the diffraction angle
that represents the Rayleigh criterion is well approximated by:

A
=sinf = — 9.10
0 =sinf T (9.10)

where W is the beam width as labeled in Fig. 9.9. The angular separation for
two wavelengths 4 and 1 + A4 according to Eq. 9.8 is

sin o dn
AS = ——— A
0 cosycosd di A

Equating the above expression with the diffraction angle given in Eq. 9.10, we
obtain

A sin & dn

=—— —AL
W  cosycosd di
Solving for the resolving power R yields

A sin o dn
R=—= W—.—_-‘
AL cosycosd did

(9.11)
It can be shown (Ref. 9.1, for example) that at the angle of minimum deviation—
an illumination geometry that is symmetrical with respect to the incident and
refracted angles—the geometrical factor, W-sina/cosy-cosd in Eq. 9.11 is
equal to the length of the base of the prism B in the direction of propagation and
that Eq. 9.11 simplifies to

dn
R = d_lB' (9.12)

Thus the resolving power can be increased by using a high-dispersion prism with
a large apex angle and a large base. Note that the focal lengths of the lenses have
nothing to do with the resolving power provided they are diffraction limited, an
assumption that may be unwarranted at high resolving power. In this minimum
deviation geometry, y, the angle of refraction, is equal to half the apex angle &. In
Example 9.A the resolution and angular dispersion of a flint glass prism are
determined.

In Fig. 9.10(a) two prism spectrometer geometries are shown. The first of the
two arrangements, known as a Littrow geometry, provides additional dispersion
by reflecting the light back through the prism. In the second case, the prism bulk
is reduced by coating a mirror on the back surface of the prism. The unfolded
system corresponds to the geometry shown in Fig. 9.9, but Fig. 9.10(b)
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Figure 9.10. Littrow prism spectrometer geometries. (a) Provides two passes for increased
angular dispersion; (b) has a more compact geometry and uses a smaller prism.

obviously is a more compact arrangement. As devices for analyzing light, prism
spectrometers are reasonably simple with none of the problems of overlapping
orders that we will encounter in the grating spectrometers. However, prisms can
be somewhat bulky, and at higher resolving powers the required prism is
expensive.

9.3. GRATING SPECTROMETERS

Grating spectrometers come in many shapes and sizes; all offer higher
dispersion with a compact dispersing element. Any regular periodic structure
can be used to resolve light into its constituent colors provided the period is
small enough. A grating for a spectrometer is usually a series of finely spaced
grooves on a glass substrate. In many instances, the surface is metallized to
produce a reflection grating. Diffraction gratings can also be created using
holographic techniques. In this section the basic equations for the diffraction
grating are given, its resolution are discussed, and some grating spectrometer
geometries are described.

9.3.1. The Grating Equation and Angular Dispersion

Monochromatic light of wavelength A incident on a grating of periodicity d at an
angle § with respect to the normal to the grating surface will be diffracted into
several angles §,,, according to the grating equation (Eq. 1.35 with differing
angle notation)

mi = dsind, —sinf), m=0,+1,+2, ..., (9.13)

where m, an integer, is the order of the diffracted beam. In Fig. 9.11(a) the
incident beam and five diffracted orders are shown. The zero order corresponds
to a direct transmission through the grating surface. The same geometry holds
for a reflection grating, but all beams would be reflected about the grating
surface as if it were a mirror, as illustrated in Fig. 9.11(b). The beams are shown
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M=

Incident
beam

Transmission Incident Reflection
grating beam grating
(a) (b}
Figure 9.11. (a) A transmission diffraction grating. All beam angles are measured with respect
to the grating normal. There are five orders shown here, the zero order being a direct transmission
of the light through the grating. (b) A reflection grating. The arrangement of the beams is the
same as the transmission grating except they are reflected about the plane of the grating.

for only one wavelength. However, in a spectrum there is a range of wave-
lengths. In some cases there are problems of overlapping orders. For example,
note that light at 300 nm in the second order will have the same diffraction angle
as light of 600 nm in the first order. In fact, any wavelength with product mi
equal to the same value will be diffracted at the same angle if all the radiation is
incident at the same f. In spectroscopy it is sometimes necessary to either
prefilter or predisperse the radiation to eliminate overlapping orders. For
example, a high-pass filter at the entrance slit to a spectrometer will remove the
600-nm light in the first order and transmit the 300-nm second-order radiation
[Problem 9.7].

Angular dispersion of a grating is defined in the same way that it was defined
for the prism, dé/d/. Taking the derivative of both sides of Eq. 9.13 with respect
to A yields

ds
m=dcosd —2.

™ dA
The dispersion is thus given by
dé m
A—m = e . 9- 4
di  dcosé,, ©.14)

9.3.2. Resolving Power of a Grating

Just as a prism, the limits of resolution are determined by diffraction, which
can be related to the width of the diffracted beam. In the mth order, a beam
diffracted at an angle &, by a fully illuminated grating has a beam width of
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W = Nd cos ,. The width of the grating is given by Nd, N being the number of
periods and d the periodicity (Fig. 9.12). Using the same analysis as in Section
9.2.2, the diffraction angle can be expressed in terms of the beam width as

. A

From Eq. 9.14, the angular separation between two different wavelengths is

m

AS, = -
Om d cos g,

Ad. (9.16)

Since the diffraction angle represents the smallest angular separation of resolved
wavelengths, we equate Egs. 9.15 and 9.16.

A _ m-AL
Ndcosd, dcosd,

9.17)

Solving for the resolving power, we find that the diffraction angle cancels and a
simple expression remains

A

Thus only the total number of grooves in the grating and the order of the
diffraction determines the resolving power of the grating. However, to achieve
useful, compact gratings, an extremely fine ruling must be produced.

If the expression for the order of the grating given in the grating equation (Eq.
9.13) is substituted into the expression for the resolving power just derived, it

Figure 9.12. Geometry for determining the resolving power of a grating. The effective width of
the grating is Nd cos J,, where the width of the grating is Nd. (N, the number of grating lines, and
d, their separation.)
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can be shown [Problem 9.8] that the resolving power of a grating of width W
will be less than 2W/A.

Please note that unless the entire grating is illuminated, the maximum
resolution cannot be achieved. Underfilling a grating in effect reduces the total
number of grooves in the grating (N is smaller); an overfilled grating just throws
light away. Thus, consideration must be given to the radiometry of the system
when designing an optical instrument containing a grating. In many cases the
improper illumination of a grating can be traced to poor design of the initial
light-collection optics.

9.33. Grating Blaze

A diffraction grating can be produced by photoreducing a regular pattern of
lines or by scribing grooves on a glass plate or metal surface. Usually a grating
made without consideration for the type or shape of the periodicity will direct
most of the incident radiation into the zero order (normal reflection or trans-
mission) with progressively smaller amounts going into higher orders.

However, by shaping the “grooves” or other periodic structure in a manner
that provides constructive interference between neighboring steps of the grating,
the power diffracted into a nonzero order can be considerably enhanced, making
the grating a more efficient disperser of radiation. The grating is called a blazed
grating. In Fig. 9.13, the grating grooves are shown with broad faces on one side
whose normals all are at an angle of « with respect to the grating normal. For
light entering along the face normals—that is, at an angle « with respect to the
grating normal—the additional path traveled by one ray reflecting off one facet
compared to a ray reflecting off the neighboring facet is 2dsin a. If the
wavelength of the incident light is equal to this path-length difference, con-
structive interference will take place and the amount of light diffracted will be
very high. At this wavelength 45, known as the blaze wavelength where

Ag = 2d sina, (9.19)

|« Grating

| normal

1 i i3 i
b drbe-d-ote-d >|
Figure 9.13. Blazed grating geometry. The facets on the grooves are oriented to provide con-

structive interference at a wavelength equal to twice the facet distance d sin o. This wavelength is
called the blaze wavelength of the grating.
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upwards of 75 % of the light can be diffracted into the first order. Away from the
blaze wavelength, the region of efficient diffraction extends from about % to 2 of
Ag [Problem 9.9].

In addition to mechanical methods, gratings are now manufactured by
holographic techniques, whereby periodic interference patterns are recorded on
photographic films. If these holographic gratings are recorded on emulsions
thicker than the wavelength of the exposing radiation, then they can also behave
like blazed gratings. Just as with the mechanically ruled gratings, the geometry
of the grating illumination is critical to achieving high efficiency. Some
holographic gratings when mounted on a rotating substrate can be used as
scanning elements (Section 8.5).

9.34. Grating Errors

Besides intentional modification of the basic diffraction gratings by blazing, the
manufacturing methods produce errors that show up as additional or “ghost”
slit images accompanying the desired images. The most easily identified of these
errors is the Rowland ghost, which is due to a periodic error in the screw of the
ruling engine. This error adds another periodicity besides the intended grating
period and results in faint sidebands to a strong line. In the breadboarding
stages of a design, a grating may be examined for ghosts by illuminating the
entire surface [Problem 9.10] with a low-power helium-neon laser. If the
periodic errors that occur have a period close to the grating period, the resulting
ghosts, called Lyman ghosts, are more difficult to find since they may be quite far
from the diffraction order related to the ghost.

Because no periodic device is needed to create them, holographic gratings are
free of such ghosts. However, a mosaic of such gratings (to make a very large
grating) can have an accidental interference pattern that might produce ghosts.

9.3.5. Grating Spectrograph Geometries

Although there may be an instance when a transmission grating geometry (Fig.
9.11(a)) is required in a design, most designs incorporate some type of reflection
geometry because of the efficiency of reflection gratings and the compactness of
the design. Modifications of the following reflection geometries to trans-
mission versions can be made by reflecting the diffraction paths and all
subsequent optical elements about the grating plane.

The simplest spectrograph geometry, shown in Fig. 9.14(a), consists of a
collimator followed by the reflection grating and a focusing lens placed in
the path of one of the diffracted orders. In the figure, the ray paths for three
different wavelengths are shown (for all other geometries in this chapter only a
single wavelength ray path will be shown). Figure 9.14(b) illustrates a Littrow
geometry similar to that used in the prism instruments. Obviously to work well
a blazed grating should be used. Because the slit and detectors would have to
occupy the same region if they were placed on the optic axis of the lens, the slit is
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Figure 9.14. Grating spectrograph geometries. (a) Simple geometry. Focus lens is placed in the
path of the diffracted order with detector at its focus. (b) Littrow geometry. (¢) Ebert-Fastie
geometry. (d) Czerny-Turner geometry.

placed above the optic axis and the detector below it. Another compact
geometry is the Ebert—Fastie, shown in Fig. 9.14(c). The single spherical mirror
serves as both the collimating and focusing element. The placement of the
grating next to the entrance and exit points gives a tight geometry that can fit
inside a cylinder slightly wider than the grating and whose length is equal to the
focal length of the mirror.

A standard configuration for many monochromators is the Czerny (pro-
nounced churn’-ee)-Turner geometry, shown in Fig. 9.14(d). In this geometry,
which is similar to the Ebert—Fastie, the single mirror is replaced by separate
focusing and collimating mirrors. This reduces the required diameter of the
mirrors to approximately the same as the grating diagonal. For some laser
spectroscopy applications the scattered light at the laser wavelength is so strong
it can be detected as an additional background at other wavelengths. To reduce
this unwanted background, two monochromators are placed in series (the exit
slit of the first is the entrance slit of the second) with both gratings set to pass the
same wavelength. The second monochromator is used to reject the laser
wavelength background and allows the detection of weaker radiation associated
with a laser-induced process.

A concave grating can provide both dispersion and focusing all in one
element. Using a concave grating in a design allows a designer to reduce the
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weight of the system and eliminate lenses. This is particularly useful in a system
to be used in the vacuum ultraviolet region of the spectrum, where the glass
would absorb the radiation. The optimum geometry, shown in Fig. 9.15,
consists of the source, the grating, and the detector all located on a circle, called
the Rowland circle. The Rowland circle is constructed with a diameter equal to
the radius of curvature of the grating. A number of different mountings have
been found that take advantage of certain features from linear dispersion (Abney
mounting), to wide spectral coverage (Paschen mounting), to compact con-
struction (Eagle mounting). All are described in Refs. 9.2 and 9.3.

Finally, the geometries for holographic gratings are determined by the
geometry used to produce the interference pattern that created the grating. Since
there are a multitude of geometries that can produce high-contrast interference
patterns, there is a great deal of flexibility available when designing a
holographic grating geometry. By the same token, however, all subsequent use is
constrained to that geometry. Any deviation from the recording geometry will
drastically reduce the efficiency and usually increase the aberration.

9.4. SPECTROMETER SYSTEMS

The combination of the source, dispersion element, and detector may represent
the most basic type of spectrometer, but for many applications it is not sufficient
to provide the needed information.

9.4.1. Sources

We can divide spectrometric sources into two classes, broadband sources and
narrowband sources. Broadband sources may be incandescent lights in the
visible region, “globar” heated ceramic sources in the infrared, or the ultraviolet
output of radiation from a synchrotron particle accelerator. Normally, these
broadband spectral sources are used for the study of absorption spectra since
they provide a continuous background against which absorption lines can be
observed.
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In comparison with the broadband sources that are part of the spectrometer,
narrowband sources tend to be sources under study. Examples of narrowband
sources include gaseous discharges at low pressure, laser emissions, and the
fluorescence and phosphorescence of materials. Stars provide examples of both
types of sources. They can be studied for the broad continuum, which gives
some indication as to the size and age of the star, or for the discrete lines in the
spectrum, the positions of which give a measure of the velocity of the star
relative to the earth. In addition, absorption bands in the continuum indicates
the presence and species of interstellar matter between earth and the star.

9.4.2. Spectrum Format

Depending on the information sought, the dispersing element of a spectrometer
can remain fixed during a measurement or can be moved to supply additional
information. For example, when a photographic plate is used, the grating or
prism presents the entire spectrum to the detector and there is no need to move
the dispersing element. Also, if a single spectral line is being monitored by a
detector, the dispersing element can remain stationary.

If, however, the detector consists of a light-sensing element with a slit to
define the band to be measured, a spectrum can be recorded only if the grating
or prism is moved, scanning the spectrum past the slit. Although it is possible to
move the detector and slit past the spectrum, this method is cumbersome.

An example of one scanning arrangement is the sine bar drive shown in Figs.
9.16(a) and (b). In part (a) the input and output beam geometry is shown.
Because there is a fixed entrance slit and fixed exit slit, the angle y between these
beams is constant. If the angle of incidence is § and the diffracted beam angle is
d,,» the sum of these two angles must be

y=8+30,. (9.20)

Thus the grating equation (Eq. 9.13) can be written as
mA = d(sin §,, — sin(y — d,,)). (9.21)
When the grating is set to reflect the zero order through the exit slit,

B = 8, = y/2, since this is a case of reflection. As the grating is rotated from the
zero order position through an angle 8, § changes from y/2 to y/2 + 0, that is,

Using Eq. 9.20.
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Figure 9.16. The sine bar drive. (a) Input and output beam geometry, (b) drive mechanism.
This linkage changes the linear motion of the nut N on the screw into a circular motion of the
grating so that the nut position is equal to the sine of the grating angle. O is the rotation point
of the grating, P is the point where the linkage touches the nut on the screw and D is the distance
between the two points.

Substituting for §,, in Eq. 9.21.
—denl? —08Y— gein{l 48
m,l—dsm(2 0) ds1n<2+ ),
mA = —2d sin(f) cos(%). (9.22)

Thus the argument of the sine function is the angle of grating rotation from the
zero-order (i.e., reflecting) position. In Fig. 9.16(b) a bar fixed to the grating at
the point of rotation of the grating O has a pivot point P a fixed distance D from
O. Point P pushes against another bar that is attached to a nut on a long, finely
threaded screw. As the screw is turned, the point P moves a distance equal to
D sin 0. Therefore, if the screw is turned at a constant rate, the sine of the grating
rotation angle 6 changes at a constant rate and the wavelength that is diffracted
at angle y to the input beam changes linearly with time [Problem 9.11]. The
sine bar drive is an example of one of the many scanning mechanisms available
to the optical designer. In some cases an extremely rapid scanning of the
spectrum is needed and a sine bar drive would be too slow. Then a rotating
optical element in the diffracted beam such as the polygonal prism or mirror
might be used.
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9.4.3. Spectrometer Control

If only the frequency or the wavelength of some spectral detail is needed, a well-
calibrated dial or photographic plate will suffice. However, if the relative
responses at various wavelengths are to be found, then the system must be more
complex. The greatest complexity occurs if an absolute measurement of a
physical quantity is required.

The simplest type of spectrometer system is an open-loop system in which
there is no attempt to control the system. In Fig. 9.17(a) the source output is
analyzed, detected, and plotted. If, for example, the source power drops during
the scan, there is no method to compensate for this. However, if a portion of the
source output is sensed and sent to the electronics (dotted lines), variations
in the source power can be adjusted for. In Fig. 9.17(b) a closed-loop system is
shown that provides a comparison between two examples, an unknown and a
reference. Here, the loop is closed by the chopper, which tells the electronics
which sample is being analyzed by the spectrometer. In this case the loop
provides a means of rapidly comparing two samples (one a standard) with a
single optical system.

In these systems the loop can be closed at any number of points—at the
source, at the spectrometer, or any other element. In earlier days the operator of
the system was an important, if sometimes uncertain, part of the loop. Whether
he or she was reading a photographic plate or adjusting the gain on an amplifier
to produce a readable strip chart with a pen recorder, the volume of information
and the number of variables to be controlled were manageable. Today this is no
longer true. Integrated circuit chips or microprocessor-based computers can
provide much of the control necessary to increase the volume and reliability of

|/ Sample \L
Source Spectrometer s Detector Electronics * A A
S !
Output
(a)
—_—— s
Light path Closing loop
> L Sample Chopper
Electronic My 3 S :
Signal 25 Detector Electronics
¢ ) — :

‘ Source Spectrometer T I
: T oo e M/.AA
BS 2

Reference

Output
(b)

Fig. 9.17. Spectrometer systems. (a) Open-loop system. (b) Closed-loop system using a reference
to compensate for system variations.
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the data from a spectrometer system. However, as we discuss in the final
chapter, a blind faith that some control system can compensate for an inefficient
or sloppy optical design is a way to assure yourself a measure of future grief.

PROBLEMS

9.1.

9.2.

9.3.

94.

9.5.

9.6.

9.7.

9.8.

9.9.

Given two wavelengths 4, and 1, whose separation Al is not a small
fraction of these wavelengths, what is the correct expression for the
frequency difference Av for such a band? Using A, = 488 nm and
A, = 514nm, calculate the approximate (from Eq. 9.1a) and exact
frequency difference between these two lines.

What is the optical density of a filter that transmits § of the incident
energy? 3?7 If a neutral density filter (a filter whose attenuation is nearly
constant across a large range of wavelengths) is marked with an optical
density of 1.5, what is its transmission ?

Using Eq. 9.1 and the fact that the Fabry—Pérot mirror separation is an
integral number of half wavelengths at a transmission band, derive Eq.
9.4. (Hint: each transmission band corresponds to a different integer.)

What is the size of the tuning range that can be achieved by tilting a
dielectric filter designed to pass the 514.5-nm argon—ion laser line
through an angle of 30°? What happens if a dielectric filter is placed in
convergent light?

Derive Eq. 9.7 using the geometry in Fig. 9.8 and Snell’s Law. First show
that

sinB' = sina-/n? — sin?f — cosa sin §
and then find dd/dn.

If the lens in Example 5.E were used to focus the light from a prism
spectroscope, what angle with respect to the plane normal to the optic
axis of the lens would be necessary to provide the best focus for the F, d,
and C lines? (Small angle approximations are in order here.)

What band of visible wavelengths would have to be suppressed in a
spectrograph to record signals only from the second-order spectrum
in the range of 500-700 nm?

Show that the resolving power of a diffraction grating is always less than
2W/2, where W is the width of the grating Nd.

What is the blaze angle of a grating if the spacing between steps is
480 nm and the grating is designed to be efficient between 320 and
720 nm.
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9.10. Why is it necessary to illuminate an entire grating to see Rowland
ghosts? What if only a small portion of the grating were illuminated with
a low-power laser?

9.11. Using the arguments given in relation to Fig. 9.16, show that if the screw
on the sine bar drive is turned at a constant rate, the output wavelength
at an angle of y with respect to the input beam changes linearly with time.

9.12. How could you use a diffraction grating as a beam combiner to
superimpose two. monochromatic images at two different wavelengths?
Assume the wavelengths are 500 and 600 nm and the grating constant is
1000 lines/mm.

9.13. A simple test is to be made as a biological assay. A certain substance is
released by a chemical reaction. The concentration of this substance is an
indication of the level of activity of the biological system. The substance
absorbs strongly at 650 nm and is nearly transparent at 500 nm. Devise a
simple system to determine the concentration of the substance and
therefore the activity. Assume that at maximum activity the substance
will attenuate 650-nm radiation by 3 O.D. for a 1-cm path length and
attenuate 500 nm by only 0.2 O.D. for the same concentration. (While it
is not necessary for the simple design requested here, the irradiance
through a sample is given by I(4) = I (A)e~**<, where I(A) and I,(2) are
the transmitted and incident irradiances of wavelength A, «(4) is the
absorption coefficient curve characteristic of the absorbing substance, c is
the concentration, and x is the path length, here, 1 cm.)
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Detectors
(HOW TO RECORD WHAT YOU'VE FOUND)

In all the optical systems that we have discussed, the optical train terminates at
some detector or detector plane. In the preceding chapter on spectrometers the
simple example illustrated in Figure 2 of Newton’s Opticks ends with the eye as
the detector. For some systems this is an adequate detector. It is a convenient,
widely available device that records images in full color and real time under a
wide range of light levels. It suffers from certain disadvantages such as a
connection to an imperfect and highly selective memory bank whose retention
time is dependent on the type of object being observed. We will discuss the eye
first and then a host of other detectors. The number of detectors that are
available today is considerable, and it would be impossible to cover all of them
in a book, let alone a single chapter in a textbook. We have, therefore, selected a
number of common and useful detectors and left some of the more exotic types
for you to explore later. Because this chapter consists of a discussion of the many
detectors available for the optical designer, a narrative has been added to the
material to provide a thread of continuity through this series of descriptions.

You have been hired by an aerospace firm to do some optical design work of
a yet unspecified nature. During your first day on the job the supervisor
drops by the office to give you some idea of what you will be doing. “We’re in
a slack period right now and the contract we were anticipating hasn’t been
signed, so we don’t have a definite task for you yet. But you will probably
do the detectors for this project. I'll let you know when I get some more
information.” The supervisor’s voice trails off down the hall while you ask
yourself some of the questions you would like to have asked him then.
What kind of source will the system be looking at? Is the radiation in the
visible? The infrared? The ultraviolet? How long do I have to detect the
signal? How strong will it be after it gets through the optical system? Do I
have to record an image or just an irradiance level? The questions rise to the
surface like bubbles, as though the supervisor had uncapped a pop bottle.
Maybe the system will require a TV camera on an elaborate scanning
platform similar to the ones on the Voyager series spacecraft. Wouldn’t that
be a fantastic project to begin a job with? But then maybe it will be a very
simple job that could be done by eye.

336
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10.1. THE EYE—THE ULTIMATE DETECTOR

In most of the optical systems the information is ultimately put in a form that
can be read by a human. (There are, of course, exceptions to this statement—an
optical system integrated into a robot, for example.) We already discussed the
eye as a simple optical instrument in Section 1.5 and as a color-sensitive detector
in Section 3.5 on photometry and spectrometry. In Table 10.1 we list some of
the most common characteristics used to specify detectors. Here, we look at the
eye as a device and compare these characteristics of a detector to those of the
human eye.

The spectral response of the human eye, which extends approximately from
400 to 700 nm, defines the visible spectrum, the range of wavelengths used in the
field of photometry. The eye’s sensitivity is somewhat harder to specify because
it is so adaptable; it responds over a large variation of illumination levels—from

Table 10.1. Representative Photodetectors
Peak Frequency Resolution
Detector Sensitivity  Response Response (line pairs
Types (A/W) Curves (Hz) per mm)
Eye NA Fig. 3.16 20 5
Thermopile S5V/W Flat 1 NA
Pyroelectric 2400 V/W Flat 5 x 10° NA
Photographic Plate NA Fig. 10.4 Note 1 200
Electrophotographic NA Note 2 10 Note 3
Photomultiplier 10° Note 4 10° NA
Vidicon Tube NA Note 4 108 Note 5
Image Converter NA Note 4 103 20
Solar Cell 0.3 Fig. 10.17 5 x 10° NA
Photodiode Photovoltaic 0.3 Fig. 10.17 108 NA
Photoconductive 0.3 Fig. 10.17 3 x 107 NA
Avalanche Photodiode 100 Fig. 10.17 10° NA
Charge Coupled 03 Fig. 10.17 107/N 30
Diode Array N = of diodes
NA: Not applicable in most cases.
Note 1: Must calculate irradiance I and determine time to achieve necessary exposure.
Note 2: Extends from far UV to green, peaks about 400 to 450 nm.
Note 3: Depends on optics and toner.
Note 4:  See curves in Fig. 10.8. (For problems, choose the most effective surface.)
Note 5:  Approximately 500 lines (horizontal) x 350 lines (vertical) per frame.
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bright sunlight to starlight. The eye is an extremely sensitive detector, for the
sensation of light can be caused by only a few photons—as good as the best
photomultiplier tubes. Since the advent of the laser, the maximum illumination
that is safe in various applications has come under considerable scrutiny. Since
it depends on the situation, the wavelength of the radiation, and the coherence of
the source, the maximum power input for the human eye is not easily
determined and is still a subject of study. The minimum signal that the eye can
detect is affected by its past history, as anyone who has walked into a dark room
on a sunny day knows. Even when the eye is dark adapted it will produce a
signal spontaneously in the absence of any radition. This is called “eigengrau”
(German for “self gray”).

If there is one quality that the eye lacks when compared to other detectors, it
is good temporal frequency response. The eye will perceive a succession of
images as continuous if their frequency is above about 25 Hz—the actual value
varies with illumination levels. This has been useful for the creators of motion
pictures and television programs, but it means that for the observation of events
happening in less than a tenth of a second we must depend on faster detectors
than our eye.

The angular acceptance of the eye is not easy to specify with a single number.
Because our peripheral vision, which has very little resolution, is combined with
high-resolution central vision, the overall angular acceptance of the eye is about
120°, while that of detailed vision is only 5°. The resolution is governed by the
regions of sensitivity on the retina, shown in Fig. 10.1. The high-resolution cone
receptors occupy the central 0.25-mm diameter circle, the fovea, while the low-
resolution rod receptors are distributed over the rest of the sensitive region of
the retina. The cones are responsible for the high illumination response given by
the photopic curve (Fig. 3.16), whereas the rods provide the low-light-level
sensitivity for dark-adapted vision.

Retina
(shaded)

Optic axis
Vitreous ——
Cornea humor Visual axis

Aqueous

humor Ciliary muscle

Ear

Figure 10.1. Schematic horizontal cross section of the human eye. Note the visual axis through
the center of the lens and the fovea is not coincident with the optic axis of the eye.
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All in all, the eye is a formidable optical system providing zoom focusing,
adaptation to a wide range of light levels, central and peripheral imaging, and
dual responses to provide both high-level and low-level detection—all in a one-
inch-diameter sphere! Any optical designer worth his or her salt would be proud
to design a system like that. Of course, they wouldn’t have the luxury of millions
of years of field trials.

The supervisor sticks his head in the door of the office. “I've got a new
project for you. We have to measure the total radiation coming from a
target for the new Space Shuttle package. See what you can throw together
on commercial detectors that we could use.” He gives a little wave and tears
off down the hall as the questions begin to rise once more. What sort of
target? Does it want to be seen or will it try to hide from the detectors? Is it
moving? What does he mean by total radiation? The last time you asked
those questions the reply was: “Sorry, friend, but that’s all they’ve told me so
far”. Do we want detectors to measure total radiation from the target? That
means we’ll need a broadband detector.

10.2. THERMAL DETECTORS

Radiation, whatever its wavelength, consists of packets or quanta of energy,
called photons. The amount of energy per quantum is given by E = hv, where h
is Planck’s constant, an extremely small constant equal to 6.625 x 10 ™ J-sec
and v is the frequency of radiation. Radiation detectors that convert this energy
to an electrical or chemical effect on a quantum-by-quantum basis are called
quantum detectors. The eye is an example of a quantum detector operating by
photochemical conversion. Detectors can also convert radiation into heat.
These are called thermal detectors. In comparison to most quantum detectors,
thermal detectors are simple devices. They consist of an absorbing surface and a
means of measuring the amount of heat absorbed. It is possible, for example, to
cause the radiation to heat a gas in a cell and then measure the pressure change
due to the heating (Golay cell). Because heat will change the resistance of metal
wire or a semiconductor (thermistor), the presence and amount of radiation can
be detected when the element is part of an electric circuit (bolometer). In this
section we describe two thermal devices of particular interest, thermoelectric
detectors and pyroelectric detectors. In later sections we describe the quantum
detectors.

10.2.1. Thermoelectric Detectors

All thermal detectors depend on a surface that absorbs radiation over a large
range of wavelengths and converts the radiation to heat. To the extent that the
absorbing surface does not reflect or scatter any of the incident radiation, the
device will be a good radiation detector. Beyond this the usefulness of the
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detector depends on the ability of the device to measure the temperature
Increase in the absorbing surface.

One method of measuring the amount of heating in a material is to attach a
thermocouple to it (Fig. 10.2(a)). The temperature difference between the
thermocouple junction attached to the absorbing surface and a reference
junction at a constant temperature produces a voltage that can be recorded with
a microvoltmeter. If the meter has been calibrated with a known power input,
the incident power from any source can be found. By combining a series of
thermocouples into alternating measuring and reference junctions, the amount
of thermoelectric power generated is increased and the sensitivity of the device is
also increased (Fig. 10.2(b)). This multiple junction detector is called a
thermopile. A sensitive thermopile, which can be quite expensive, will measure
incident power levels in the microwatt range. To provide accurate readings at
low power levels it is necessary to ensure that any radiation due to the
surroundings and background has been subtracted from the total signal. At very
low levels, the absorbing surface is cooled to reduce the thermal noise that
would interfere with the signal.

The thermopile offers no realistic possibilities for image detection; however,
its linearity over a wide range of power levels and its uniform spectral sensitivity
over a range from the near ultraviolet to the infrared make it extremely useful for
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Figure 10.2. Thermocouple-based radiation detectors. (a) Simple thermocouple detector.
(b) Thermopile.
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power measurements on a variety of sources. Perhaps its greatest drawback is its
slow response time, which depends on the size of the absorbing surface but is
usually about one second for most thermopiles.

10.2.2. Pyroelectric Detector

If a ferroelectric crystal, a crystal that has a permanent dipole moment, is heated,
its dipole moments will change (pyroelectric effect). This causes a change in the
voltage across the crystal, and if the opposite surfaces of the crystal are
connected in an external circuit, a current will flow until the two sides of the
crystal reach the same potential (Fig. 10.3). The amount of the current is a
measure of the heat absorbed by the crystal and, therefore, of the amount of
incident radiation. However, the current exists only as long as the crystal is
heating up (or cooling down). Once a new stable temperature is reached and the
voltage drop across the crystal is zero, the current is zero.
The current is proportional to the time rate of change of temperature,

AT

I =p(T)A—, 10.1
P S (10.0
where p(T) is the pyroelectric coefficient of the crystal and A is the electrode
area. The mass of the crystal can be written as: m = pV = pAd where p is
the density of the crystal, V is its volume and d is its thickness. Recalling the

definition of specific heat,

AE 1 AE 1
= AT 'm AT pAd’ (10.2)

Solving for AT in this equation, and substituting into Eq. (10.1), we obtain

AE 1
I =p(MA —-
p(T) At c,pAd
T
_wHD (10.3)
pc,d
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Figure 10.3. Pyroelectric detector. Chopped (modulated) radiation produces a change in the
spontaneous polarization of the crystal. The generated AC signal is then measured.
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where the W(= AE/A¢) is the instantaneous power causing the current I and the
second term is a constant of the detector. Note that since a current occurs
because of a change in the signal, the input radiation must be chopped, pulsed,
or modulated to be measured.

Because the detecting crystal can be very small yet still give a substantial
signal, the response time of the detector can be extremely short. Thermal
detectors with frequency responses exceeding a megahertz are possible. Because
the spectral response is broadband like any other thermal detector, it is useful in
high-speed infrared systems. Although it would seem that pyroelectrics are ideal
detectors, pyroelectric crystals are fragile and, in some cases, hygroscopic.
Therefore, unless special care is taken in the placement and packaging of these
devices, their reliability may be a problem in the overall design of the system.

At a weekly project review meeting you find out that the project has been
expanded. Along with the broadband detectors, they want some simple
imaging systerm.

This time there is an opportunity to get more information. Do you have
some idea about the wavelength coverage? How good do the pictures have
to be? Is this supposed to be real-time imaging?

The supervisor and the project director are able to provide the following
guidelines. Most of the imaging is to be done in the near infrared and the
pictures would be recovered at a later time. Therefore, there is no need for
immediate transmission of the pictures. As for the resolution, no infor-
mation has been forthcoming. It appears that the imaging is to be used to
make sure that the device was looking at the correct target.

“Sounds like a simple infrared camera,” you mumble under your breath.

10.3. PHOTOGRAPHIC MATERIALS

After the human eye, the most familiar light detection device is photographic
film. Today we tend to dismiss the complex photographic process because we
can drop the roll of film off at the drugstore and get a finished set of prints a day
later or wait a few minutes until the camera spits out a nearly instant picture.
The simplicity of our everyday experience with photography gives way to the
true complexity of the subject once one sees the kinds and types of emulsions
available and the variety of processing conditions. It is impossible to go beyond
the rudiments of the photographic process here. Considerable information is
available from technical manuals, books, and from the manufacturers of film.

The advantages of photographic systems include an ability to record images
and to integrate the light flux over a period of time to capture a weak signal.
Photographic materials need no electrical power to work (except for motion
pictures, where power for the film transport is required). These materials are
compact and lightweight compared to other roughly comparable imaging
systems such as television cameras.
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10.3.1. Silver-Based Emulsions

Although there is now a variety of other photographic methods available to the
optical designer, detection of radiation by silver halide grains embedded in an
emulsion is still one of the best methods available. The prime reason is that only
a few photons are needed to sensitize a silver halide crystal. The energy needed
to finish the conversion of silver bromide or silver iodide to elemental silver is
provided by the chemicals in the development process. Prior to development,
the information exists as a latent image in the form of the sensitized grains on the
plate or film.

Because the silver halide grains by themselves are sensitive only to blue and
near-ultraviolet radiation, dyes must be added to absorb the radiation in other
parts of the spectrum and to provide a pathway to sensitize the silver halides. If
the spectral response is extended into the green region of the spectrum, the film
is called orthochromatic; if the region of sensitivity extends across the entire
visible spectrum the film is called panchromatic. A representative set of spectral
sensitivity curves is shown in Fig. 10.4. Infrared films are available, but they
must be handled and stored carefully because of the risk of fogging the plates
due to heat.

Once a film has been exposed, the amount of darkening in a particular
region is dependent on a number of factors: (1) the irradiance on the exposed
region, (2) the wavelength of the radiation, (3) the length of the exposure time,
and (4) the conditions for developing the film. Assuming the film is sensitive at
the radiation wavelength, the relationship of the other three factors to the
amount of darkening can be expressed as a curve called the Hurter—Driffield or
H-D curve such as the one shown in Fig. 10.5. The vertical axis is the optical
density, D (see Section 9.1.1); the horizontal axis is the logarithm of the
exposure, H, the product of the irradiance and the exposure time, E, t.

Panchromatic

Log Sensitivity

Ortho-
hromatic "™

400 500 600 700
Wavelength (nm)

Figure 10.4. Photographic sensitivity curves. Each photographic emulsion has its own peculiar
sensitivity curve. The curves illustrated here are intended to be representative of three classes of
film sensitization.
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Figure 10.5. Characteristic Hurter-Driffield curve of a photographic emulsion. Note that
developing for a shorter period of time reduces the contrast and increases the exposure range.

To understand this curve, examine its three regions. On the left side of the
curve the exposure is small and the density is constant. This is the underexposed
region. The nonzero density in this region is due to a small reduction in
transmission when the plate is developed even if it has not been exposed. This
level is called the fog level of the plate. The point T where the curve begins to
bend upward is the toe of the curve. At the other end of the exposure axis is the
overexposed region. Here, any additional radiation has little effect on the film
since almost all crystals have been converted to silver. (There is an effect called
solarization that causes the curve to fall for extremely large exposure values so
that additional irradiation can actually reduce the density. Although solari-
zation has artistic uses, it is rarely used in optical design.) The point where the
overexposed region bends over is the shoulder of the curve (point S in Fig. 10.5).
The region between the shoulder and the toe is the imaging region, the linear
portion of the H-D curve, where variations in irradiance are translated into
optical density variations. If the slope of the linear portion of this region is very
steep, then only a small variation in exposure will cause a large change in optical
density, yielding a high contrast image. If the slope is less steep, the range of
exposure will be increased with lower contrast resulting. The amount of contrast
is specified by the slope of the linear portion of the H-D curve, designated by the
Greek letter gamma.:

AD

=i (10.4)

Y

The gamma of a particular piece of film depends not only on the type of film, but
also on the development time and the development temperature. If the
temperature is taken to be the standard 20°C (68°F), a plot of y versus
development time provides the designer with an idea of the range of y that can be
achieved with reasonable development times.
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There are a number of effects that can influence the quality of the image. For
example, it has been assumed that the exposure, H, is the product of the
irradiance times the exposure time. Thus any point on the H-D curve can be
achieved in a number of ways. One could reduce the irradiance and expose for a
longer time or increase the irradiance and shorten the exposure time. However,
for very short and very long exposure times this reciprocal relation does not
hold; the total exposure H must be somewhat more than is needed at
intermediate times. This is known as reciprocity law failure. Other effects, called
adjacency effects, occur when exposed regions are close to one another. The
proximity of a heavily exposed region can influence the rate of development of
an adjacent region of lower exposure.

Assuming that the optical system you have designed is absolutely superb,
what can you expect of photographic materials when recording an optical
image? It depends on the resolution of the film. This quantity can be specified by
a number of methods. One is to determine the maximum number of dark-light
line pairs per millimeter that the film can record. This evaluation can be done
visually, although it becomes very subjective, or by scanning the photographic
image with a narrow slit and detector. The resolution of standard photographic
film rarely exceeds 100 line pairs/mm. For work that requires the recording of
extremely fine interference patterns (e.g., holography), resolutions upwards of
1500 line pairs/mm are required. Perhaps most useful is a modulation transfer
function (MTF) of the film. This plot of contrast versus spatial frequency (see
Section 6.5.3) provides an evaluation of performance over the useful spatial
frequency range.

10.3.2. Other Photographic Materials

In contrast to the silver-halide-based materials, all other photographic methods
require an abundance of light. Thus these methods are useful only when the
source is a large bank of fluorescent lights, a focused laser beam, a bright
ultraviolet light, or a similar source. In some cases the light must be rich in
ultraviolet wavelengths to produce a photochemical change. For example,
compounds with nitrogens attached to a benzene ring (diazo materials) break
down in the presence of UV radiation. Because there is no “graininess” to these
materials, they generally have a higher resolution than silver halide emulsions.

Polymerization of compounds by irradiation is another high-illumination
means of producing images. If a gelatin containing a dichromate is illuminated,
the dichromate causes cross-linking in the gelatin. This reduces the solubility of
the material. Development then consists of rinsing the materials in water. The
result is a layer whose thickness is proportional to the amount of illumination.
This amounts to a “phase photograph,” that is, the image is recorded as an
optical path in the emulsion rather than a pattern of absorbing materials. This
type of process is particularly useful in holography and in photolithography.
Other photopolymerizers contain an absorbing material called an initiator.
Light absorbed by the initiator is channeled to the monomer in which it is
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Figure 10.6. Electrophotographic imaging. Either a portion of a brightly illuminated object or
the entire object is imaged onto a photoconductive surface. The latent image built up as a surface
charge distribution is changed to a distribution of opaque particles (toner) and then transferred
to a charged sheet of paper. The toner is melted on the paper by local heating to create the
permanent copy. For document scanning, drum rotation and paper motion must be synchronized
to reduce distortion.

embedded, causing polymers to form. The spectral sensitivity is controlled by
the absorption spectrum of the initiator. Thermal effects can also be used to
produce local color changes. In all cases the amount of light required is
significantly greater than with conventional photographic materials.

Another method that requires high irradiance is electrophotography (Fig.
10.6). One type is used in Xerox (TM) copying machines. A photoconductive
surface is sprayed with charge and exposed to a bright image. In those areas
where the illumination is high, the conductivity increases, enabling charges to
leak away. Thus, charges remain only in the darker region. If the surface is then
sprayed by a dust of colored particles (toner) charged opposite to that of the
surface, the particles will be attracted to the unilluminated and weakly
illuminated regions. The colored particle distribution is finally transferred to
paper by static electricity techniques and permanently fused to it by heating.
Because of charge migration and fill-in, the electrophotographic process cannot
approach the contrast ratios and resolution of the other processes discussed in
this section. However, its convenience and rapidity make it particularly useful
for photocopying.

There are certain disadvantages to any of these photographic methods. They
all need some sort of processing to bring out the latent image. There is no
electrical signal that can be used for real-time processing. And while the process
time can be reduced, there is no real-time information. Still, if some form of
archival image is needed in an inexpensive format, then a photographic method
is the method of choice.

One of your office mates sits down and puts his feet up on your desk.
“Have you heard the latest wrinkle in the project?”

“No. You mean they are not going to use infrared cameras?”
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“I understand they want real-time information and images. It looks like we
are going to need a low-light-level television. What do you know about
them?”

“Not a whole heck of a lot. Are you sure? You’re not pulling my leg, are
you?”

“No. That’s what the supervisor told me last night. Go ahead and ask him.”
“I think I will,” I say, reaching for the telephone.

“On second thought, don’t bother. Project management is doing project
reviews for the next two days.”

You begin to review the basics of photodetectors and imagers.

10.4. PHOTOEMISSIVE DETECTORS

Photoemissive detectors are extremely sensitive light detectors that use the
photoelectric effect to provide an electrical signal that is proportional to the
incident light. After describing the effect and its use in photomultiplier tubes, we
look at two devices for imaging radiation: image tubes and converter tubes.

10.4.1. Photomultipliers

Some of the easiest elements to ionize are the alkali metals, those elements that
are one atomic number greater than the rare gases. A certain amount of energy,
called the work function, is needed to pry an electron away from the atom and
surface on which it is held. As Einstein explained in 1917, to produce a free
electron the energy of a single light quantum must be sufficient to overcome the
binding energy of the electron to the surface. Once the electron is free it must be
removed from the vicinity of the surface if it is not to reattach itself. This
removal can be accomplished by the presence of a voltage difference between the
photoemissive surface and a collection point for the electrons. If the collection
point is more positive than the surface, emitted electrons will be swept to the
collection point by the electric field.

The construction of a photodiode is shown in Fig. 10.7. The photoemissive
surface, or cathode, is usually deposited on the inside of a glass tube or on a
metal surface that is connected to the outside through a metal feedthrough. The
positive collecting surface, or anode, is also connected to the outside by a
feedthrough. By connecting a voltage source between the anode and cathode
and measuring the current that is generated in the external circuit, the amount of
radiation on the photocathode can be determined [Problem 10.2].

Since the amount of energy in a photon determines whether an electron may
be emitted from the surface, and since the amount of energy in a photon is
proportional to the frequency of the light, therefore, the sensitivity of the
photocathode must vary with the color of the incident light. By combinations of
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Figure 10.7. Photoemissive diode. Photons incident on the cathode cause electrons to be emitted.
An accelerating voltage between the cathode and anode directs the electrons to the anode where
they are collected. The photocurrent through the load resistor is a measure of the amount of light
falling on the device.

various alkalis and other metals, a number of photocathode surfaces can be
produced that provide high sensitivity over a range of visible and near infrared
wavelengths, as shown in Fig. 10.8. In the ultraviolet region this sensitivity can
be extended only if the glass substrate on which the surface is deposited is
replaced by quartz, since glass absorbs below 350 nm. Even in the best of
circumstances a photosurface has only a 25% quantum efficiency, that is, only
one out of every four photons produces a photoelectron.

The output of a photodiode might be sufficient at high light levels, where a
large amount of photoelectrons provide a substantial current. However, there
are more rugged and less-expensive semiconductor devices (Section 10.5) that
can do the same job. It is only by multiplying the original photoelectrons that
we can obtain the extremely high sensitivities needed for operation at very low
light levels. The device that accomplishes this is illustrated by a schematic
diagram of a photomultiplier tube in Fig. 10.9. A series of secondary electron-
emitting surfaces called dynodes, are placed between the anode and the cathode,
and an accelerating electric field is imposed between the dynodes. An electron
emitted from the photocathode is accelerated to the first dynode, where its
kinetic energy is sufficient to knock off a number (usually 2 to 4) of secondary
electrons. These electrons are in turn accelerated toward the next dynode to
produce additional secondary electrons. A cascade of 8 to 10 dynodes can
produce a gain of a million or more, depending on the voltage across each
dynode. This results in a sizeable amount of current in the form of a pulse of
electrons at the anode for every photoelectron emitted by the cathode. To
provide the proper distribution of voltage between dynodes, a chain of resistors
serves as a voltage divider for the high voltage imposed on the tube, as indicated
in Fig. 10.9. Since there is always a small current flowing in this circuit it is
sometimes referred to as a bleeder chain and the current as bleeder current.

The output of a photomultiplier tube can be measured in two ways. One
method is to integrate the current in all the pulses over some period of time; the
average current becomes the resultant electrical signal. This is the simplest
method of using the output of a photomultiplier tube. This method, however,
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Figure 10.8. Photocathode sensitivity curves for selected combinations of photoemissive
materials. (Reproduced with permission, RCA Corporation.)
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Figure 10.9. Photomultiplier tube. The current from a photocathode 1s amplified by accelerating

the photoelectrons into a series of dynodes that emit several electrons for each electron hitting

the surface, creating a cascade of electrons that can be integrated at the output as a current or
detected as a current pulse.
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includes noise due to the dynode chain. The second method, used in low light
level applications, employs standard nuclear instrumentation counting elec-
tronics to count the individual pulses. Discrimination against some noise
sources is done simply by setting the counters to reject pulses whose amplitudes
are smaller or larger than the range of pulse heights expected for photoelectron
pulses.

The advantages of a photomultiplier tube are its high sensitivity (on the order
of 100 kA/W), its linearity over 10 orders of magnitude, and its fast response.
The response time is usually less than 100 nsec, with some tubes operating in the
10-nsec range. Its disadvantages are that it is fragile and that it requires a high-
voltage power supply for operation. For low-light-level operation, the cathode
must be cooled to about —40°C to reduce the number of thermally excited
photoelectrons that could be counted as signal.

One technique that reduces the overall size and weight of the photomultiplier
tube is to fashion a continuous dynode chain out of a length of hollow glass
tubing coated on the inside with dynode materials. When 2 kV are applied to the
tube, current amplification can take place just as in the discrete dynode case.
These devices are called continuous-channel electron multipliers. (The com-
mercial detector that uses this method is called a Channeltron.) In all these
cases, the output of a photomultiplier tube is a measure of the total amount of
radiation falling on the photocathode. These tubes cannot produce or amplify
an image as image tubes can.

10.4.2. Image Tubes

The first surface of an image tube is the same as that of a photomultiplier tube.
The difference is that the spatial distribution of the light pattern delivered by the
optical system is preserved for further processing. There are two types of image
tubes, the storage tube, which is used to produce an electronic signal like those
used in television cameras, and the converter or amplifier tube, which produces
an image of a scene that could not be seen by the unaided eye. Infrared viewers,
sometimes called snooperscopes, and low-light-level viewers are devices that use
the second type of tube.

10.4.2.1. Storage Tubes. An image storage tube, shown schematically in Fig.
10.10, consists of two sections, a read section and a write section. The write
section consists of a photoemissive surface, similar to those described for
photomultipliers, and a storage surface. By applying magnetic or electric fields
between these two surfaces, photoelectrons emitted from the cathode are
directed to a corresponding point on the storage surface, just as a lens directs
light rays from an object point to a corresponding image point. At the storage
surface the electrons produce a spatially non-uniform charge distribution that
mirrors the light distribution on the photocathode. This charge pattern is read
by sweeping an electron beam across the storage surface in a set of closely
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Figure 10.10. Storage tube (Image orthicon). The image on the faceplate is transferred to the
target surface at unit magnification then read serially by a raster-scanned read beam.

spaced parallel lines (raster pattern). The beam deposits a charge density on the
surface that is sufficient to bring it back to a uniform charge distribution. Since
the amount of charge required to produce a uniform distribution depends on the
irradiance that produced the non-uniformity, the variation in the amount of
charge deposited provides a signal which can be amplified and redisplayed to
produce a television image.

The raster pattern scan of the storage surface is an obvious limitation to the
resolution of a system that incorporates a storage tube as a detector since
density of lines determines the amount of detail that can be displayed. Many
formats use the standard television scanning rates: 525 lines per frame, 30 frames
per second {American standard), 625 lines per frame, 25 frames per second
(European standard). Only about 929 of the lines are displayed, since at the end
of the scan the spot must be returned to the starting point (vertical blanking).
Further, the number of visually distinct image lines is only 70% of this or about
340 lines (American) and 370 lines {European). The horizontal resolution is on
the order of 500 lines per frame. The exact resolution is dependent on the
electrical bandwidth of the transmitting and receiving devices and on the level of
illumination at the object. Higher resolution tubes are available for special
applications.

There are other limitations imposed by these tubes. If a portion of the image
is too bright, the surrounding region is affected, resulting in a flare in the
image. If the object does not vary or the camera is not moved, the image can
be temporarily imprinted as an after-image. This happens to some degree from
frame to frame since the electron beam does not perform a complete erasure
during each scan of the storage surface. In certain cases this incomplete erasure
can affect the resolution of the system as much as the raster pattern. The spectral
response of the tube is that of the photocathode unless a filter is placed in front
of a tube as is done with dielectric filters to separate the red, green and blue
images for color television.
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10.4.2.2. Image Intensifiers and Converters. In contrast to the storage tubes,
which convert an optical image to an electrical signal, image intensifiers and
converters produce a visible image. An image intensifier takes a dimly lit scene,
such as a landscape lit only by starlight, and produces an image that is easily
viewed. An image converter does the same thing by converting scenes illumin-
ated by infrared or ultraviolet radiation to visible pictures.

The front end of these tubes is similar to those of storage tubes, an emissive
photocathode and an electrostatic lens to focus the electron distribution onto a
special surface, as shown in Fig. 10.11. The difference in the two types of tubes is
that in place of a storage surface, a phosphor screen receives the image. With a
suitable acceleration voltage present, the photoelectron can excite a phosphor
on the screen and produce an increase in the illuminance of the image. If the
incident wavelengths are invisible, but the photocathode still responds to them,
the excitation of the visible phosphors will convert the image on the photo-
cathode to a visible image. ' )

To obtain further gain, these tubes can be cascaded by placing the
photocathode of a second stage next to the phosphor screen of the first. For
good optical coupling the substrates for both surfaces are made of bundles of
optical fibers. Another method of producing additional amplification is to use a
microchannel plate inside the image tube. Consider this device as many short
lengths of channel multiplier tubing stacked side by side to produce a disk with
the channels parallel to the axis of the disk, as shown in Fig. 10.12. Accelerated
photoelectrons entering a channel will be multiplied before impinging in the
phosphor screen attached to the other side of the microchannel plate.

Imaging Electrostatic lens
optics

~ - > Visible
\ : phosphor
Photo- screen
cathode +HV
surface

Figure 10.11. Image intensifier and converter. If the image on the faceplate is in the visible
and the brightness is increased by reproducing it on a bright phosphor screen, this device is an
intensifier. If the image contains only radiation in the infrared or ultraviolet, the device is a
converter.
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Figure 10.12. Microchannel plate. This element used inside image converters and intensifiers
provides additional electron amplification similar to a channel multiplier (Section 10.4.1). The
resolution of the image is governed by the size and distribution of channels in the plate.

There is a memo from your supervisor lying on your desk when you come in
one morning.

SUBJECT: Changes in Detection System for Project # RF 7-225-4,
Because of budgetary difficulties and some unforeseen cost overruns, the imaging
capability of this device will have to be reduced. All further work on the
infrared sensitive high-resolution camera system is to be terminated. A survey
of the best possible low-cost alternatives to this system is to be initiated.
Management wants a detailed comparison of the specification scale down for
alternate systems within 5 working days.

Penciled on the bottom of your copy is a short note: “Sorry about this. That
design of yours looked awfully good.”

So you reach out, pull a catalog of semiconductor detectors off the shelf and
begin to thumb through it. :

10.5. SEMICONDUCTOR DETECTORS

The full explanation of the physics of semiconductors and their relation to
metals and insulators can be found in texts on solid state physics and physical
electronics. For our purposes, semiconductors are materials whose conductivity
is between that of metals and insulators. Of importance to optical design, many
semiconductors change their conductivity when they absorb radiation.
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The distribution of electrons in a solid can be pictured in terms of a series of
energy bands, each band holding only a limited number of electrons. The lowest
energy bands contain those electrons tightly bound to the nuclear cores of the
atoms that make up the solid. At higher energies are those electrons that are
loosely bound to the cores. At low temperatures, when there is no excitation, the
solid is in its ground state and all electrons are in the lowest energy bands. These
are the valence bands of the solids as illustrated in the schematic diagram in Fig.
10.13. Above the highest valence band is the first empty band. An electron in
this band is no longer bound to a single atom and is free to move through the
solid, contributing to its conductivity. This is the conduction band.

In a semiconductor the amount of energy needed to raise an electron across
the energy gap between the valence and conduction bands is small. Even
thermal excitations cause some population of the conduction band. The
promotion of an electron to the conduction band has another effect on the solid.
The loss of an electron to the conduction band results in a vacancy in the
valence band. Since this vacancy is also mobile in electric fields, its effect must
also be accounted for in understanding the properties of semiconductors. This
vacancy, appropriately called a hole, acts under an electric field very much like
an electron with a positive charge.

In a semiconductor like cadmium sulfide, an absorbed photon creates an
electron-hole pair. If an electric field is imposed on the illuminated sample, the
resistance of the material will drop because of the additional radiation-excited
charge carriers. Cadmium sulfide can change its conductivity by as much as 10**
upon illumination. A photoconductor such as this in an electric circuit can be
used to detect radiation.

The range of spectral sensitivity of CdS is in the visible region. It is an
inexpensive light detector that is used for simple light-sensing applications.
Most other solid semiconductors are sensitive in parts of the infrared region.
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Figure 10.13. Energy band scheme for a

semiconductor. When an electron acquires

sufficient energy to be promoted to the con-

Valence duction band, a mobile vacancy is left behind
band in the valence band.
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While they are more sensitive and responsive than the thermal detectors
discussed in Section 10.1, their sensitivity is not constant with wavelength and
their time response depends on the level of illumination. Detectors, such as those
made of InAs, PbSe, PbS, or InSb and numerous metal impurities in ger-
manium, are sensitive in the infrared between 2 and 40 micrometers. However,
in this region the heat of the detector itself produces noise, so they must be
cooled to liquid nitrogen or liquid helium temperatures. In the visible and near
infrared region of the spectrum, the frequency response and sensitivity can be
improved by using a different type of semiconductor detector, one that is based
on a junction geometry like that found in diodes and transistors.

10.5.1. Photovoltaic Detectors

Semiconductors (such as CdS) that contain no impurities are called intrinsic
semiconductors; their properties are dependent only on the properties of the
material itself. In contrast, most of the semiconductors used in electronics and
optics have small amounts of other elements deliberately mixed with them.
These impurities, or dopants, provide additional electrons or holes, thereby
changing the conductivity of the material. If additional mobile electrons are
added, then it is a negative or n-type material; additional holes produce a p-type
material. By combining rn-type and p-type materials in various geometries,
semiconductor diodes, transistors, and related devices can be constructed. These
same basic elements yield a whole host of low-cost, rugged optical detectors.

The basic structure for these devices, as it is for their electronic counterparts,
is the diode. If n-type material is deposited next to p-type material, the excess
electrons and holes in the vicinity of the junction between the two types of
materials combine. That is the electrons in the n-type material diffuse across the
junction and combine with the holes in the p-type material. This changes the
relative energies of the conduction and valence bands, stopping the flow of holes
and electrons across the junction, causing a permanent local electric field across
the junction that maintains a charge carrier balance in the center of the junction
(Fig. 10.14).

A quantum of radiation incident upon the junction region is absorbed and an
electron—hole pair is created. If the junction field separates the carriers before
they can recombine, then in an open circuit a nonzero voltage appears across the
diode. Alternatively, in a closed circuit, current will flow, as shown in Fig. 10.15.
If a voltage or current measuring device is added to the circuit, we have a light
detector. A detector that supplies the voltages or current without any additional
voltage source is said to be operating in a photovoltaic mode. The exact
characteristics of the detector depend on the diode geometry. The rest of this
chapter describes these geometries and their corresponding detectors.

A semiconductor detector can convert radiation into electrical power. The
device that does this best is the solar cell. To get the greatest signal from a
semiconductor the junction region is made as large as possible. This is achieved
by making the junction the same size as the device, as shown in Fig. 10.16. By
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Figure 10.14. p-n Junction diode. The conjunction of two semiconductors with excess carriers
of opposite sign results in electrons from the r-region combining with holes in the p-region. The
reduction of charges in both regions produces a stabilizing field that shifts the energy of the bands
and provides barriers to additional migration of electrons and holes.

depositing a thin (about 150 um) n-type layer on a thick p-type substrate that is
backed by a conducting electrode, light incident on this broad area creates
electron—hole pairs that provide electrical power. The conducting electrode on
the n-face is a network of thin conductors that connect to a common conductor.
The efficiency of production depends on the spectral content of the radiation
and on the thickness and composition of the thin n-type layer, since the depth of
absorption of radiation depends on wavelength. The radiative-to-electrical
energy conversion takes place only in the very narrow junction region. The
spectral response of these and other semiconductor diode detectors covers most
of the visible region, but varies with the size of the energy gap between the
valence and conduction bands in these materials. A typical response curve is
shown in Fig. 10.17.

For optical designers, solar cells can serve as inexpensive detectors of high
light fluxes for such applications as laser beam scanning detectors, detectors to
protect other light sensors against high illumination levels, and other simple
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Figure 10.15. Photodiode. (a) A quantum of radiation absorbed in the junction region creates
an electron-hole pair. The presence of these additional charges can cause a voltage to appear
across the diode if it is an open circuit, or a current to flow if it is short-circuited as in part (b).
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Figure 10.16. Solar cell. To convert the largest amount of radiation to electrical energy, the
top layer of the diode is made as thin as necessary to cause the bulk of the radiation to be absorbed
in the junction region. To reduce shadowing, the top electrodes are made as thin as possible and as
close as needed to collect the photo-generated electrons.

tasks. There are several drawbacks to these devices. Since the field that is
generated is dependent on the level of illumination, the response is nonlinear.
Also, the frequency response of solar cells is usually less than 5 kHz.

If the area of the solar cell is reduced considerably, the overall signal will be
reduced, but the frequency response will be enhanced. These photodiodes have
increased linearity (about 10* times greater than a solar cell and much lower
noise). The frequency response is inversely proportional to the size of the active
area A of the photodiode,

v, = — (10.5)

where K = 0.1 MHz cm?. If a number of these diodes is deposited on a common
substrate and in a close geometry, as shown in Fig. 10.18, the detector can be
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Figure 10.17. Spectral response of silicon photodiodes. A typical curve for a semiconductor
photodiode. (Data courtesy of EG & G Reticon.)
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Figure 10.18. Sectored semiconductor detectors. (a) A split-cell detector can be used to determine
one-dimensional misalignment. Unequal illumination of the two cells results in an error signal at
the output of the operational amplifier. (b) A quadrant detector can provide alignment information
on two axes. Note that if the illuminating beam is too small, information on the center of the
beam will be lost.

used to align and center an optical system. In Fig. 10.18(a) it can be seen that
even illumination of the diode will result in equal ouputs to the operational
amplifier inputs. Any deviation from equal illumination of both detectors will
produce unequal detector outputs and an error signal from the operational
amplifier. Similarly, the quadrant detector shown in Fig. 10.18(b) will give an x-
axis error but no y-axis error. These error signals can be used to close a control
loop by providing signal to a control device such as a scanner to hold the beam
at the centered position.

10.5.2. Photoconductors

One of the principal attractions for using semiconductors in the photovoltaic
mode is that no external power source is needed. If, however, faster response
times and more sensitivity are required, then a bias voltage is applied to the
diode, and the device is operated in the photoconductive mode. In this mode the
diode is reverse-biased by a voltage on the order of 20 to 45 volts. This increases
the field in the junction region and creates a volume in which there are no
mobile carriers, known as the depletion layer. In this region a newly created
electron-hole pair will be separated and swept away before recombination can
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occur. Because an electric field is present, the time response of such devices can
be reduced to 10 nsec or so. The linearity of these devices remains good. The
only disadvantage is that the reverse-biased diode is noisier than its unbiased
cousins. Sensitivity, about 0.4 A/W, is approximately the same for devices
operated in the photovoltaic mode.

To increase the size of the junction, and therefore the depletion layer, some
diodes are sometimes manufactured with an additional layer which has the same
conductivity as the intrinsic (pure) material. The layers are in a sequence p-i-n,
where i stands for intrinsic. The device is called a PIN photodiode since it
describes the diode construction. The quantum yield for such devices can be
quite high, as much as 0.8 electrons per photon.

10.5.3. Avalanche Photodiodes

There is a large gap in sensitivity between inexpensive semiconductor photo-
diodes at approximately 1 A/W and costly photomultipliers at 1000 A/W. This
gap is bridged by avalanche photodiodes, whose sensitivity is in the neigh-
borhood of 10 to 1000 A/W. In a way, the avalanche photodiode is the
semiconductor equivalent of a photomultiplier tube, since it also operates by
current multiplication. If the reverse bias on a photodiode is steadily increased, a
voltage is finally reached at which the diode no longer works as a one way
conductor. At this breakdown, or Zener, voltage the current increases rapidly
with small increases in reverse bias, as indicated at point V; in Fig. 10.19. If a
diode is biased at a point Vj just above the shoulder of the curve, any additional
carriers in the junction produce a large change in the amount of reverse current.
On a microscopic basis, an absorbed photon creates an electron-hole pair. Each
carrier, accelerated by the large bias field, collides with the semiconductor
crystal lattice. The increased kinetic energy is converted to the creation of
additional carrier pairs, just as electrons in the photomultiplier generate more
electrons by colliding with a dynode. It is this method of carrier multiplication

Forward

bias

Vzi Vf region
v Figure 10.19. Characteristic curve for a
semiconductor. Avalanche photodiodes are
Reverse operated with a bias voltage Vgz. Small
bias changes in the illumination on the photodiode
region result in large changes in the current through

the diode.
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that gives the avalanche photodiode its name. The quantum efficiency of these
devices approaches 909, at the peak response wavelength of 900 nm with
response times in the vicinity of 0.5 to 2 nsec. Because the device operates on the
shoulder of the current-versus-voltage curve, the response is linear over a small
operating range, and the temperature of the device must be carefully controlled
to maintain this linearity. Another disadvantage of this device is that the reverse
current is never zero when the diode is in the dark. The dark current, usually on
the order of 100 nA, serves as a lower bound for the sensitivity of avalanche
photodiodes.

Thus, there are a number of semiconductor detectors that are useful in the
visible and near infrared region of the spectrum. They are compact, relatively
inexpensive and require little or no power with the exception of the avalanche
types. About the only thing they cannot provide is images.

You have just left the airline ticket and other bills with the secretary after
returning from the annual meeting of the Optical Society of America when
one of your office partners hails you in the hall.

“Have you decided how many elements you will need in the array?” she asks
with a grin.

“Run that by me again. I haven’t the faintest idea what you are talking
about.”

“Well, there’s a rumor that they want to replace your new imaging package
with a diode array. I heard that at the project review meeting they decided
that the single diode sensors weren’t going to give us enough information to
be able to track properly.”

You drop your armload on the desk, and thumb through the file drawer for
the folder containing the diode array material. This will have to be a fast job.
If the past is any indicator, specifications will be needed by Friday and a
breadboard of the system in a week.

10.6. PHOTODIODE ARRAYS

With the exception of a few electronic devices to transmit electrical signals, all of
the basic concepts needed to understand the semiconductor diode array have
already been presented. In brief, a diode array is a linear or two-dimensional
array of diodes hooked to an electronic circuit that can store and read out the
photodiodes response in an orderly manner. It is, in a sense, a cross between
an image tube, a photographic plate, and a photodiode.

The construction of these arrays is very similar to that of large-scale
integrated circuits. When examined under a microscope they resemble the large
random-access memories for computers. An example of a two-dimensional
array and the finished chip packaged in a dual in-line pin arrangement is shown
in Fig. 10.20. Basically a photodiode array consists of a series of photodiodes
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Figure 10.20. Silicon photodiode array. A 256 x 256 area array in a standard integrated circuit
dual inline package atop a magnified view of the surface of the photoreceptor. The spacing
between photodiodes is 40 um. (Courtesy of EG & G Reticon.)

deposited in.a linear or square geometry. The diodes themselves either have a
small capacitance or they are constructed with an accompanying capacitor as
shown in Fig. 10.21. All diodes and capacitances are connected to a common
line and to a common switch. In the simple schematic, a video line is connected
to the diode when a pulse is sent from a shift register to close the switches. The
shift register is nothing more than a clocked counter that provides control pulses
at each of its output lines in sequence, enabling it to scan a large number of
circuits, one after another. At the start of a scan of a photodiode array the shift
register connects the diodes and capacitor to the video line, charging the
capacitor and creating a depletion layer in the photodiode. This is repeated for
all the diodes in the array. At this point the array is analogous to an unexposed
photographic plate. During exposure incident photons are absorbed, creating
electron-hole pairs just as in single photodiodes. Here, however, the carriers
reduce the charge on the capacitor in the diode circuit, thereby providing a
means of integrating the signal received by the diode. The pattern of charge
reductions in the photodiode circuits is the equivalent of the latent image in the
photographic plate before development. To “develop this plate,” the shift
register is again scanned. As each of the diode circuits is recharged, the current
on the video line not only provides the charge, but also, in the act of recharging,
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Figure 10.21. Schematic of a diode array readout circuit. In this version, the diodes are clocked
out one at a time onto the video line by a digital shift register. (Courtesy of EG & G Reticon.)

measures the amount of illumination on that diode since the last scan. This is
similar to the action in the storage tube in which the signal was obtained by
recharging the storage surface (Section 10.4.2.1). The shift register scan sends a
sequence of pulses on the video line to be analyzed. The pulse height providing
information on the illumination level and the pulse position on the location of
the diode.

Another method of reading out the pattern stored in the diode circuits is the
charge coupled diode array or CCD array. The circuit for the CCD array, shown
in Fig. 10.22, is the same in all respects as the photodiode array except that an
analog shift register is used in place of the digital shift register. An analog shift

Clock =»—gp CCD analog shift register b \/ €0
* ® o o o o o ).1
:_J_ Photodiodes !J

Figure 10.22. Charged coupled diode array. In this circuit all diodes are read simultaneously
into an analog shift register that stores the position and amount of signal to be clocked out later
to a video line. (Courtesy of EG & G Reticon.)

Transfer

Common
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register preserves the size of the signal read from each diode. Instead of
sequential readout of the diode circuits, all diodes are read into the analog shift
register simultaneously. The pulses are then clocked out of the shift register in
sequence. If the pulses are then sent into an analog-to-digital converter, the
pulse heights are then available for storage in a computer for further analysis.
Note that the readout of the array is simultaneous in this second case—a
beneficial feature for high-speed imaging applications. The maximum sample
rate of these devices is about 40 MHz. At the higher speeds the diodes are read
by two shift registers, each register accessing alternate diodes. At the end of the
scan the contents of the registers are then stored separately in the correct
locations or interleaved to produce the proper sequence of data.

The response and spectral sensitivity of these arrays are similar to their
discrete relatives (Fig. 10.17), but they suffer additional noise problems from
thermally generated carriers during long integration times and from switching
transients caused by readout. The first of these can be reduced by cooling the
array to temperatures well below room temperature (— 80°C in some cases). A
10*-fold reduction in noise can be realized by cooling to —40°C. The second
problem, switching transients, can be eliminated by reading out a parallel set of
unilluminated dummy diodes and subtracting their signals from the signals of
the illuminated set.

The separation between the photodiodes determines the limiting resolution
of these devices. Most moderate resolution arrays are made with center-to-center
distances of 25pum (0.001 in.); high-resolution arrays are made with 15-um
spacing. If one calculates a value of 70%; of the interline frequency, as in the case
of storage tubes, these devices have maximum spatial frequencies of approxi-
mately 28 lines/mm for the moderate resolution arrays and about 45 lines/mm
for their high-resolution counterparts. The actual performance for a system, of
course, depends on combined transfer function of all components.

When processing the signal from an array, it is sometimes necessary to take
into account any variation in the diode-to-diode response. This is particularly
true in spectroscopic and astronomical applications where relative irradiance
measurements are important. Usually this calibration is performed by illumin-
ating the entire array uniformly, then reading and storing the response of each
diode in a computer memory. Later, the response of each diode is scaled to the
response recorded under uniform illumination.

The photodiode array constitutes an excellent marriage between optics and
semiconductor technology. It can be used in industrial applications as a
noncontact sensor for sorting and measuring as well as for pattern recognition.
In scientific spectroscopy it serves as an electronic photographic plate with the
advantages of linearity and computer compatibility. In the areas of graphics and
communication it can replace television and other display technologies. The
photodiode array is not the answer to all optical design problems. The cost of
the most useful devices is still relatively high. This is particularly true if the
application requires computer storage and accompanying software. However,
just as in the case of other semiconductor products, the prices of these devices
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will almost surely fall. There are, for example, prototype 35-mm cameras with
CCD arrays and tape recorders being produced with the prospect that they will
replace the photographic silver halide technology. Also, as was noted earlier,
CCD arrays resemble random access memories (RAMs) for microcomputers.
Small primitive cameras using dynamic RAMs whose surface can be exposed to
light are available for microcomputers.

Your office partner appears at the door to the office. “Guess what?” she
asks, her face beaming.

“What?”’ you echo, trying not to encourage her.
“I'm the new project supervisor.”

“Well, congratulations!” you offer. “But what’s happened to the old
supervisor?”’

“He’s been made Vice President of Research. Which brings me to why I am
returning to this humble office.” She pauses and waits for you to ask her her
reasons. Receiving no question, she continues. “I'd like you to become
project director while we shake the bugs out of this. What do you say?”

“Gee, I don’t know. Why me?”

“Because we need someone who knows something about detectors and
you're the expert around here. Oh, by the way, youre going to be pretty
busy so you'd better put together a request for someone to help you. Then
you can teach them all that you've learned since you’ve been here.”

10.7. DETECTOR GEOMETRIES

Most of the examples in the text have shown a detector located at the image
plane or focal plane of an optical system. If it is a nonimaging application, then
it is enough to collect as much light as possible and direct it onto the detector.
For example, if the integrated or total transmission of a transparency is being
measured, the illuminating source and not the transparency should be imaged
onto the detector. If, however, the content of the transparency is to be analyzed
by a diode array, then the image should fall on the detector plane.

Except for a brief mention in Example 3.A, there has been no discussion of
detector geometries that respond to light scattered from a surface. In many
materials applications and scanning applications these geometries are used
because the surfaces of the materials are opaque. Some of the scattered-light
geometries are shown in Fig. 10.23.

The simplest geometry is proximity placement—locating the detector next to
the scattering point. A strip photodiode detector, such as the one shown in Fig.
10.23(a), can be used to pick up image information by detecting the light
from a scanned laser beam that is scattered by a document placed next to the
detector surface. Unless the detector is extremely uniform over its entire length,
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Figure 10.23. Detector geometries. (a) Proximity placement. Detector is positioned close to the
scattering point. (b) Imaged detection. A second lens is used to image the scattered light onto the
detector. (¢) Beamsplitting geometry. The quarter wave plate is used to rotate the plane of polariza-
tion of the reflected light so that it will pass through the polarizing beamsplitter instead of being
reflected. (d) Retrocollective geometry. The focus lens also serves as the collecting lens for back-
scattered light, while the turning mirror blocks the direct reflections.

only high contrast objects, such as line drawings and documents, can be reliably
scanned by this system. In many applications (Example 3.A is one) it is not
possible to put the detector close to the scattering point. In such cases the
scattered light is collected by a lens and the scattering point is imaged onto the
detector (Fig. 10.23(b)). Because most light is either backscattered or forward-
scattered along the beam, a detector is usually placed near the input beam or in
the path of the reflected beam. In the case of reflection the directly reflected
beam is blocked out because the strength of this part of the beam is indicative of
the quality of the surface and not the information printed on it. (Certainly,
information can be encoded by changing the texture of the surface and while this
is considerably more durable than printing, it is usually more expensive.)
Another important method used in a reflecting or scattering geometry
employs a polarizing beamsplitter and quarter-wave plate (Fig. 10.23(c)). The
beamsplitter is constructed to reflect light of one polarization and transmit the
other polarization, circumventing the usual problem with beamsplitters, that
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only one quarter of the light is ever used. Light of one polarization is reflected by
the polarizer and then converted to circular polarization by a quarter-wave plate
(Section 1.6). Upon reflection the handedness of the circular polarization is
reversed (say, right- to left-handed) and after its next traversal of the wave plate
it has been rotated through 90°. Thus it is polarized in the correct sense to be
transmitted by the polarizing beamsplitter to a collection lens and focused on
the detector. Any absorption, scattering, or depolarization will reduce the signal
to the detector and provide information on the scanned surface. Geometries
similar to this one are used on laser-based videodisc readers.

To take advantage of forward and backward scattering, a beam can be
directed onto a focusing lens by a small turning mirror. The scattered light is
then collected by the same lens, while the direct reflection is blocked by the
turning mirror (Fig. 10.23(d)). This arrangement is called retrocollective de-
tection and is probably the most useful collection geometry, both in terms of
efficiency and flexibility. Since the light is collected in a solid angle centered
about the scanning beam, this geometry is ideal for post-objective scanning. It
can be used to scan a document or bar code without determining which
illuminating beam is being read. In most other geometries the scattered light
would have to be collected by another lens.

There are descriptions of numerous detection systems in the technical
journals, such as Applied Optics and Optical Engineering. A study of these
systems can reward the student with insight as to how others have solved their
problems. Also, attention to new detectors in product magazines and at
technical exhibits can provide additional design options.

PROBLEMS

10.1. A Q-switched ruby laser (A = 694.3 nm) producing 1 Joule in 15 nsec is
fired at a photoemissive surface. If the surface were 209 efficient in
converting photons to photoelectrons (and could stand the jolt!), what
would be the resulting current? The charge on an electron is 1.6 x 1071°
coulombs and an Ampere is 1 coulomb per second.

Problems based on detectors are somewhat more difficult to devise since they
are either fairly easy calculations or almost impossible design problems that
would depend on a survey of commercial devices. For the following problems,
refer to Table 10.1. For each problem state (1) the type of detector you would
use, (2) any special characteristics, (3) the reasons for using it, (4) other
possibilities, and (5) additional questions that would have to be answered to be
able to do further specification.

10.2. A detector is needed to determine when an edge of a cardboard sheet is in
the proper position for folding on an assembly line. The light source is a
helium-neon laser.
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10.3. A detector is needed for a guidance system based on acquiring and
holding the image of a star on the detector.

10.4. A detector is needed to measure the output power of a number of sources
against a standard blackbody radiation source.

10.5. A detector is needed for rapid assessment of the quality of images based
on the presence or absence of sharp edges in the image.

10.6. A detector is needed to turn on a streetlight when it gets dark.



11

The Design Process
(HOW TO PUT IT ALL TOGETHER)

One of the delights of optics is the ease with which most systems can be
understood. For the most part, all one has to do is to trace a light ray through
the system. This is probably why the convention of light initially entering a
system from the left is used: You “read” an optical schematic as though you
were reading a sentence. Of course, in devices with several subsystems this may
be somewhat harder to do. But usually there are separate drawings or color
codings to allow one to understand what is happening. For example, in Fig.
11.1 the block diagram for a laser system is shown along with some con-
siderations that must be addressed in the process of designing a system. It is all
nice and linear; the design follows the light.

Although the optical system may be linear, everything in the system is
connected to everything else! As we have seen in previous chapters, a
specification in one area has an effect on the range of choices in another area.
(See, for example, the choice of acousto-optic transducer material in Section
8.4.) The same system depicted in the block diagram in Fig. 11.1 is represented
in Fig. 11.2 in terms of the design process. Designing an optical system is not so
much like writing a sentence, where the words and letters are strung out in a
linear fashion, as it is like solving a crossword puzzle, where entering an answer
at 5 down affects the answer for 17 across.

In this chapter a procedure for designing optical systems is presented. It is
based upon fairly standard methods of optical design. However, the un-
experienced designer should be cautioned that this procedure resembles the
scenario of an actual optical design in much the same way that the statistics of

Bearn The space where the
Laser . beam does whatever it =4 Detector
Output procesyng Prepared is you want it to do
beam beam
High power? Focus? Scan? Materials? Tooling? Eye?
Pulsed or CW? Modulate? Scan Length? Safety? Phototube?
Wavelength? Filter? Resolution? Solarcell?
Collimate? Irradiance? Thermopile?

Figure 11.1. Block diagram of a laser scanning system. Listed are some of the considerations
that should be addressed in the course of a design.

368
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Figure 11.2. The design process of a laser scan system.

an average person resembles any individual-—some things are similar, some
things are very different, but no one matches the profile of an average person.
Most interesting, the final product may bear little resemblance to the initial
concept.

11.1. SETTING DOWN OBJECTIVES

Why does anyone start an optical design? It could be that someone (you, your
boss, or someone else) recognizes a need that is not filled by the present
instrumentation or methods. It may be that a device can be produced more
cheaply or with less components through some new design. As the requirements
for a system are better understood simplifications can take place that could not
be permitted in a new, untested design. An example of this is the generation of
new and simpler designs for supermarket scanners. In Fig. 11.3 two rotating
mirror scanners are shown. The earlier design contains many facets and
produced an extremely complicated scan pattern. The later design consists of
only two mirrors yet provides comparable reliability.

Although there is a whole range of approaches to generating a design, a
useful way to characterize various approaches is to label the extremes. There is
the technical approach, which is to produce a design whatever the cost. One
might call this the “brute force” method. This requires advanced components
designed to the limits of current technology to be used to build a larger or more
intricate version of earlier designs. The opposite extreme is the marketing
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Figure 11.3. Two scanners for scanning the Universal Product Code (UPC), the code seen on
many supermarket products. On the left is the older version. On the right is a newer, simpler
version. (Scanners courtesy of Spectra-Physics, Inc.; photo by Vincent Mallette.)

approach, which expects a new design at no additional cost. This approach
requires that stock components and assemblies from other instruments be
lashed together in an attempt to produce a new and better instrument (or at
least one with a few more saleable features). Between these extremesis a balanced
approach. This approach appeals to simplicity through clean design in which a
judicious choice of state-of-the-art components is used to produce a better
optical system. The value and reason for each component is questioned. In
addition to the case studies of the laser printer and slide projector optics
presented at the end of the chapter, there are scattered throughout the chapter
some examples of commercial systems that in one way or another demonstrate
this balanced approach.

One caution: Beware of the excellent, unacceptable product. There are some
areas where a good idea is not accepted because those who design the device do
not understand the attitude and practices within the field. For example, in the
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field of medicine, a device that requires too large of a deviation from accepted
practice without results verging on the spectacular may not be adopted in
routine clinical practice despite some obvious benefits. This is true in other
fields as well. Several years ago an instant motion picture system was developed.
While the system was well executed, competition from video tape devices
overwhelmed the device in the market place.

Where do you start in an optical design? The fulcrum point for all designs is
the determination of the design objectives. Additional time spent on this step
can save considerable time and money later on. First, the overall objective
should be determined. It should probably be no more than one sentence long.
That is the easy part. Next the specifications for the system should be set down.
This is considerably harder since not all of the performance characteristics can
be known in advance. Still, the exercise should prove valuable since it will
pinpoint some of the unknowns that must be investigated in the course of the
design. Beyond the technical specifications that should be spelled out, non-
technical aspects of the design should be considered. These can include human
engineering. Questions regarding how the device will be used, who will use it,
and who will maintain it must be raised and answered. Perhaps the hardest part
of this process is assessing the limitations of the device. This is an attempt to
find out where the problems will most likely occur and what parts of the design
are not critical and therefore may be traded off against more demanding
specifications.

The question then is: Where do I start? In some cases, an idea or new
component triggers the design area, and the designer is off and running.
(Sometimes this is done without stating the objectives, as described above,
causing someone’s later distress.) In other cases, a survey of the literature and
present instrumentation is useful. (Refs. 11.1 and 11.2.) Information on the state
of the art in basic research and development can be found in technical journals
like the Journal of Applied Physics, the Journal of Quantum Electronics, and
others. Applied research work is found in Applied Optics, government lab-
oratory and agency reports, National Technical Information Center (NTIC)
reports, and the specialized volumes such as those produced at topical meetings
held by SPIE, the International Optical Engineering Society, and by the Optical
Society of America. In addition, announcements and data on commercial
devices and components are found in the semi-technical journals such as Laser
Focus, Lasers and Applications, and Photonics Spectra.

The final part of this first step should be an evaluation of the proposed
system in comparison with existing systems. Particular attention should be paid
to differences in those parameters that give increased capability or require
higher tolerances or a new design. These should then be balanced against those
parameters that allow reduced tolerances or rely on an existing design. The
trade-offs between these choices should be made as clear as possible. Finally,
one should ask the question: Why hasn’t this been done already? A good
assessment of the objectives should give you the answer.
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11.2. PRELIMINARY DESIGN

Generating a design is somewhat like riding a bike. It looks easy to those who
watch and to those that know how, but it is very difficult for those who are
learning. Sometimes a straightforward assembly of components is all that is
required; other times a modification of an existing design is made to meet new
specifications. The literature search used in determining objectives could be
of use here. There are, of course, a whole set of noncritical evaluation
procedures that range from brainstorming (a highly overrated group process in
which ideas are tossed out with the hope that they will trigger additional ideas,

EXAMPLE 11.A. Measurement of the absorption spectrum of ma-
terials has been done one wavelength at a time by passing the output from
an ultraviolet or visible source through a spectrometer (see Fig. 9.17).
Design an instrument that will allow the simultaneous measurement of
absorption at many wavelengths using new technology.

Solution: Instead of passing light through a spectrometer one wave-
length at a time, two sources, a tungsten—halogen lamp for visible light
and a deuterium lamp for ultraviolet were combined as a single source and
focused onto a sample or reference cell by an elliptical mirror and a
directing mirror (see figure). All of the light transmitted by the cell is
returned via a set of these mirrors in the form of a cube corner reflector to
another directing mirror and focused by a second elliptical mirror onto
the slit of a spectrometer. The spectrometer consists of a dual holo-
graphic grating that disperses the light into visible and ultraviolet spectra
and images these spectra onto two corresponding linear photodiode
arrays. Transmission spectra of the sample and reference cells are taken
by moving the directing mirrors from the reference to the sample position.
The absorption spectrum is then generated by taking the ratio of the
transmitted sample irradiance to that of the reference signal at each
wavelength.

This design is almost impossible without recent advances in tech-
nology. The two diode arrays provide a simultaneous measurement of
spectra from 200 to 400 nm and from 400 to 800 nm. The two holographic
gratings side-by-side on the same substrate provide efficient use of light in
each of the two spectral regions and are corrected for aberrations in their
respective regions. The ellipsoidal mirrors were manufactured by a new
technique called replication (see Section 6.3.6). Finally, microprocessor
electronics enable the designer to handle all of the information produced
by the spectrometer efficiently. The device was designed by engineers at
Hewlett-Packard as the 8450 series UV/VIS spectrophotometer (Ref.
11.3). (Figure is copyright 1982, Hewlett-Packard Company and is
reproduced with permission.)
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The folded optical system of the

Hewlett-Packard Model 8450A Spectrophotometer.
Copyright 1982 Hewlett-Packard Company.
Reproduced with permission.

one of which will do the job) to empathy (“If I were on a light beam traveling

through the system, what would I see?”
done in the spectrometer described in Ex
A study of some of the patents in the fie

). Sometimes inverting a system, as is
ample 11.A, can produce new designs.
1d can trigger new ways of looking at

designs using a specific trick in a different application or by improving on an
existing set of patents. While the infringement on patents with slight modifi-
cations to confuse the issue is unethical, the improvement of existing devices and
methods is one of the benefits of a working patent system. When claiming a

patent, a thorough understanding of the

optical design is at least as important

as making the design work. There have been cases where the inventor did not

understand what he or she was doing
patenting.
Once a design, or set of alternate des

and claimed the wrong features for

igns, has been decided upon, a rough

system layout of all components should be done. Ray sketching of an unfolded
system provides information for component placement on the optic axis.
Paraxial ray traces should be run on the system to identify all stops, pupils, and

windows. Folded systems should then be

drawn to assure that the components

will fit and no new limiting apertures are introduced. In parallel with the ray
traces any calculations on active components (e.g., aperture needed by an
acousto-optic modulator to achieve a target resolution) should be carried out.
Once these have been completed, an initial evaluation of the system should be
done. If there are parallel designs, some may be dropped at this point.

The next step is to evaluate the hardware that is needed to produce the
design. Some of the components are stock items that can be ordered from a
manufacturer’s catalog; others must be custom made. When it comes to
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nonstandard components, there is always the question whether they should be
fabricated in-house or purchased from a supplier. If a part does not depart too
far from like items being produced by others, it probably should be bought
rather than made. Although the evaluation of such choices is one of the jobs of
manufacturing engineers, the designer should not divorce himself or herself from
such considerations. Sometimes the designer can suggest a small translation or
redesign of a component that will reduce fabrication and assembly costs
considerably.

With the introduction of hardware it is possible to do a second evaluation,
again reducing the number of parallel designs. First, a cost analysis should be
done to see if one can afford to build the system. Then a benefit analysis should
be made: Even if you can afford to build it, is it worth it?

11.3. THE BREADBOARDING PROCESS

In some larger organizations the design and breadboarding processes are done
by two separate groups. In many cases, however, the designer has the responsi-
bility of producing a prototype device, usually on an optical table or optical
bench. This process of producing a preliminary working system, taken over from
electronics, is called breadboarding. At times, there is a tendency to wait until
all the components needed are available before assembling the system. This is a
poor practice since it wastes time and reduces the opportunity to discover
unforeseen problems early. In many cases, substitute components such as
simple lenses can be used in the breadboard to give some idea of the final
arrangement. There are times when preliminary testing not only uncovers
problems, but also generates new design possibilities. Another enjoyable and
exciting aspect of optical design is the technical dialogue between designers as
they tinker, modify, and invent new apparatus. (At times it is great fun.) Some
modifications may require a return to new preliminary designs or perhaps a
revision of the component list or specifications.

Once everything is assembled and the necessary tests have been completed, a
third evaluation is made. If the results are poor, a careful step-by-step
evaluation of the breadboard design should determine the problem and, one
hopes, indicate the nature of the changes needed to improve performance. If the
results are indifferent, then a return to some of the earlier design stages may be
necessary. Sometimes it is at this stage that you learn the answer to the
question: Why hasn’t someone done it already? If the results are good, the
system can be sent on to development for reduction to manufacturing pro-
cedures. Again, depending on the size and structure of the organization, the
designer may be expected to contribute to a final design. Beyond the con-
siderations given in this text the designer will have to worry about strain-free
mounting of components, thermal compensation through choice of materials,
and perhaps, microprocessor control of optical elements.
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11.4. CASE STUDY—LASER PRINTER

Although the objective for the IBM 3800 printer is not stated specifically in an
article detailing its design [Ref. 11.4], the description of the device indicates that
the optical designers at IBM sought to produce a digital nonimpact printer to
record high-speed computer output. In the quick survey of laser scanning
systems the authors indicated that laser scanning systems used for producing
high-accuracy photomasks for integrated circuits and data recording systems
for computer output microfilm (COMs) were considered. The preliminary
design, as shown in Fig. 11.4, consisted of a rotating polygonal mirror scanning
a modulated laser beam across a rotating photoconductive drum using an
electrophotographic process similar to the process described in Section 10.3.2
and illustrated in Fig. 10.6. Early analysis showed that the pitch angle errors
(errors due to mirror facet normals not lying in a plane perpendicular to the axis
of rotation of the rotating polygon) were the limiting factor in the design. The
correction techniques being used at the time incorporated expensive electro-
optic and acousto-optic defiectors, and in some cases, would not completely
solve the problem. In order to be able to use the rotating polygonal scanner on a
production basis some method had to be devised to overcome the pitch angle
error problem.

The output from this system would be formed on the drum surface as a series
of characters formed from a dot matrix scan. The characters were to be formed
inside an 18 x 24 matrix similar to that shown in Fig. 11.5. The horizontal
separation between dots is 0.14 mm (71 dots/cm) and the vertical separation was
0.176 mm (56.7 dots/cm). To create an overlapping pattern so that vertical lines

Polygon mirror

Rotation axis Lo
Cylindrical lens

Toroidal lens @gBeam expander
Doub_let ~. Acousto-optical modulator
spherical lens
\m‘/ Beam compressor
n

N Laser
Scan start // ‘\\
detector |
i N
Scanline
Photoconductor
surface

Figure 11.4. Preliminary design of a pre-objective scanning laser printer. (Copyright 1977 by
International Business Machines Corporation; reprinted with permission.)
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Figure 11.5. Structure of the 18 x 24 dot-matrix character cell formed by laser beam scans.
In the horizontal rows there are 71 dots/cm and in the vertical columns 56.7 dotsfcm. (Copyright
1977 by International Business Machines Corporation from the IBM Journal of Research and
Development.)

appeared to be continuous, a spot diameter of about 250 um is required.
(It should be noted here that the 250-um beam diameter will not necessarily
yield a spot 250 um on the paper. The nature of the electrophotographic process
and the threshold of the effect (see Section 7.4.2) can change this value.) Standard
character line widths were set at 0.4 mm (3 dots) for a vertical line and 0.35 mm
(2 dots) for a horizontal line. While the requirements for a small spot size were
high, it conferred a number of advantages, among them an increased flexibility
of font and type size that a matrix with fewer and larger dots could not produce.

Another requirement growing out of the objectives was an extremely fast
writing speed. If the printer must generate 31,000 characters per second, and
each character cell is made up of 18 x 24 or 432 addressable dots, the writing



CASE STUDY—LASER PRINTER 377

rate if 432 x 31000 or 13.4 x 10° dots/sec. The time for one dot to be written is
then the reciprocal of this or 75 nsec.

If a commercial acousto-optical modulator could be used, then the rise time
would have to be somewhat better than 75 nsec. Assuming that fused quartz is
used in the modulator and that the transit time T, must be at least 50 nsec, the
beam size inside the modulator, according to Eq. 8.6, must be

D = T,v,,
=50 x 107% sec x 6 x IOSEI—H—
sec
= 0.3 mm.

Thus, a standard helium—neon laser with a 1 mm output beam diameter must be
compressed by a factor of 3 or 4 before being sent through the modulator.

The resolution of the system must be estimated. Although the spots are to be
separated by 140 pm horizontally and 176 pm vertically, these distances are
determined by the rise and fall time of the modulator for the horizontal
direction and the accuracy of the scan line placement on the drum for the
vertical direction. Indeed, the spot size was made intentionally larger than this
to produce continuous lines. If we assume that the beam must scan nearly the
entire width of a 14 in. by 11 in. computer printout page, use 14 in. (356 mm)
as the scan length, and we take 0.14 mm as the horizontal separation between
spots, then the resolution required of the system is

_ 356 mm

= 0ldmm = 2543 spots.

Although a six-sided mirror is shown in the original article, the scan angle
would be extremely large and the optics would also have to be large to accept
such a large angle. In the printer, an 18-sided mirror is used to reduce the scan
field angle to a practical 34° (0.6 radians). Using this value we can estimate the
diameter of the beam illuminating a facet from the scan equation (Eq. 8.11). If
a=4/n=1270 =0.6rad and A = 633 nm, then

Dy, = Nal/6
2543 x1.27x 633 x 10" m
B 0.6
= 34 mm.

The actual facet length was determined by an iterative procedure of trying out
certain dimensions and then computing the effects of the design. Ultimately it
was found that the facet length was a function of the radius of the polygon, the
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scan angle, the beam diameter at the facet, the beam wander on the facet, and
the amount of “roll-off” on the mirrors (Section 8.3).

The beam, having been compressed to satisfy risetime requirements, must be
expanded about a factor of 10 to satisfy resolution requirements. A schematic of
this portion of the system is shown in Fig. 11.6. One can show [Problem 11.1]
that if the acoustic wavelength is about 0.1 mm, the refractive index of the cell is
1.67 and the length of the transducer is 55 mm, the angular tolerance on
satisfying the Bragg condition for the incident light beam is about 0.2 mrad. An
analysis of the tolerances on the lenses of the compressor telescope initially used
in the design showed that small tilts produced an unacceptable wavefront
distortion thereby reducing the efficiency of the modulator. To counteract this
the lenses were redesigned with different refractive indices that reduced the
spherical aberration and coma to zero and the sensitivity to tilts to an
acceptable level.

When the collimated beam illuminates the polygon facet, it is reflected into
the lens and focused onto the photoconductor. The position of the dot along the
scan line depends upon the position of the facet. If the mirrors do not form a
perfect equal-sided, equal-angle polygon, the spot will not be positioned at the
same point on the scan line after the scanner has rotated to the same relative
position for the next facet. This defect is easy to correct, since a small detector
located next to the drum can signal the electronics when to begin to send data to
the modulator. Thus the data stream always begins at the same point for each
scan.

The more difficult error to correct is that due to facets whose surfaces are not
parallel to the axis of rotation. This pitch angle error causes the light that
should be directed into the plane containing the optic axis of the focus lens and
the scan line on the drum to be reflected into the lens at an angle 2¢ to this
plane, where ¢ is the tilt angle between the facet surface and a line parallel to the
rotation axis. This is also the angle between the facet normal and the optic axis

10 Power Expander

Modulator

4 Power reducer

Signal
input

Figure 11.6. The beam compressor, modulator, and beam expander for the laser printer. (Copy-
right 1977 by International Business Machines Corporation from the IBM Journal of Research
and Development.)
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at the center of the scan {Problem 11.2]. If the focal length of the focusing lens is
f., the deflection of the focused spot from the desired scan line is

Ax = f tan 2¢. (11.1)

The exact value of the spherical lens is not known. However, if a | meter lens is
used to focus the beam, the spot size for a collimated beam with a beam
diameter of 34 mm (Eq. 7.44) is the required 250 um. If we also require that the
pitch angle error produce a spot displacement a factor of ten smaller than the
140 um spot separation, say, no more than 15 um, then the pitch angle error
can be determined from

tan 2¢ < 15um/l m

< 15urad = 0.3 arc seconds.

A specification that all facets of the polygon be held to a pitch angle error of
about 0.3 arc seconds would result in a very expensive component and in the
rejection of this design because of cost. The solution chosen by the designers of
the device was to use an optical trick based on the fact that any ray through the
front focal point of a lens becomes a ray parallel to the optic axis after passing
through the lens (Section 1.3). This was accomplished not with spherical lenses,
since the beam had to be scanned in the plane perpendicular to the rotation axis
[Problem 11.3], but with two cylindrical lenses. In Fig. 11.7 side and top views
of the optical path are shown. In the side view, in which the path has been
unfolded, the collimated beam is focused into a line on the facet by a cylindrical
lens L, and collected by another cylindrical lens L, one focal length distance
from the facet. Thus any facet tilt will direct the focused bundle out of the scan
plane, but the second cylindrical lens (L, in Fig. 11.7) recollimates the beam
parallel to the optic axis of the spherical lens Ly. All rays parallel to the optic
axis are focused on the optic axis and therefore on the scan line. Thus the
addition of the cylindrical lens pair reduces the overall sensitivity of the system
to pitch angle error.

There is a limit to the amount of tilt that can be tolerated, otherwise any set
of mirrors mounted in approximately the correct orientation would serve. The
remaining problem is that the line focus does not stay on the facet for all angles
of rotation of the polygon. If one draws a circle through the edges of the
polygon, it can be shown that the distance from the facet surface to the cylindri-
cal focus point is

S = r(l — €Oos %), (11.2)

where r is the radius of the polygon and 6, is the polygon angle (360°/number of
facets). There are really two errors introduced by the geometry. One causes
defocus of the spot on the drum since the line image is not located on the facet.
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Figure 11.7. Two views of the polygonal scan geometry. (a) An overall view of the folded system.
(b) An unfolded geometry that illustrates the use of the cylindrical/toroidal lens correction of
pitch angle error (facet tilt). (The reducer-expander lenses shown in Fig. 11.6 are omitted in both
views here.) (Copyright 1977 by International Business Machines Corporation from the /BM
Journal of Research and Development.)

This is corrected by bending the second cylindrical lens into a toroid so that the
optical path length from the laser to the drum is nearly constant for all scan
angles. The other error causes the focus point to be located above the optic axis
because near the facet edge the facet intercepts the beam before it comes to a
focus. If the facet has a tilt of ¢, then the focus is located a distance
Ax, = Stan 2¢ above the optic axis of the toroidal lens. One can think of this
distance as a small object Ax, in height (Fig. 11.8). When the light from an



CASE STUDY—LASER PRINTER 381
Spherical

Cylindrical ‘—l S 14_‘ lens

'<_'fmric———>"‘ I"‘—_ fs’pherical _‘——){

Ax, =S tan 2¢
Ax = Axl 4 fs’pherical
f;oric

Figure 11.8. Scan line deflection due to sag S. (Copyright 1977 by International Business
Machines Corporation from the IBM Journal of Research and Development.)

object located at the focal point of a lens is collimated and sent to another lens,
the magnification of the system is the ratio of the focal length of the second lens
to the focal length of the first {Problem 11.4]. Thus the error Ax, is magnified
by f./f,, where f is the focal length of the spherical lens and f; is the focal length
of the toroidal lens. The scan line error in this case is Ax = Ax,f./f; =
Sf.tan 2¢/f,. The increase in pitch angle error tolerance G is the amount of
deflection without correction divided by the error introduced by the defocus S;
that is

G = _fitan2¢ - 5 (11.3)

S é tan 2¢
t

Thus, the larger the toroidal lens focal length and the smaller the radius of the
polygonal mirror the greater the tolerance in the pitch angle error for the poly-
gonal scanner. For the system described in the article, a gain of 80 in pitch
tolerance was achieved. If the required value of 0.3 arc seconds could be relaxed
by a factor of 80, then specifications could be written for a scanner that had a
pitch tolerance of 0.4 minutes of arc (1.2 mrad), a considerably looser
specification.

The final element in the optical train is the spherical focusing lens. Besides
focusing the beam to a spot on the detector, the lens must also linearize the spot
velocity near the ends of the scan. Since the lenses are considerably smaller than
the scan line, there is no possibility of a telecentric scan. As has been pointed out
before (Sections 6.3.3. and 8.6.3), scanning can introduce a geometrical
distortion into an image and this was compensated for by designing the
opposite distortion into the lens. This lens could not be optimized with a single
set up, but had to be evaluated with ray traces at different scan angles to
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produce the best possible spot over the entire scan line. According to the
authors, the final lens design produces “a scanning spot that maintains a
positional accuracy of +0.013 cm over the 35.6-cm field.”

There is little that can be said about the breadboarding of this item or about
any additional parts of the design process, except that the device has been
introduced and has been on the market for a while. Included in the article was a
note on the methods of alignment used with this device:

Because the laser subsystem contains a multiplicity of optical elements in a
three-dimensional configuration, optical components and mounts with
dimensional tolerances small enough to obtain the required alignment in
assembly without adjustments are not practicable. Adjustments for many of
the optical components are therefore supplied. The lateral centering of the
components is accomplished by using the subsystem laser and an X-Y
position sensitive light detector that can be mounted in a series of accurately
located holes in the subsystem base casting. Focus adjustment is determined
by the use of a small rotating slit scanner for measuring the laser beam
diameter. Magnification, distortion and scan line displacement are measured
by means of a fixture that holds a series of photodiode detectors in the scan
plane.”

Another approach to a laser printer is described in Example 11.B.

EXAMPLE 11.B. Design a laser printer using post-objective scanning.

Solution: While pre-objective scanning can provide a near-flat focal
surface, it requires a large, complex scan lens that must both produce a flat
field and correct for angular distortions. The alternative is post-objective
scanning. As was noted in Chapter 8, this method leads to a curved focal
surface. However, if the spot size is not too small, the Rayleigh range may
be sufficiently large that the spot does not change much over the scan
region. For example, if the “depth of focus” is taken to be
—zg/2 < z < zg/2, the spot size increases by only 12% of the waist
diameter. If a waist diameter is 125 pm, one can show [Problem 11.5] that
a spot size of 140 pm can be maintained over a scan length of 298 mm
(paper width) provided the center of deflection is more than 566 mm from
the center of the scan plane and the scan angle is less than 28°.

In the actual system shown in the figure, the center of deflection is
located about 850 mm from the scan surface and the total scan angle is
about 20° to compensate for other inaccuracies in the system. An acousto-
optic cell is used for modulation and a polygonal scanner is used for
scanning as in the case study in the text. Cylindrical lenses to focus the
beam onto the scanner surface are used to correct for pitch angle error.
However, instead of constructing a large toroidal lens to handle angular
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correction, the designers have surrounded the second cylindrical lens with
an afocal system, a short Galilean telescope whose positive spherical lens
reduces the angle of incidence of the beam as it traverses the cylindrical
lens and whose negative spherical lens restores the beam to its original
deflection and convergence.

In the photograph of the system, note the use of the triangular leaf
springs to hold the lenses in place. This type of a design requires close
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tolerances on the layout and machining of the baseplate that holds all of
the components. Alignment can be done using the turning mirrors in the
corner of the case. The acousto-optic modulator is adjusted only in the
Bragg angle. Because post-objective scanning is used the facet center to
rotation axis distance has to be tightly controlled (see Section 8.3.1).

The triad of lenses consisting of the second cylindrical lens surrounded
by the afocal angle reducer is hidden by a plate that holds the three lenses
against alignment posts in the base plate. The system, the Model 2680
Laser Printer, was designed by engineers at Hewlett-Packard, Inc. (Ref.
11.5). (The figures are copyright 1982 Hewlett-Packard Company and are
reproduced with permission.)

11.5. CASE STUDY-—SLIDE PROJECTOR DESIGN

Not all of the optical systems to be designed these days are laser-based systems.
The one illustrated above was chosen because there was sufficient information
in the open literature and it illustrated some of the points that had been made in
earlier chapters in a concrete manner. This section is intended to describe many
of the considerations that go into the design of a slide projector with less
mathematical detail than in the previous section.

In contrast to the somewhat demanding, but easily specified objectives of the
laser printer, the specifications for a slide projector are more difficult to
determine. Some are a matter of judgment. Starting with the light source for the
projector, the wattage and filament structure of the bulb must be specified. This
sounds easy enough. The question must be converted to a radiometric one:
How bright does the screen have to be and how large a screen has to be filled?
But this is then translated to a sociological question: Where do most people put
the projector and the screen? At this point it may be marketing specialists and
others who provide the data necessary to be able to translate radiometric
calculations into a specification on a projector bulb.

To provide some basis for the design, the following specifications, subsequent
calculations, and arguments are taken from a set of notes by Professor John
McDonald of the University of Reading with his kind permission.

1. The screen is to be 2.65m by 1.76 m at a distance of 7.76 m from the
projector.

2. The screen illuminance (without a slide in position) is to be in the range
of 100 to 150 lumens/m?.

3. The slide size is 34 mm x 22 mm.
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The luminance of a source has the same definition as its radiance (Eq. 3.7)
except it is given in photometric units:

¢U

Thus the luminous flux in the projector is
¢, =L,AQ. (11.4)

The total power needed on the screen is the illuminance multiplied by the screen
area. Using the higher of the two values, 150 Im/m?, the total flux on a screen
whose area is 4.66 m? is 700 Im. If one assumes that 40% of the radiation will be
lost in the optical train from scattering and unwanted reflections, about 1160 Im
is required.

A standard source of illumination for projection systems is the tungsten—
halogen lamp. Similar to an ordinary incandescent lamp, it is filled with a
halogen gas, usually iodine, that prolongs the life of the filament and prevents
deposition of tungsten on the glass envelope. These lamps usually have a
rectangular, flat dense filament with about a 2:1 aspect ratio. If the lamp is
located near the center of curvature of a concave mirror, the filament and its real
image form a square source. For such lamps luminance L, is nearly the same for
all sizes of the lamp; it is about 30 lm/sr-mm?. The only difference between
lamps of different wattage is the size of the filament. A number of these lamps
and some parameters particular to this design are listed in Table 11.1.

If the values ¢, = 11601m and L, = 30 Im/sr-mm? are substituted into Eq.
11.4, the product of the source area times the collection solid angle is

AQ = % = 39 mm?-sr.

v

Table 11.1. Tungsten—Halogen Lamp Parameters

Required Condenser Collection
Watts Filament Size Area x 2(mm?) Solid Angle (sr) Semiangle (deg)

50 31 x 1.6 9.92 3.93 —
100 4.4 x22 19.36 2.01 53.1
150 54 x2.7 29.16 1.34 40.8
250 7.0 x 3.5 49.0 0.80 30.2

500 10.0 x 5.0 100.0 0.39 20.6
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If a source area equal to twice the filament area is used, the solid angle required
for lamps of various wattages can be found. The collection half angle « shown in
Fig. 11.9 can be shown to be equal to sin~ }(Q/r) [Problem 11.6]. The values of
o for each of the lamps has been calculated except for the 50-W lamp which
cannot produce sufficient power to illuminate the screen even if the half angle
were an impossible-to-achieve 90°. Based on the value of o, the design for the
condenser for the 500-W lamp would be the easiest and the 100-W lamp would
be the most difficult. In addition, the 500-W lamp would require a larger lamp
holder and a fan for cooling. Even if a lamp can be cooled by convection, there
are other reasons for including a fan in the design. A cooled lamp has a longer
lifetime. Also safety regulations on the maximum temperature of the case must
also be met. But it should be noted that adding a fan also contributes to noise in
the room and increases the cost of the projector.

Kohler illumination (Section 3.4.3 and Fig. 3.15(c)) is to be used to provide
uniform illumination of the screen as shown in Fig. 11.9. It is necessary to have
some idea of the size of the projection lens so that the image of the filament will
fill the lens. Since the magnification is 2.65 m/35 mm or 76 times, the image
may be considered at infinity and the slide near the focal point of the lens. The
chief ray angle i, and the object length jy, are related as

tan i, = 22 (11.5)

f

If one assumes the screen will be filled and that the chief ray is drawn from the
corner of the screen to the center of the projection lens, then tanu, =
1.59/7.76 = 0.205 and the slide semidiagonal is 20.5 mm giving the projection
lens focal length as

o 20.5 mm 00 mm.

~tanu,  0.205

Projection
Condenser lens
lens Screen

Figure 11.9. Schematic design of a slide projector optical system.
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The size of the projection lens can be determined from the optical invariant.
The semidiagonal of the 7-mm square source is Smm and the
sin o = sin 30° = 0.5. Thus

I=5mmx0.5=25mm

Since the slide semidiagonal y, is 20.5 mm, the paraxial marginal ray angle is
u, = I'y, = 2.5 mm/20.5 mm = 0.122. This corresponds to an f-number
(1/2u) = 4.1 and a projection lens radius of 12.2 mm. To fill the projection lens
then the source with a S mm semidiagonal must be magnified —2.44 times by a
condenser lens. It is impossible to do this with a single lens because the marginal
slope angle for an axial ray from the source will be

U 0.5
L Y
T M T o 05

and the focal length of the condenser lens would come from a y—u trace

uy = Uy ~ Y1/feona-

20.5
0.205 = 0.5 — .
cond
The lens would have a focal length
Jeona = 29 mm
and an f-number
_ feond _29mm _ 07,
2y, 41mm

an extremely high-speed lens. A lens such as this could produce a spherical
aberration of 50 mm! Obviously a compound lens construction is required.
Commercial slide projectors often use thick aspheric components as shown in
Fig. 11.10. The cost of an aspheric mold can only be justified by high volume
production and the quality of molded optics is inferior to polished elements. We
will assume for this design that this is a special projector with a small
production run and look for solutions using only spherical surfaces.

One approach is to use one or more lenses with centered and aplanatic
surfaces, similar to those in the system illustrated in Fig. 6.22. An aplanatic
meniscus lens (centered surface followed by an aplanatic surface) has no
spherical aberration or coma, the dominant aberrations of a condenser. Their
drawback is that while each aplanatic meniscus reduces the slope angle by the
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Source
Slide image

Aspheric Heat
condenser filter

Figure 11.10. Slide projector condenser constructed with a massive aspheric collection lens.

reciprocal of its refractive index [Problem 11.7] it cannot cause the ray slope to
change sign and form an image of the source. Thus one additional lens must be
used. If the slope angle to the lens delivered by the two menisci is such that the
additional lens is aniequiconvex lens working a unit magnification u, = —u;,
the spherical aberration will be a minimum (a condition similar to the biconvex
lens with an infinite object distance illustrated in Fig. 6.18). If the slide were
located right after the single lens then the height of 20.5 mm for the marginal ray
and a slope angle of —0.205, the image distance will be 100 mm and at unit
magnification this corresponds to 2f. Thus the equiconvex lens should have a
focal length of about 50 mm. If its refractive index is 1.517 (BK7), the spherical
aberration is a considerable improvement over the former single lens. Using the
aplanatic formula (Eq. 6.47), paraxial ray trace formulae (Eq. 5.13), some
arbitrary choices of reasonable thicknesses and separations, a possible design
layout, one used by Professor McDonald, is shown in Fig. 11.11 {Problem
11.8]. A heat filter, usually a dielectric mirror with short wavelength trans-
mission and long wavelength reflection, is inserted somewhere between the lamp
and the slide.

Rays at the edge of the slide suffer a substantial amount of spherical
aberration, 8.2 mm. This is a large fraction of the source image diameter of
24.4 mm. The effect of the spherical aberration due to the condenser lenses on
the marginal rays from the edge of the slide is that the central (chief) ray in the

2 Slide
Source =
hd ['wJ
F8 BK7 Heat BK7
Aplanatic filter
meniscus

lenses

Figure 11.11. Possible design layout of a slide projector condenser.
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cone of light directed through the entrance pupil crosses the axis before reaching
the pupil. The effect of spherical aberration is to, in effect, shift the stop for
marginal rays to EP 4 from the entrance pupil for on-axis rays (EP,) (Fig. 11.12).
Two questions arise with respect to the projection lens:

1. Can light through the shifted entrance pupil get through the projection lens
and onto the screeen?

2. What effect on the aberrations of the projection lens will this pupil shift
have? (In Chapter 6 it was shown that the aberrations were a function of the
stop position.)

From question 2 we see it is not sufficient to simply get the light onto the screen
if on the way the image quality is seriously affected. Question 1 can be addressed
by opening the projection lens up, beyond the f/4.1 computed above and
acknowledging a significant amount of vignetting at the edge of the field. The
answer to question 2 is “perhaps not too much” if we can design the projector
lens so it is insensitive to stop shift.

It is likely that the equiconvex lens also exhibits higher order aberrations (not
true for the menisci). This could be determined by exact ray tracing. The design
could be amended, perhaps by allowing the menisci to depart slightly from
aplanatic. This will introduce some aberration, but obtaining greater initial
bending and reducing the power of the equiconvex lens.

The design of the projection lens would usually be carried out by modifying
an existing design. One source of designs is a collection of patent lenses com-
piled by Cox (Ref. 11.6). In doing so the spherical aberration and coma should
be reduced as much as possible to make the lens insensitive to the pupil aberra-
tion introduced by the condenser system. Rapid evaluation with some simple
ray-tracing programs can produce an acceptable design before subjecting it to
one of the major design programs. Because the image distance is so far re-
moved from the lens, it is useful to turn the design around and make the screen
the object point and the slide the image point.

Entrance
pupil

Slide

Final
Condenser
lens
Figure 11.12. Condenser aberration can be translated as an aberration of the pupil function if
the spherical aberration causes the marginal ray of a lens system to cross the axis at a point EP,
removed from the entrance pupil determined by the paraxial chief ray (EP,).
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removed from the lens, it is useful to turn the design around and make the
screen the object point and the slide the image point.

In many cases a zoom lens is used to incorporate fiexibility into the design.
Despite one’s initial tendency to design the largest possible lens aperture to get
the highest possible illumination, the lens cannot be too large or else the depth
of focus is too small. This would require that the projector always be positioned
s0 the projection direction was normal to the screen. Although this is a common
set up of a slide projector, there are sometimes audience arrangements that
require a tilted screen. Also a small depth of focus would require continuous
adjustment of the focus to compensate for small variations from slide to slide. In
the design of the lens the fact that most slides are mounted in paper frames must

EXAMPLE 11.C. Design an optical tiltmeter.

Solution: The instrument shown in the figure is one solution to the
problem of sensing a tilt on a platform. The innovative part of the design
is not in the gravity-sensing mechanism, a captive pool of mercury covered

LED

Illuminator
Lenses

*‘See figure,
opposite page’’

Sensors
A

Source
Pattern

Approximately
95 mm

\__ﬁ_—‘—

Optical Flat
%0“
Mercury
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with oil to damp surface vibration, but in the source-detector pattern that
sits above the reflective surface. Instead of a single x—y quadrant detector
described in Section 9, the designers used two sets of sinusoidal masks and
linear arrays of four diodes to measure tilt in two orthogonal directions.
The light emitting diodes (LED) illuminates the two sinusoidal patterns
and a square pattern for a limit sensor. This pattern is formed into a
collimated beam by the pair of lenses near the mercury mirror. These same
lenses reimage the reflected light onto the diode arrays and limit sensor on
the opposite side of a circle centered on the optic axis of the lens pair. If
there is no tilt in the system, then the two interior photodiodes are equally
and strongly illuminated and the two photodiodes on the outside of the
array are equally but weakly illuminated. When the instrument is tilted,
the sinusoidal pattern shifts on the diodes and the phase shift of the
sinusoidal pattern can be detected by summing the differences in photo-
current between the first and third diodes with the difference between the
second and fourth diodes. This results in a high degree of accuracy. The
limit sensor is included to prevent a misreading of the sinusoidal pattern if
the tilt were too large. This method of detection results in less than 1 arc

4 Photodiodes

Limit Sensor
Phototransistor
Patterns are 200 x 200 um

Transparent

3240 jum m/ 4 Photodiodes
/=" T
Slit Pattern )

Square Pattern 41080 um
Siit

for
Limit Sensor Pattern

second resolution in a range of 240 arc seconds. This development by
optical engineers at Hewlett-Packard, Inc., means that a distance or angle
measuring device incorporating one of these tiltmeters need only be
leveled to +120 arc seconds. The additional adjustments are compensated
for electronically using the readouts from this tiltmeter. (The figures are
copyright 1982 Hewlett-Packard Company and are reproduced with
permission.)
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be taken into account. Here the pillow contour of the film produces a curvature
of the object field that must be translated into a flat image field.

Then there is the image that appears up on the screen. How good does it have
to be to satisfy most people? The eye can resolve about 1 minute of arc.
However, that cannot be translated directly into some resolution figure unless
someone is willing to specify where the viewer is going to sit. Besides, there are
other things that can cause loss of resolution: the distortion of the film due to
the heat of the lamp, the tilt of the slide in its holder (sometimes called the film
gate, or just gate), the flatness of the screen, and tilt of the slide projector.
Usually people like their pictures to have somewhat more contrast than real life.
This means a lens designed so that the contrast remains high at low spatial
frequencies would produce a more pleasing picture to most viewers than a lens
whose MTF dropped off more rapidly at low frequencies but imaged high
spatial frequencies. In addition, the lens should be designed so that no
aberration stands out above all others.

For such a device the basic attack is to set up a photometric solution first,
assuring that the image will be bright enough to be useful, then design the lens
to deliver the best possible compromise image. Other optical systems may
demand a different ordering of priorities (Example 11.C).

11.6. CONCLUSIONS

No design is ever finished; it is stopped. Since most designs are a series of
compromises with time, money, and nature, the scope of the design and the time
devoted to it depend upon these limitations. In addition, the rapid innovations
in the fields of optics.render older designs obsolete and make possible hitherto
unheard of performance. Only through continual awareness of the advances in
the field through reading the literature, attending conferences and short courses,
and daily practice of this delightfully complex art, can a designer ensure that he
or she is ready to make light work!

PROBLEMS

11.1. Show that the angular tolerance for the acoustic modulator in the
laser printer is as given in the text.

11.2. Show that the angle between the facet normal and the optic axis at the
center of the scan is equal to the tilt angle between the facet surface and a
line parallel to the rotation axis.

11.3. Explain why spherical lenses could not be used in the tilt error correction
section of the case study presented in the text. Draw diagrams to
illustrate your explanation.
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11.4.

11.5.

11.6.

11.7.

11.8.

Show that the magnification of the pitch angle error Ax is equal to the
ratio of the focal length of the spherical lens to that of the second
cylindrical (toroidal) lens.

Show that if the “depth of focus” of a laser beam is defined as
zg(|z| < zg/2), the beam diameter is only 129 greater than at the beam
waist. Also show that a spot size of 140 um can be maintained over a
scan length of 298 mm for a helium—neon laser with a 125-uym beam
waist, if the center of deflection is more than 566 mm from the scan plane
and the scan angle is less than 28°.

If Q is the collection solid angle, show that the collection half angle « is
equal to sin~ 1(Q/x).

Show that a positive slope angle may be reduced in magnitude by a
positive aplanatic meniscus in the amount of the reciprocal of a refractive
index.

Starting with a 30° collection half angle and producing a —0.205 final
slope angle into the projection lens, calculate the radii of curvature of the
lenses in the condensor system based on the glass choices indicated in
Fig. 11.10.

Additional Problems. In most issues of the journal Applied Optics there is a

patent review column. Almost every issue presents a few optical systems
that can be appreciated from the short abstract and the accompanying
patent illustration. Pick a patent and obtain a copy to analyze the
innovation to the extent possible. Try to understand why the design is
important and, perhaps, how this innovation could be applied in a
different context. (Copies of patents are available at regional government
repositories and libraries of major universities.)
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Abbe illumination, 112
Abbe number, see VF-number
Abbe sine condition, 193, 211
Aberration, 11, 48, 185-215
chromatic, 5, 162-169
reduction, 204-219
spherical, 20, 186-190, 197, 204-207, 215,
217,223, 187-389
Absorption filier, 313
Achromat, 168, 213
Achromatization, 165-169, 213
Acousto-optic modulation, 51, 276-282, 309
Acousto-optic modulator, 276-282, 309, 175,
377, 378, 38O, 382-184
Acousto-optical deflector, see Acousto-optical
SCAnnET
Acousto-optical scanner, 298-302, 305, 306,
309
Alocal system, 32
Airy diffraction pattern, 46, 48, 257, 258
Amici prism, 132, 133
Amplifier tube, 350-353
Analyzer, 37, 38
Anamorphic system, 196
Anastigmat, 198
Angle of minimum deviation, 323
Angle solve, 172
Angular dispersion, 320, 321, 3124, 325
Angular field of view, 72
Angular magnification, 28-32, 53
Anode, photomultiplier, 347
Anti-reflection coating, 46, 124-127, 130, 131
Aperture shape factor, 283, 284
Aperture stop, 68-74, 105, 148, 205-208,
214, 215
Apex angle, 321, 323
Aplanat, 198, 211
Aplanatic point, 213
Aplanatic surface, 211, 212, 215, 387
Applied Optics, 366, 371, 393
Aspheric surface, 215-219, 387, 388

Astigmatism, 194-197, 205-207, 213
Avalanche photodiode, 337, 359, 360
Acxial color, 163

Axial intercept plot, 187, 188

Axial ray, 66, 74, T8, 179, 181

Ballistic response, 295

Band-pass filter, 314-319

Bandwidth, 314

Barrel distortion, 202, 203, 215

Beam compressor, 259, 261, 378

Beam displacer, 134, 135

Beam divergence, 231-239, 241-251,
253-255, 261, 262, 265, 266

Beam expander, 259, 261, 378

Beam shaping, 259, 261-264

Beamsplitter, 45, 46, 128-130

polarizing, 129

Beam waist, 231-248, 250-255,256-260, 262,
265, 266

Bending, 204, 205

Rirefringence, index of, 274

Birefringent crystal, 35-37, 39-41, 274

Blackbody radiation, 3

Blaze, 327, 328

Blaze wavelength, 327, 328

Bleeder chain, 348, 349

Blur spot, 223, 224

Bolometer, 339

Bragg angle, 281, 299, 303, 378

Bragg diffraction, 277, 281, 298, 303

Bragg equation, 277, 281, 298

Breadboarding, 374

Brewster angle, 34, 38, 54, 25%

Brightness, 92, 98-100

Brightness theorem, 100

Broadband response, 295

Cadmium sulfide, 354

Calcite, 37, 40, 53
Canada balsam, 37
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Candela, 115
Candle, see Candela
Cardinal points, 148-151
Cathode, photomultiplier, 347-355
Cavity dumping, 272, 273
CCD array, see Charge coupled dicde array
Center of deflection, 292, 293, 306
Channeltron, 350, 352
Charge coupled diode array, 362, 363
Chief ray, 14, 66, T8, 191, 192, 196-198
Chopper, 273, 274
Chromatic aberration, 5, 162169
Circle of least confusion, 194
Circularly polarized light, 33, 40
Closed-loop system, 333
Closing, ray trace, 67, 147, 148, 163, 181, 182
Coddington trace, 196
Collimation, Gaussian beam, 241-245, 261,
262
Color, 32
Coma, 191-195, 197, 204-208, 211-213,
215, 387
Compressor, laser beam, 259, 261, 300, 301,
k¥l
Computation, optical, 219-221
Computer programs, ray tracing, 81, 82,
169-170, 219-221
Condenser lens, 386-388
Conduction band, 354-356
Confocal beam parameter, 233
Conjugate, 28
Conjugate distance, 252-256
Constant deviation mirror, 122
Contrast, 226, 270, 272, 282
photographic plate, 344
Converter tube, 350-353
Comea, 27
Comer cube reflector, see Cube comer reflector
Caosine fourth law, 95, 101, 102, 105, 106
Critical angle, 9
Crown glass, 5-7, 34, 167
Cube comer reflector, 123, 140, 372, 373
Curvature, 146, 165, 167, 205, 206
center of, 12, 14, 20, 211
radius of, 20, 46, 146, 152, 165, 167, 248
Cylindrical lens, 81-86, 196, 259, 261, 262,
301, 310, 311, 379-384
Czerny-Turner spectrometer, 329

Decentration, 222
Depletion layer, 358
Design process, 368-392
Detector, 38
diode array, 337, 372, 373

INDEX

electrophotographic, 137, 346, 375, 376
frequency response, 337
image converter, 337
photodiode, 337
photoemissive, 347-353
photographic, 337, 342-346
photomultiplier, 337, 347-350
photovoltaic, 355-358
pyroelectric, 337, 341, 342
guadrant, 358
quantum, 339
resolution, 337
response, 337
semiconductor, 353-366
sensitivity, 337
solar cell, 337, 3155-357
split-cell, 358
thermal, 339-342
thermoelectric, 339-341
thermopile, 337-341
vidicon tube, 337
Detector geometry, 164-366
Diazo material, 345
Dichromate, 345
Dielectric filter, 315-319, 351
Dielectric mirror, 124, 127
Diffraction, 7, 41, 43, 46
Bragg, 277, 281, 298, 303
circular aperture, 46, 48, 257, 258
pattern, 48, 257, 258
single slit, 46, 48
Diffraction grating, 44, 49-51, 276, 277,
324-330
Diode array, 337, 372, 373
Diode laser, 239, 261
Diopter, 63
Dispersion, §, 52, 162, 319-321, 323
angular, 320, 321, 324, 325
crown glass, 162
flint glass, 8, 320
Distance of most distinet vision, 28
Distances, sign conventions, 61
Distortion, 202, 203, 205-207, 215, 381
Divergence, laser beam, 231-239, 241-251,
253-255, 261, 262, 265, 266
Dopants, 355
Doped semiconductor, 355-359
Double plot, 220
Dove prism, 132, 135, 137
Dynode, 348-351

Ebert-Fastie spectrometer, 329
Eigengrau, 338
Electric field, 42, 43, 45
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Electromagnetic radiation, 1, 32
Electron, 347-356
Electro-optic modulator, 274-276, 282
Electrophotography, 337, 346, 375, 376
Elliptically polarized light, 33, 40
Encircled energy plot, 184, 185, 224
Entrance pupil, 68-74, 158-162, 207-210
Entrance window, 71, 72, 76, 113, 159161
Equivalent air thickness, 154, 155
Exact ray tracing, 177-227
Exit pupil, 68, 70, 72, 76, T8, 102-106,
159161
Exit window, 71, 72, 102-106, 159-161
Expander, laser beam, 259, 261, 300, 301,
78

Extended source, 92-95, 98-105
Extinction ratio, 270, 276
Extraordinary ray, 17
Eye, 27-28, 30, 114, 337-339

resolution, 338

sensitivity, 2
Eyepiece:

microscope, 29

telescope, 30

Fabry-Pérot filter, 317, 318
Facet following, 301, 302
Fast axis, 40
Fiber optics, se¢ Optical fibers
Field curvature, 198-202, 213-215
Field Nattener, 214, 2135
Field stop, 71,72, 76, 105, 113, 148
Field of view, 72
Filter:
sbsorption, 315
band-pass, 314-319
dielectric, 315-319, 151
Fabry-Pérot, 317, 318
high-pass, 314-317
low-pass, 314-317
multiple cavity, 317, 318
Filter spectrometer, 318, 319
First-surface mirror, 123, 124
Flat-top distribution, laser beam, 262-264
Flint glass, 8, 320
J-number, 76, 77, 162, 209, 210, 221, 222,
iy
Focal length:
lens, 15, 59, 61, TB-B1, 148-151, 162, 163,
209, 210, 386, 387
mirror, 12, 20
Focal point, 67, 149, 151
mirror, 12
Fog level, Hurter-Driffield curve, 344
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Folded optical system, analysis, 135-138
Folding, optical system, 18, 19, 135-138
Fovea, 338
Fraunhofer, Joseph von, 4
Fraunhofer lines, 4
table, 3
Frequency, light, 4, 32, 42
Frequency response, 270-272, 279, 282
scanner, 295-198, 305
Fresnel's equations, 124

Galilean telescope, 243, 245, 259, 261, 383
Galvanometer scanner, 293, 294, 296-298,
305, 110, 311
Gamma, Hurter-Drifficld curve, 344
Gas discharge, 2
mercury, 3
Gas laser, 272
Gaussian beam, 230-266
focusing, 237-241, 245-260
higher order modes, 264, 265
Gaussian constants, 156-162
Gaussian profile, 230, 231, 258
Gaussian relay, 241, 242
Geometrical optics, laws of, 7
Glass:
crown, 5-T, 34, 167
flint, 3, 6-9, 51, 167
select types, 6, 7, 54
Glass line, 7
Glass map, 5, 7
Glass number, 5, 54
Golay cell, 339
Grating, diffraction, 44, 49-51, 276, 277,
324-330
Grating blaze, 327, 328
Grating equation, 49, 51, 54, 276, 277, 324,
33
Grating error, 328
Grating spectrometer, 124-330
geometry, 3128-330

Half-wave plate, 40, 274
H-D curve, se¢ Hurter-Driffield curve
Height solve, 172
Helium:

d-line, 5-7

lines, 3
Helium-neon laser, 234, 239, 240, 245, 246
High-pass filter, 314-317
Higher order mode, Gaussian beam, 264, 265
Hole, 354-356
Holographic grating, 328, 330, 372, 373
Holographic scanner, 302-305
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Holography, 345 Laser printer, 375-384
Hurter-Driffield curve, 343-345 Laser scanning system, 368-384
Hydrogen spectrum, 2 Laser television display, 309-311
Lasers and Applications, 371
Nluminance, 384, 385 Lateral color, 164, 215
Hlumination: Length, optical system, 59, 60, 73
Abbe, 112 Lens:
Kohler, 112, 386 cylindrical, 81-86, 196, 259, 261, 262,
laser beam, 256-266 301, 310, 311, 379-384
Iluminator, 111-114 human eye, 27
Image, 11,17 negative, 16
formation, 12 objective, 29
intermediate, 25, 30, 130, 155 positive, 16
magnification, 24 toroidal, 380-382
orientation, 22 Lenses;
real, 12, 24, 30 combination of, 24, 26
virtwal, 2, 13,17, 18 types, 15
Image converter, 337 Lensmaker’s equation, 24, 151, 152, 165, 204
Image displacer, 134, 135 Light, 1, 32
Image evaluation, 223-227 speed of, 4
Image inversion, 121, 132, 133 wave nature, 4244
Image reversal, 121, 133 Light emitting diode, 109, 273, 391
Image space, 68 Linearly polarized light, 33-41
Image tube, 350-353 Line pair, 225
Incidence, plane of, 8, 30, 125 Line spread function, 224, 225, 227
Index of birefringence, 274 Liquid mirror, 128
Index of refraction, see Refractive index Littrow geometry, 323, 324, 328, 329
Intensity, 88, 90-92 Longitudinal axial chromatic aberration, 164
Interference, 41, 4446, 49 Low-pass filter, 314-317
Interferomeier, Michelson, 44-46 Lumen, 88, 90, 114-116
Intrinsic semiconductor, 355, 359 Lyman ghost, 328
Inverse square law, 90
Iris, 27, 28 Magnesium fluoride, 124, 126, 127
Irradiance, 38, 39, 44, 88, 90-101 Magnification, 28, 58, 192, 193
Irradiance distribution, Gaussian beam, angular, 28-32, 53
258-264 combination of lenses, 25
lateral, 22, 24
Journal of Applied Physics, 371 longitudinal, 22
Journal of Quantum Electronics, 371 transverse, 22, 24, 158
Magnifier, 28-30
Keplerian telescope, 243, 245 Malus, Etienne, 39
Kaohler illumination, 112, 386 Malus, law of, 39
Marginal ray, 14, 67, 78, 195
Lagrange invariant, see Optical invariant Matrix method of ray tracing, 169
Lambertian source, 93 Mechanical modulator, 273, 274, 282
Lambert's law, 93 Mechanical scanner, 273, 274, 288-29E, 305,
Laser, 4, 272, 273 309, 369, 370
beam waist location, 239 Mercury lines, 3
Rayleigh range in, 234 Meridional ray, 177-184, 191, 195, 196, 213
Laser beam compressor, 259, 261, 300, 301, Merit function, 221
378 Michelson interferometer, 44-46
Laser beam expander, 259, 261, 300, 301, 378 Microchannel plate, 352, 353
Laser beam illumination, 256-266 Microscope, 5, 17, 29, 30

Laser Focus, 371 Minimum deviation, angle of, 321
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Mirror, 15, 18

concave, 11, 20, 21

constant deviation, 122

convex, 12, 20

dielectric, 124, 127

first-surface, 123, 124

focal length, 21

liquid, 128

plane, 119-128

second-surface, 123, 124, 130

spherical, 11, 12, 20
Mirror equation, 21-22
Mirror images, 119-123
Modelocking, 272, 273
Modulation, 270-283

acousto-optic, 51, 276-282, 309
Modulation transfer function, 226, 227, 392
Maodulator:

acousto-optic, 276-282, 309, 375, 377,

378, 380, 382-384

eleciro-optic, 274-276, 282

mechanical, 273-274, 282
Monochrpmatic radiation, 32
Multiple cavity filier, 317, 318

Marrowband response, 295, 208
Mear point, 28, 30, 53

Mewton, Isaac, 36, 3136

Micol prism, 37

MNodal points, 150, 151
Modding scanner, 293-298, 305
n-type material, 355-337

Object, 11

Object distance, 24

Objective, telescope, 30

Objective scanning, 284, 285

Object space, 68

Oblique ray, 182

Offense against sine condition, 191-193
Opening, ray trace, 67, 147, 179
Open-loop system, 333

Optical axis, crystal, 35, 37, 40-44
Optical computation, 219-221
Optical density, 314

Optical elements, combinations of, 17
Oprical Engineering, 366

Optical fibers, 10

Optical instruments, 26-32

Optical invariant, 76, 156-158, 186, 201, 387
Optical pathlength, 5

Optic axis, 10

Opricks, 36, 336

Orders, diffraction grating, 50, 51
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Ordinary ray, 35
Onthicon, 350, 351
Orthochromatic, 343

Panchromatic, 343
Parabola, 20
Paraboloid, 215, 217, 218
Parallel plates, 134, 135, 152-156, 251, 252
Parallel ray, 67, 78, 80
Para-principal trace, 196
Paraxial approximation, 19
Paraxial equations, Gaussian beams, 247-252
Paraxial rays, 19, 20
Paraxial ray tracing, 144-175, 373
Patents, 373
Pathlength, optical, 5
Path length difference, 46
Pattern generation, 307-309
Pellicle, 130
Pentaprism, 132
Petzval curvature, 198-202, 213-215
Petzval radius, 198
Phase factor, 42
Phase grating, 263, 264
Photoconductor, 354, 358-360
Photodiode, 337, 356, 361
spectral response, 357
Photodiode arrays, 360-364
Photoemissive detector, 347-353
Photoemissive diode, 347, 348
Photographic plate, 337, 342-346
Photometry, 90, 114116, 337
Photomultiplier, 337, 347-350
Photonics Spectra, 371
Photopic curve, 114, 115, 337
Photopolymerizers, 345
Photovoltaic detector, 355-358
Physical optics, 32, 42
Pickup, 173
Piezoelectric scanner, 293, 294, 298, 305
Pincushion distortion, 202, 203, 215
PIN photodiode, 359
Pitch angle error, 290, 375, 378-381
Plane of incidence, 8, 30, 125
Plane mirror, 119-128
Plane wave, 43-45, 48
Plot:
axial intercept, 187, 188
encircled energy, 184, 185, 224
ray intercept, 188, 189, 197
Point source, BB-91, 95-98
Point spread function, 223, 224
Polarization, 32, 41, 125
methods of, 34-3%
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Polarization (Coatinued )
modifiers, 39-41
rotator, 41, 274
Polarization axis, 38
Polarized light, 32, 33, 37, 40, 41
Polarizer, 37
birefringent crystal, 37
pile of plates, 34, 35
sheet, 34-16
Polarizing beamsplitter, 129
Polygonal scanner, 288-293, 369, 370, 375,
i77-383
Porro prism, 132, 154-156
Post-objective scanning, 284, 285, 182-384
Power (optical):
lenses, 63, 65, 165-167
surface, 146, 170, 247
Power (radiometric), B8-90
Pre-objective scanning, 285, 286
Principal plane, 79, 80, 150, 151
Principal surface, 149-151
Prism, 18, 130-134
Amici, 132, 133
Dove, 132, 135, 137
mirror, 9, 10
penta-, 132
Porro, 132, 154-156
right-angle, 131-133, 137
Prism scanner, see Polygonal scanner
Prism spectrometer, 319-324
Proximity detector placement, 364, 365
p-type material, 355-357
Pupil:
entrance, 68-72, 74, 76, 78, 158-162,
207-210
exit, 68-70, 74, 76, 102, 106,
159-162
Pyroelectric detector, 337, 341, 342
Pyroelectric effect, 341

Quadrant detector, 358

Quantum detectors, 339
Quarter-wave plate, 40, 274, 276
O-U trace, 178-183

Radiance, 88, 92, 93
Radiation, monochromatic, 32
Radiometer, 107
Radiometry, 87-107
Radius of curvature:
sign conventions, 61
wavefront, 233, 234, 255, 256
Range finder, 139, 140
Raster pattern, 351

INDEX

Ray, 7
axial, 66, 74, 78, 179, 181
chiel, 66, 68, 71, 78
marginal, 67-69
meridional, 177-184, 191, 195, 196, 213
oblique, 182
parallel, 67, 78, 80
paraxial, 19, 20
sagittal, 191, 192
skew, 177, 183, 185, 193, 195, 196
tangential, 191, 192
Ray height, sign conventions, 61
Ray intercept plot, 188, 189, 197
Rayleigh criterion, 49, 283, 284, 322
Rayleigh range, 232-234, 236-248, 250, 251,
254-256, 259, 262, 266
Ray sketching, 1, 10-18, 135, 373
Ray tracing:
backward, T4, 75
conventions for, 10-17, 19-21
exact, 177-227
paraxial, 144-175, 373
programs, B1, 82, 169-170, 219-221
reflective surfaces, 170-172
reverse, 74, 75
thin lens, 56-84
sign convention, 20, 61
Ray-vertex perpendicular, 178-181
Reciprocity law failure, 345
Reduced thickness, 154, 155
Reducing aberrations, 204-219
Reflectance, 126-128
Refection, 34
law of, B, 24, 53, 125, 134, 135, 144, 146
Reflectivity, 125-128
Reflector, cube corner, 123, 140, 372, 373
Refraction, law of, 8, 24, 53, 125, 134, 135,
144, 146, 153, 180
Refractive index, 4, 9, 124-127, 319
birefringent crystal, 35, 37
sign conventions, 20, 61
table, two glasses, 3
Replication, 218, 219, 372
Resolution:
acousto-optical scanner, 301
angular, 48
diode array, 337, 363
eye, 338
photographic film, 345
scanners, 282-284, 377
spectrometer, 322
television, 351
vidicon tube, 337, 331
Resolution chart, 225
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Resolving power:
grating, 125-327
spectrometer, 322, 323, 325-327
Resonant frequencies, scanner, 294, 296-298,
305
Resonator, unstable, 234
Retina, 27, 338
Retrocollective detector geometry, 365, 366
Retroreflector, 123, 140
Right-angle prism, 131-133, 137
Rise time, 271, 279, 283
rms spot size, 223
Roof, prism, 133, 134
Rotary scanner, see Polygonal scanner
Rowland circle, 330
Rowland ghost, 328

Sag, ree Sagitta
Sagitta, 199, 216, 217
Sagittal fan, 194
Sagittal focus, 194
Sagittal plane, 191
Sagittal ray, 191, 192
Scaling, 158, 159, 162, 169, 209, 210
Scan angle, 300, 305
Scan equation, 282-284, 377
Scan magnification, 305, 306
Scanner, 25
acousto-optical, 298-302, 305, 306, 309
galvanometer, 293, 294, 296-298, 303,
310, 211
holographic, 302-305
mechanical, 273, 274, 288-298, 305, 309,
369, 370
piezoelectric, 293, 294, 298, 305
polygonal, 2B8-293, 369, 370, 375,
377-383
taut band, 293, 294, 298, 305
Scanning, 282-305
ohjective, 284, 285
post-objective, 284, 285, 382-384
pre-objective, 285, 286
telecentric, 286
two-dimensional, 287, 288, 309, 375-382
Scanning angle, 283
Scanning geometry, 284-288, 292
Scan relay, 305-307
Scanered light detector geometry, 365, 366
Schmidt corrector, 216, 217
Schott glass catelog, 54
Scotopic curve, 114
Searchlight, 108,
Second-surface mirror, 123, 124, 130
Seidel aberration, 186

Semiconductor detector, 353-366
Semiconductor laser, 259, 261, 272
Shoulder, Hurter-Driffield curve, 344
Sign convention, ray tracing, 20, 24, 61
Silicon monoxide, 124
Sine bar drive, 331, 332
Sine condition, offense against, 191-193
Sine grating, 276, 277
Skew ray, 177, 183, 185, 193, 195, 196
Slide projector, 384-392
Slit, 2
Slope angle, sign convention, 61
Slow axis, 40
Snell's law, 8, 24, 53, 125, 134, 135, 144,
146, 153, 180, 213
Sodium, D lines, 2-5
Solar cell, 337, 355-357
Solid angle, 89
Solve, 147, 172, 173
Source:
extended, 92-95, U8-105
incandescent, 2, 3, 272
laser, 272, 273
point, 88-91, 9598
Source modulation, 272, 273
Spatial filtering, 245, 268
Spatial frequency, 226
Spectral luminous efficiency, 114
Spectrometer, 313-334, 373
filter, 318, 319
grating, 324-330
prism, 319-324
Spectrometer control, 333, 334
Spectrometer sources, 330, 331
Spectrometer system, 330-334, 372, 373
Spectroradiometry, 116
Spectrum, 50, 51, 337
electromagnetic, 2
Speed of light, 4
Spherical aberration, 20, 186-190, 197,
204-207, 215, 217, 223,
IRT-389
longitudinal, 187-190, 223
transverse, 187-190, 223
Spherical wave, 43-45
Split-cell detector, 358
Spot diagram, 184, 185, 221
Stability condition, 234
Star test, 224

aperture, 68-74, 105, 148, 205-208,
214, 215
field, 71, 72, 76, 105, 113, 148
Stop shift, 389
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Stop shift equations, 205-207
Storage tube, 350, 351

Tangential fan, 194
Tangential focus, 194
Tangential plane, 191
Tangential ray, 191, 192
Taut band scanner, 293, 294, 298, 305
Telecentric geometry, 286
Telecentric scanning, 286
Telescope, 30-32, 132, 155, 156, 243-245,
261
Cassegrainian, 218
Galilean, 243, 245, 259, 261, 383
Keplerian, 243, 245
Richey-Chrétien, 218
Schmidt, 217
Television scanning rates, 351
Tellurium dioxide, 300, 301
TEMgg Mode, 230, 232, 234, 264-266
Thermal detector, 339-342
Thermistor, 339
Thermocouple, 340
Thermoelectric detector, 339-341
Thermopile, 337-341
Thin lens equation, 23, 31, 62
Gaussian beams, 235
Gaussian form, 52, 235
Newtonian form, 52, 235
Third order aberration, |86
Through-focus transfer function, 227
Tiluneter, 330-392
Tils, 222
Toe, Hurter-Driffield curve, 344
Top hat distribution, laser beam, 262, 263
Toroidal lens, 380-382
Torsion rod scanner, 293, 294, 298
Total internal reflection, 9, 10, 37, 52, 131
Transfer equation, 62
Transmission, law of, 7
Transmittance, 96, 98
Transverse axial chromatic aberration, 164
Trepanning, 284, 285
Truncation ratio, 257, 258

INDEX

Tungsten filament, 2

Tungsten-halogen lamp, 372, 385, 386

Two-dimensional scanning, 287, 288, 3049,
375-384

Universal product eode, 304, 370
Unstable resonator, 234
UPC, see Universal product code, 304

Valence band, 354-356
Vertex, 10
lens, 149
mirror, 12, 14
Vidicon tube, 337
Vignetting, 101-111, 113
Vitreous humor, 27
V-number, 5-7, 51, 163, 165-167, 319, 320

Wave:
monochromatic, 42
plane, 43
spherical, 43-45
transverse, 32
Wavefronl, curvature, 233, 234, 255, 256
Wavelength, 2, 32, 42, 43
light, 4
Wave plate:
half-, 40, 274
quarter-, 40, 274, 276
Window:
entrance, 71, 72, 76, 113, 159-161
exit, 71, 72, 102-106, 159-161
Work function, 347

Xerographic detector, see Electrophotographic
detector
X-ray, 2

y-nu trace, 144-148
Young's experiment, 44, 47
y-u trace, 66

Zener valtage, 359
Zinc sulfide, 128, 129
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