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Preface to the Second Edition

Inasmuch as the first edition of this book could be regarded as an extension
and modernization of Professor Alexander Eugen Conrady’s Applied Optics and
Optical Design, this second edition can be viewed as a further extension and
modernization of Conrady’s 80-year-old treatise.' As was stated in the preface
to the first edition, referring to Conrady’s book, “This was the first practical
text to be written in English for serious students of lens design, and it received
a worldwide welcome.” Until then, optical design was generally in a disorga-
nized state and design procedures were often considered rather mysterious by
many.

In 1917, the Department of Technical Optics at the Imperial College of Sci-
ence and Technology in London was founded. Conrady was invited to the prin-
cipal teaching position as a result of his two decades of success in designing new
types of telescopic, microscopic, and photographic lens systems, and for his
work during WWTI in designing most of the new forms of submarine periscopes
and some other military instruments. Arguably, his greatest achievement was to
establish systematic and instructive methods for teaching practical optical
design techniques to students and practitioners alike. Without question,
Conrady is the father of practical lens design.*

Rudolf Kingslake (1903-2003) earned an MSc. degree under Professor Con-
rady, earning himself a commendable reputation while a student and during his
early career. Soon after The Institute of Optics was founded in 1929 at the
University of Rochester in New York, Kingslake was appointed an Assistant
Professor of Geometrical Optics and Optical Design. His contributions to the
fields of lens design and optical engineering are legendary. Most lens designers
can trace the roots of their education back to Kingslake. Following in Conrady’s
footsteps, Kingslake is certainly the father of lens design in the United States.

'A. E. Conrady, Applied Optics and Optical Design, Part I, Oxford Univ. Press, London (1929);
also Dover, New York (1957); Part I, Dover, New York (1960).

’R. Kingslake and H. G. Kingslake, “Alexander Eugen Conrady, 1866-1944,” Applied Optics,
5(1):176-178 (1966).

3Conrady commented that he limited the content of his book to what the great English electri-
cal engineer Silvamus P. Thomson called “real optics” and excluded purely mathematical acro-
batics, which Thomson called “examination optics” (see Ref. 1).
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Kingslake published numerous technical papers, was awarded an array of
patents, wrote a variety of books, and taught classes in lens design for nearly
half a century.* Collectively these have had a major impact on practicing lens
designers and optical engineers. Perhaps his most important contribution was
the first edition of Lens Design Fundamentals in 1978, followed in 1983 by
Optical System Design. In the years since the first edition was published,
spectacular advances in optical technology have occurred.

The pervasive infusion of optics into seemingly all areas of our lives, perhaps
only dreams in 1978, has resulted in significant developments in optical theory,
software, and manufacturing technology. As a consequence, a revised and
expanded edition has been produced primarily to address the needs of the lens
design beginner, just as was the first edition. Nevertheless, those practitioners
desiring to obtain an orderly background in the subject should find this second
edition an appropriate book to study because it contains about 50 percent more
pages and figures than the first edition by Kingslake.

Revising this book without the participation of its first author presented
somewhat of a challenge. The issues of what to retain, change, add, and so on,
were given significant consideration. Having taught a number of classes in lens
design and optical engineering myself during the past 35 years, often using Lens
Design Fundamentals as the textbook, the importance of the student mastering
the fundamental elements of practical lens design, rather than simply relying on
a lens design program, cannot be overemphasized.

Notation and sign conventions used in lens design have varied over the years,
but currently almost everyone is using a right-handed Cartesian coordinate sys-
tem. In preparing this edition, figures, tables, and equations were changed from
a left-handed Cartesian coordinate system with the reversed slope angles used
by Conrady and Kingslake into a right-handed Cartesian coordinate system.
The student may wonder why different coordinate systems have been used over
the years. Minimization of manual computation effort is the answer. Elimina-
tion of as many minus signs as possible was the objective to both increase
computational speed and reduce errors. Today, manual ray tracing is rarely
done, so it makes good sense to use a right-handed Cartesian coordinate system,
which also makes interfacing with other modeling, CAD, and manufacturing
programs easier.

Since the first edition, a number of books have been published on the topic of
aberration theory. Some authors of these books tend to suggest that wavefront
aberrations are preferable to longitudinal or transverse ray aberrations. In real-
ity, these aberration forms are directly related (see Chapter 4). The approach
used by Conrady and Kingslake to study aberrations was to use real ray errors,

4A selected bibliography of the writings of Rudolf Kingslake is provided in the Appendix of
this book.
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optical path differences (OPD), and (D — d) for chromatic correction, in con-
trast to wavefront aberrations expressed by a polynomial or Zernike expansion.
In this second edition, the same approach is continued for various reasons, but
primarily because experience has shown that beginning lens design students
more intuitively comprehend ray aberrations.

The content here has been revised and expanded to reflect the general
changes that have occurred since the first edition. Chapter titles remain the same
except that a new overview chapter about aberrations has been added. All the
chapters have been revised to some extent, often including new examples, signif-
icantly more literature references, and additional subject content. The final
chapter, discussing automatic lens design, was completely rewritten. Although
the types of optical systems had been limited to rotationally symmetric systems,
the chapter on mirrors and catadioptric systems was expanded to include a vari-
ety of newer systems with some having eccentric pupils. Some material from
Optical System Design has been incorporated without attribution. The reader
will notice that trigonometric ray tracing is still discussed in this edition. The
reason is that many concepts are profitably discussed using ray trace informa-
tion. These discussions and examples contain the ray trace data for students
to consider without having to generate it themselves.

The lack of explanations about how to use any particular computer-based
lens design program was intentional because such a program is not required
to learn the fundamentals; however, the student will find significant benefit in
exploring many of the examples using a lens design program to replicate what
is shown and perhaps to improve on or change the design. Much can be learned
from such experimentation by the student. Following the philosophy of Con-
rady and Kingslake, this book contains essentially no problems for the student
to work since there are numerous fully worked examples of the principles for
students to follow and expand on themselves. Instructors can develop their
own problems to supplement their teaching style, computational resources,
and course objectives.

Lens design is based not only on scientific principles, but also on the talent of
the designer. Shannon appropriately titled his book The Art and Science of Opti-
cal Design.’ A new feature in this edition is the occasional insertion of a
Designer Note; these provide the student with additional relevant information
that is somewhat out of the flow of the basic text. Reasonable effort has been
given to making this edition have improved clarity and to being more
comprehensive.

Although many new technologies have become available for lens designers to
employ, such as diffractive surfaces, free-form surfaces, systems without

SRobert R. Shannon, The Art and Science of Optical Design, Cambridge University Press,
Cambridge (1997).
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symmetry, holographic lenses, polarization, Fresnel surfaces, gradient index
lenses, birefringent materials, superconic surfaces, Zernike surfaces, and so on,
they intentionally have not been included. Once students and self-taught practi-
tioners have mastered the fundamentals taught in this edition, they should be
able to quickly develop the ability to use these other technologies, surfaces,
and materials through study of the literature and/or the manual for the lens
design program of their choice.

Acknowledgments

In 1968, it was my good fortune to meet Professor Kingslake when he gave a
series of lectures on lens design at Texas Instruments and, with his encourage-
ment, I soon went to The Institute of Optics for graduate studies. Not only
was he my teacher, but he also became a good friend and mentor for decades.
Without question, his teaching style and willingness to share his extraordinary
knowledge positively impacted my career in optical design as it did for the mul-
titude of others who had the occasion to study under Kingslake. I am humbled
and appreciative to have had the opportunity to prepare this second edition of
his book and hope that he would have approved of my revisions.

My sincere gratitude is given to Dr. Jean Michel Taguenang and Mr. Allen
Mann whose careful reading of, and comments about, the manuscript resulted
in a better book; to Professor Brian Thompson and Mr. Martin Scott for
providing access to early documents containing Kingslake’s work; and to
Thompson for writing “A Special Tribute to Rudolf Kingslake.” T acknowledge,
with thanks, Professor Jose Sasian, who suggested that I undertake the project
of preparing this second edition, and Dr. William Swantner for many construc-
tive discussions on practical optical design. The tireless efforts and profession-
alism of Marilyn E. Rash, an Elsevier Inc. Project Manager, during the editing,
proofreading, and production stages of this book are sincerely appreciated.

R. Barry Johnson
Huntsville, Alabama



Preface to the First Edition

This book can be regarded as an extension and modernization of Conrady’s
50-year-old treatise, Applied Optics and Optical Design, Part I of which was pub-
lished in 1929.* This was the first practical text to be written in English for seri-
ous students of lens design, and it received a worldwide welcome.

It is obvious, of course, that in these days of rapid progress any scientific
book written before 1929 is likely to be out of date in 1977. In the early years
of this century all lens calculations were performed slowly and laboriously by
means of logarithms, the tracing of one ray through one surface taking at least
five minutes. Conrady, therefore, spent much time and thought on the develop-
ment of ways by which a maximum of information could be extracted from the
tracing of a very few rays.

Today, when this can be performed in a matter of seconds or less on a small com-
puter—or even on a programmable pocket calculator—the need for Conrady’s
somewhat complicated formulas has passed, but they remain valid and can be
used profitably by any designer who takes the trouble to become familiar with
them. In the same way, the third-order or Seidel aberrations have lost much
of their importance in lens design. Even so, in some instances such as the prede-
sign of a triplet photographic objective, third-order calculations still save an
enormous amount of time.

Since Conrady’s day, a great deal of new information has appeared, and new
procedures have been developed, so that a successor to Conrady’s book is seri-
ously overdue. Many young optical engineers today are designing lenses with
the aid of an optimization program on a large computer, but they have little
appreciation of the how and why of lens behavior, particularly as these com-
puter programs tend to ignore many of the classical lens types that have been
found satisfactory for almost a century. Anyone who has had the experience
of designing lenses by hand is able to make much better use of an optimization
program than someone who has just entered the field, even though that new-
comer may have an excellent academic background and be an expert in com-
puter operation.

For this reason an up-to-date text dealing with the classical processes of lens
design will always be of value. The best that a computer can do is to optimize

*A. E. Conrady, Applied Optics and Optical Design, Part I, Oxford University Press, London
(1929); also Dover (1957); Part II, Dover, New York (1960).
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the system given to it, so the more understanding and competent the designer,
the better the starting system he will be able to give the computer. A perceptive
preliminary study of a system will often indicate how many solutions exist in
theory and which one is likely to yield the best final form.

A large part of this book is devoted to a study of possible design procedures
for various types of lens or mirror systems, with fully worked examples of each.
The reader is urged to follow the logic of these examples and be sure that he
understands what is happening, noticing particularly how each available degree
of freedom is used to control one aberration. Not every type of lens has been
considered, of course, but the design techniques illustrated here can be readily
applied to the design of other, more complex systems. It is assumed that the
reader has access to a small computer to help with the ray tracing; otherwise,
he may find the computations so time-consuming that he is liable to lose track
of what he is trying to accomplish.

Conrady’s notation and sign conventions have been retained, except that the
signs of the aberrations have been reversed in accordance with current practice.
Frequent references to Conrady’s book have been given in footnotes as “Con-
rady, p. ...”; and as the derivations of many important formulas have been
given by Conrady and others, it has been considered unnecessary to repeat them
here. In the last chapter a few notes have been added (with the help of Donald
Feder) on the structure of an optimization program. This information is for
those who may be curious to know what must go into such a program and
how the data are handled.

This book is the fruit of years of study of Conrady’s unique teaching at the
Imperial College in London, of 30 years of experience as Director of Optical
Design at the Eastman Kodak Company, and of almost 45 years of teaching
lens design in The Institute of Optics at the University of Rochester—all of it
a most rewarding and never-ending education for me, and hopefully also for
my students.

Rudolf Kingslake



A Special Tribute to Rudolf
Kingslake

Rudolf Kingslake’s very first paper, written when a student at Imperial Col-
lege London, was coauthored by L. C. Martin, a faculty member. The paper,
“The Measurement of Chromatic Aberration on the Hilger Lens Testing Inter-
ferometer,” was received 14 February 1924 and read and discussed 13 March
1924. Immediately following it was a paper by Miss H. G. Conrady, listed as
a research scholar since she had already graduated in 1923. Miss Conrady’s
paper was entitled “Study and Significance of the Foucault Knife-Edge Test
When Applied to Refracting Systems” (received 21 February 1924; read and
discussed 13 March 1924).

The formal degree program in optics at Imperial College was founded in
the summer of 1917 and entered its first class in 1920. Hilda Conrady was a
member of that class. Her father was A. E. Conrady, who had been appointed
a Professor of Optical Design. Professor Conrady’s work and publications were
definitive in the literature and in the teaching of optical design. In 1991,
Hilda wrote a fine article in Optics and Photonics News describing “The First
Institute of Optics in the World.”

Hilda and Rudolf became lifetime partners when they married on September
14, 1929, soon before they left England because Rudolf had been appointed as
the first member in the newly formed Institute of Applied Optics at the Univer-
sity of Rochester in New York. It is interesting to note that for the academic
year 1936-1937, L. C. Martin, on the faculty of the Technical Optics Depart-
ment at Imperial College London, and Rudolf Kingslake exchanged faculty
positions. With Rudolf’s usual sense of humor, he commented that “Martin
and I exchanged jobs, houses and cars . . . but not wives.”

With the publication of this new edition of Lens Design Fundamentals, which
originally appeared in 1978, Kingslake’s published works cover a period of
86 years! His last major new publication was The Photographic Manufacturing
Companies of Rochester, NewYork, published by The International Museum
of Photography at the George Eastman House in 1997; so even using this data
point his publications covered 73 years! We should also note that his extensive
teaching record extended well into his 80s and touched thousands of students.
His “Summer School” courses were indeed legendary.
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The Early Years

Rudolf Kingslake’s interest in optics started in his school days; he wrote
about his “entrance into optics” and said, “father had a camera handbook
issued by Beck that contained many diagrams of lens sections, which got me
wondering why camera lenses had four or six even eight elements?” This interest
continued and he noted, “so when I found out that lens design was taught at
Imperial College in South Kensington, I was determined to go there. The college
fees were not too expensive and father soon agreed to my plan.” Thus Rudolf
entered the program in 1921, graduated in 1924, continued on into graduate
school with a two-year fellowship, and earned his M.Sc. degree in 1926. And
s0, a very distinguished career was launched.

His graduate work at Imperial College was very productive, and a number of
significant papers were published including works such as “A New Type of
Nephelometer,” “The Interferometer Patterns due to Primary Aberrations,”
“Recent Developments of the Hartmann Test to the Measurement of Oblique
Aberrations,” “The Analysis of an Interferogram,” “Increased Resolving Power
in the Presence of Spherical Aberration,” and “An Experimental Study of the
Best Minimum Wavelength for Visual Achromatism.”

After graduation Rudolf was appointed to a position at Sir Howard Grubb
Parsons and Co. in Newcastle-upon-Tyne as an optical designer. His notes
say, “designed Hartmann Plate, measuring microscopic and readers for Edin-
burgh 30-inch Reflector. Took many photographs, translated German papers,
Canberra 18-inch Coelostat device, Mica tests, etc.” In June 1928, he published
a paper in Nature entitled “18-inch Coelostat for Canberra Observatory.”

Apparently Parsons didn’t have enough work for him to do, so he accepted
an appointment with International Standard Electric Company in Hendon,
North London. In Hendon he “worked on speech quality over telephone lines
and made lab measurements of impedance using Owen’s bridge at various fre-
quencies from 50 to 800 (cps). This experience was good for me as it gave me
a glance at the business of electronics, designing telephones. I was paid weekly,
so gave them a week’s notice when I went to America.”

The Institute of Applied Optics

Once in the Institute, Kingslake quickly developed the necessary courses and
laboratory work in the Eastman Building on the Prince Street Campus. Dr. A.
Maurice Taylor, also from England, joined the Institute with responsibility for
physical optics. The permanent home was the fourth floor of the newly con-
structed Bausch and Lomb Hall on the River Campus. Despite a heavy teaching
and planning load, Rudolf managed to produce a number of significant publica-
tions for major journals. These included “A New Bench for Testing
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Photographic Lenses,” which became the standard in the United States. A joint
paper with A. B. Simmons, who was an M.S. graduate student in optics,
reported on “A Method of Projecting Star Images Having Coma and Astigma-
tism.” Then followed “The Development of the Photographic Objective”
and “The Measurement of the Aberrations of a Microscope Objective.”

The final paper during that period (1929-1937) was a joint paper with Hilda
Kingslake writing under her maiden name of H. G. Conrady entitled “A Refrac-
tometer for the Near Infrared”; she was working as an independent researcher.
Rudolf reports that “in this joint paper the design of the refractometer was
mine. Miss Conrady assisted with the assembly, adjustment and calibration
and made many of the measurements on glass prisms.”

The Kodak Years

Even though Rudolf moved in 1937 to Eastman Kodak at the request of
Dr. Mees, Kodak’s Director of Research, a very important arrangement was
made for Kingslake to continue to teach on a half-time basis—a position that
he held long after his retirement. His last Summer School in Optical Design
was held in his 90th year.

Although the work at Kodak was often proprietary (and even classified dur-
ing the war years), he was able to publish a continual stream of important
papers in a wide range of professional refereed journals associated with major
scientific and engineering societies. At the time of his move to Kodak, Rudolf
commented that his “industrial experience had been lamentably brief—that
more than anything else, he needed experience in industry for greater compe-
tence in teaching an applied subject.” He was correct of course. In 1939, the
Institute of Applied Optics had a slight name change to The Institute of Optics.

Once Kingslake joined Kodak, he quickly made significant contributions to
the design and evaluation of photographic lenses for both still photography
and motion picture equipment. Topics included wide-aperture photographic
objectives, resolution testing on 16-mm projection lenses, lenses for aerial pho-
tography, new optical glasses, zoom lenses, and much more (see the Appendix
for specifics).

Some of the summary articles give an excellent perspective of the state of the
art and its impact. His paper “The Contributions of Optics to Modern Technol-
ogy and a Buoyant Economy” is a good example of the results of his exposure
to the industrial world. In a joint paper, “Optical Design at Kodak,” with two
members of his team, he summarized his work at Kodak. Finally in 1982 he
produced “My Fifty Years of Lens Design.” What a good summary!
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Books

Kingslake had an impact on the discipline of optical science and engineering
through his writings in a number of texts and contributions he made to various
handbooks. His first single-author volume, Lenses in Photography, was pub-
lished in 1951; the 1963 second edition turned out to be a classic.

In 1929, Professor Conrady had published Part I of his book, Applied Optics
and Optical Design, but he was not able to complete Part II before his death in
1944. He did, however, leave “a well advanced manuscript in his remarkably
clear handwriting.” Rudolf and Hilda worked together to compile and edit
the manuscript for publication in 1960. Hilda added a biography of her father
that appears as an appendix in Part II. Part I and Part IT were released together
by Dover. The Journal of Applied Optics published a revised version of the Con-
rady biography (see Appl. Opt., 5(1):176-178, 1966). Next came two chapters in
the SPSE Handbook of Photographic Science and Engineering on “Classes of
Lenses” and “Projection.” “Camera Optics” appeared in the Fifteenth Edition
of the Leica Manual.

His major work, however, was Lens Design Fundamentals published by Aca-
demic Press in 1978. This new edition is authored by R. Kingslake and R. Barry
Johnson and is significantly revised and expanded to encompass many of the
significant advances in optical design that have occurred in the past three dec-
ades. Academic Press published two more Kingslake books: Optical System
Design (1983) and A History of the Photographic Lens (1989). In 1992,
SPIE Optical Engineering Press published Optics in Photography, which was a
much revised version of Lenses in Photography.

Kingslake’s final single-author volume, mentioned earlier, The Photographic
Manufacturing Companies of Rochester, New York, was published by The Inter-
national Museum of Photography at the George Eastman House. Rudolf was a
dedicated volunteer expert curator of the camera collection together with auxil-
iary equipment. As a result of his work, he wrote many articles in the Museum’s
house journal Image. These articles started in 1953 and continued into the
1980s; Rudolf called them notes!

Working with his publisher, Academic Press, Rudolf launched and edited the
series Applied Optics and Optical Engineering. The first three volumes were pub-
lished in 1965 and Kingslake contributed chapters to all of them. The next two
volumes appeared in 1967 and 1969; they were devoted to “Optical Instru-
ments” as a two-volume set (Part I and Part IT). This writer was asked to join
Rudolf as a coeditor of Volume VI (and to contribute a chapter, of course).
The series continued under the editorship of Robert Shannon and James Wyant
with Rudolf Kingslake as Consulting Editor.
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Chapter 1

The Work of the Lens
Designer

Before a lens can be constructed it must be designed, that is to say, the radii
of curvature of the surfaces, the thicknesses, the air spaces, the diameters of the
various components, and the types of glass to be used must all be determined
and specified."? The reason for the complexity in lenses is that in the ideal case
all the rays in all wavelengths originating at a given object point should be made
to pass accurately through the image of that object point, and the image of a
plane object should be a plane, without any appearance of distortion (curva-
ture) in the images of straight lines.

Scientists always try to break down a complex situation into its constituent
parts, and lenses are no exception. For several hundred years various so-called
aberrations have been recognized in the imperfect image formed by a lens, each
of which can be varied by changing the lens structure. Typical aberrations are
spherical aberration, comatic, astigmatic, and chromatic, but in any given lens
all the aberrations appear mixed together, and correcting (or eliminating) one
aberration will improve the resulting image only to the extent of the amount
of that particular aberration in the overall mixture. Some aberrations can be
easily varied by merely changing the shape of one or more of the lens elements,
while others require a drastic alteration of the entire system.

The lens parameters available to the designer for change are known as
“degrees of freedom.” They include the radii of curvature of the surfaces, the
thicknesses and airspaces, the refractive indices and dispersive powers of the
glasses used for the separate lens elements, and the position of the “stop” or
aperture-limiting diaphragm or lens mount. However, it is also necessary to
maintain the required focal length of the lens at all times, for otherwise the rel-
ative aperture and image height would vary and the designer might end up with
a good lens but not the one he set out to design. Hence each structural change
that we make must be accompanied by some other change to hold the focal
length constant. Also, if the lens is to be used at a fixed magnification, that
magnification must be maintained throughout the design.

Copyright © 2010, Elsevier Inc. All rights reserved. 1
DOI: 10.1016/B978-0-12-374301-5.00005-X



2 The Work of the Lens Designer

The word “lens” is ambiguous, since it may refer to a single element or to a
complete objective such as that supplied with a camera. The term “system” is
often used for an assembly of units such as lenses, mirrors, prisms, polarizers,
and detectors. The name “element” always refers to a single piece of glass hav-
ing polished surfaces, and a complete lens thus contains one or more elements.
Sometimes a group of elements, cemented or closely airspaced, is referred to as a
“component” of a lens. However, these usages are not standardized and the
reader must judge what is meant when these terms appear in a book or article.

1.1 RELATIONS BETWEEN DESIGNER
AND FACTORY

The lens designer must establish good relations with the factory because,
after all, the lenses that he designs must eventually be made. He should be famil-
iar with the various manufacturing processes and work closely with the optical
engineers. He must always bear in mind that lens elements cost money, and he
should therefore use as few of them as possible if cost is a serious factor. Some-
times, of course, image quality is the most important consideration, in which
case no limit is placed on the complexity or size of a lens. Far more often the
designer is urged to economize by using fewer elements, flatter lens surfaces so
that more lenses can be polished on a single block, lower-priced types of glass,
and thicker lens elements since they are easier to hold by the rim in the various
manufacturing operations.

1.1.1 Spherical versus Aspheric Surfaces

In almost all cases the designer is restricted to the use of spherical refracting
or reflecting surfaces, regarding the plane as a sphere of infinite radius. The
standard lens manufacturing processes>*>%7 generate a spherical surface with
great accuracy, but attempts to broaden the designer’s freedom by permitting
the use of nonspherical or “aspheric” surfaces historically lead to extremely dif-
ficult manufacturing problems; consequently such surfaces were used only when
no other solution could be found. The aspheric plate in the Schmidt camera is a
classic example. In recent years, significant effort has been expended in develop-
ing manufacturing and testing technology to fabricate, on a commercial scale,
aspheric surfaces for elements such as mirrors, infrared lenses, and glass
lenses.®*1%1112 New fabrication technologies such as single-point diamond
turning, reactive ion etching, and computer-controlled free-form grinding and
polishing have greatly increased the design space for lens designers. Also,
molded aspheric surfaces are very practical and can be used wherever the
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production rate is sufficiently high to justify the cost of the mold; this applies
particularly to plastic lenses made by injection molding.

In addition to the problem of generating and polishing a precise aspheric sur-
face, there is the further matter of centering. Centered lenses with spherical
surfaces have an optical axis that contains the centers of curvature of all the
surfaces, but an aspheric surface has its own independent axis, which must be
made to coincide with the axis containing all the other centers of curvature in
the system. In the first edition of this book, it was noted that most astronomical
instruments and a few photographic lenses and eyepieces have been made with
aspheric surfaces, but the lens designer was advised to avoid such surfaces if
at all possible.

Today, the situation has changed significantly and aspheric lenses are more
commonly incorporated in designs primarily because of advances in manu-
facturing technologies that provide quality surfaces in a reasonable time frame
and at a reasonable cost. Many of the better photographic lenses now sold
by companies such as Canon and Nikon, for example, incorporate one or more
aspheric surfaces. The lens designer needs to be aware of which glasses can
currently be molded and aspherized by grinding or other processes. As men-
tioned previously, maintaining good communications with the fabricator cannot
be overstressed.

1.1.2 Establishment of Thicknesses

Negative-power lens elements should have a center thickness between 6 and
10% of the lens diameter,'® but the establishment of the thickness of a positive
element requires much more consideration. The glass blank from which the lens
is made must have an edge thickness of at least I mm to enable it to be held dur-
ing the grinding and polishing operations (Figure 1.1). At least 1 mm will be
removed in edging the lens to its trim diameter, and we must allow at least
another 1 mm in radius for support in the mount. With these allowances in
mind, and knowing the surface curvatures, the minimum acceptable center
thickness of a positive lens can be determined. These specific limitations refer
to a lens of average size, say % to 3 in. in diameter; they may be somewhat
reduced for small lenses, and they must be increased for large ones. A knife-edge
lens is very hard to make and handle and it should be avoided wherever possible.
A discussion of these matters with the glass-shop foreman can be very profitable.
Remember that the space between the clear and trim diameters shown in Figure 1.1
is where the lens is held. The lens designer needs to be sure that the mounting will
not vignette any rays.

As a general rule, weak lens surfaces are cheaper to make than strong
surfaces because more lenses can be polished together on a block. However,
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Figure 1.1 Assigning thickness to a positive element.

if only a single lens is to be made, multiple blocks will not be used, and then a
strong surface is no more expensive than a weak one.

A small point but one worth noting is that a lens that is nearly equiconvex is
liable to be accidentally cemented or mounted back-to-front in assembly. If pos-
sible such a lens should be made exactly equiconvex by a trifling bending, any
aberrations so introduced being taken up elsewhere in the system. Another point
to note is that a very small edge separation between two lenses is hard to achieve,
and it is better either to let the lenses actually touch at a diameter slightly greater
than the clear aperture, or to call for an edge separation of one millimeter or
more, which can be achieved by a spacer ring or a rigid part of the mounting.
Remember that the clearance for a shutter or an iris diaphragm must be counted
from the bevel of a concave surface to the vertex of a convex surface.

Some typical forms of lens mount are shown in Figure 1.2. When designing a
lens, it is wise to keep in mind what type of mounting might be employed and

v Z

s 4
7 2
s # X #

(a) (b) (c) (d)

Figure 1.2 Some typical lens mounts: (a) Clamp ring, (b) spinning lip, (c) spacer and screw
cap, and (d) mount centering.
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any required physical adjustments for alignment. This can make the overall lens
development project progress smoother. A study of optomechanics taught by
Yoder can be of much benefit to the lens designer.'*'>!® In many cases, the
optomechanical structure of the lens needs to be integrated into the larger
system and modeled to ensure that overall system-level performance will be
realized in the actual system.!”

1.1.3 Antireflection Coatings

Today practically all glass—air lens surfaces are given an antireflection coat-
ing to improve the light transmission and to eliminate ghost images. Since many
lenses can be coated together in a large bell jar, the process is surprisingly inex-
pensive. However, for the most complete elimination of surface reflection over a
wide wavelength range, a multilayer coating is required, and the cost then imme-
diately rises. In the past few decades, great strides have been made in the design
and production of high-efficiency antireflective coatings for optical material in
both the visible and infrared spectrums.'®:!?

1.1.4 Cementing

Small lens elements are often cemented together, using either Canada balsam
or some suitable organic polymer. However, in lenses of diameter over about 3
in., the differential expansion of crown and flint glasses is prone to cause warp-
age or even fracture if hard cement is used. Soft yielding cements or a liquid oil
can be introduced between adjacent lens surfaces, but in large sizes it is more
usual to separate the surfaces by small pieces of tinfoil or an actual spacer ring.
The cement layer is (almost) always ignored in raytracing, the ray being
refracted directly from one glass to the next.

The reasons for cementing lenses together are (a) to eliminate two-surface
reflection losses, (b) to prevent total reflection at the air film, and (c) to aid in
mounting by combining two strong elements into a single, much weaker cemen-
ted doublet. The relative centering of the two strong elements is accomplished
during the cementing operation rather than in the lens mount, which is most
generally preferred.

Cementing more than two lens elements together can be done, but it is very
difficult to secure perfect centering of the entire cemented component. The
designer is advised to consult with the manufacturing department before
planning to use a triple or quadruple cemented component. Precise cementing
of lenses is not a low-cost operation, and it is often cheaper to coat two surfaces
that are airspaced in the mount rather than to cement these surfaces together.
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1.1.5 Establishing Tolerances

It is essential for the lens designer to assign a tolerance to every dimension
of a lens, for if he does not do so somebody else will, and that person’s toler-
ances may be completely incorrect. If tolerances are set too loose a poor lens
may result, and if too tight the cost of manufacture will be unjustifiably
increased. This remark applies to radii, thicknesses, airspaces, surface quality,
glass index and dispersion, lens diameters, and perfection of centering. These
tolerances are generally found by applying a small error to each parameter,
and tracing sufficient rays through the altered lens to determine the effects of
the error.

Knowledge of the tolerances on glass index and dispersion may make the dif-
ference between being able to use a stock of glass on hand, or the necessity of
ordering glass with an unusually tight tolerance, which may seriously delay pro-
duction and raise the cost of the lens. When making a single high-quality lens, it
is customary to design with catalog indices, then order the glass, and then rede-
sign the lens to make use of the actual glass received from the manufacturer. On
the other hand, when designing a high-production lens, it is necessary to adapt
the design to the normal factory variation of about +0.0005 in refractive index
and +0.5% in ¥ value.”

Matching thicknesses in assembly is a possible though expensive way to
increase the manufacturing tolerances on individual elements. For instance,
in a Double-Gauss lens of the type shown in Figure 1.3, the designer may
determine permissible thickness tolerances for the two cemented doublets in
the following form:

each single element: £0.2 mm
each cemented doublet: 0.1 mm
the sum of both doublets: +-0.02 mm

Clearly such a matching scheme requires that a large number of lenses be
available for assembly, with a range of thicknesses. If every lens is made on
the thick side no assemblies will be possible.

(arda
\NAYAY

Figure 1.3 A typical Double-Gauss lens.
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Very often the most important tolerances to specify are those for surface tilt
and lens element decentration. A knowledge of these can have a great effect on
the design of the mounting and on the manufacturability of the system.
A decentered lens generally shows coma on the axis, whereas a tilted element
often leads to a tilted field. Some surfaces are affected very little by a small tilt,
whereas others may be extremely sensitive in this regard. A table of tilt coeffi-
cients should be in the hands of the optical engineers before they begin work
on the mount design.

The subject of optical tolerancing is almost a study in itself, and the setting of
realistic tolerances is far from being an obvious or simple matter. Table 1.1 pre-
sents the generally accepted tolerances for a variety of optical element attributes
at three production levels, namely commercial quality, precision quality, and
manufacturing limits. Tolerances for injection molded polymer optics are given
in Table 1.2.*!

Table 1.1

Optics Manufacturing Tolerances for Glass

Commercial Precision Manufacturing

Attribute Quality Quality Limits
Glass Quality (4, v,) +0.001, +0.8% +0.0005, +0.5% Melt controlled
Diameter (mm) -+0.00/—0.10 +0.000/—0.025 +0.000/—0.010
Center Thickness (mm) +0.150 +0.050 +0.025
Sag (mm) +0.050 +0.025 +0.010
Clear Aperture 80% 90% 100%
Radius +0.2% or 5 fr +0.1% or 3 fr +0.0025 mm or 1 fr
Irregularity — Interferometer 2 0.5 0.1

(fringes)
Irregularity — Profilometer +10 +1 +0.1

(microns)
Wedge Lens (ETD, mm) 0.050 0.010 0.002
Wedge Prism +5 +1 +0.1

(TIA, arc min)
Bevels <1.0 <0.5 No Bevel

(face width @ 45°, mm)
Scratch — Dig 80—50 60—40 5-2

(MIL-PRF-13830B)
Surface Roughness 50 20 2

(A rms)
AR Coating (R,,.) MgF, R<1.5% BBAR, R<0.5%  Custom Design

Source: Reprinted by permission of Optimax Systems, Inc.
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Table 1.2

Optics Manufacturing Tolerances for Plastics

Tolerances (rotationally symmetrical

Attribute elements less than 75 mm in diameter)
Radius of Curvature +0.5%

EFL +1.0%

Center Thickness 4+0.020 mm

Diameter +0.020 mm

Wedge (TIR) in Element <0.010 mm

S1 to S2 Displacement (across the mold parting line)  <0.020 mm

Surface Figure Error <2 fringes per inch (2 fringes = 1 X)
Surface Irregularity <1 fringe per inch (2 fringes = 1 1)
Scratch-Dig Specification 40-20

Surface Roughness Specification (RMS) <50 A

Diameter to Thickness Ratio <4:1

Center Thickness to Edge Thickness Ratio <3:1

Part to Part Repeatability (one cavity) <0.50%

Source: Reprinted by permission of G-S Plastic Optics.

1.1.6 Design Tradeoffs

The lens designer is often confronted with a variety of ways to achieve a
given result, and the success of a project may be greatly influenced by his choice.
Some of these alternatives are as follows: Should a mirror or lens system be
used? Can a strong surface be replaced by two weaker surfaces? Can a lens of
high-index glass be replaced by two lenses of more common glass? Can an
aspheric surface be replaced by two spherical surfaces? Can a long-focus lens
working at a narrow angular field be replaced by a short-focus lens covering a
wider field? Can a zoom lens be replaced by a series of normal lenses, giving
a stepwise variation of magnification? If two lens systems are to be used in
succession, how should the overall magnification be divided between them?
Is it possible to obtain sharper definition if some unimportant aberration can
be neglected?

1.2 THE DESIGN PROCEDURE

A closed mathematical solution for the constructional data of a lens in terms
of its desired performance would be much too complex to be a real possibility.
The best we can do is to use our knowledge of optics to set up a likely first
approach to the desired lens, evaluate it, make judicious changes, reevaluate
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| Set up a first system |

| Evaluate its performance |

Yes
( Is it good enough? )—» End

No

| Make changes in the system |

Figure 1.4 Lens design flow chart.

it, and so on. The process may be illustrated by a simple flow chart (Figure 1.4).
These four steps will be considered in turn. Throughout this book, a plethora of
guidance for design techniques is presented. In Chapter 17, the elements of
automatic lens design are discussed along with a brief discussion of the histori-
cal evolution of methods of ray tracing and performing optimization.

1.2.1 Sources of a Likely Starting System

In some cases, such as a simple telescope doublet, a lens design can be gener-
ated from first principles by a series of logical operations followed in a pre-
scribed order. This is, however, exceptional. Far more often we obtain a likely
starting system by one of the following means:

1. A mental guess. This may work well for an experienced designer but it is
hopeless for a beginner.

2. A previously designed lens in the company files. This is the most usual
procedure in large companies, but most firms not strongly involved in lens
development will not have such files.

3. Purchase of a competing lens and analysis of its structure. This is labori-
ous and time-consuming, but it has often been done, especially in small
firms with very little backlog of previous designs to choose from.

4. A search through the patent files or of a (commercial) lens design database.

There are literally thousands of lens patents on file, but often the examples
given are incomplete or not very well-corrected; such a starting point may
require a great deal of work before it is usable, not to mention the necessity
of avoiding the claims in the patent itself! A classic book by Cox** includes an
analysis of 300 lens patent examples, which many lens designers have found
quite useful. Today, there are tens of thousands of patents on lens designs,
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which makes a conventional patent search a rather daunting endeavor. Fortu-
nately there are few databases that can be of significant assistance to the lens
designer in looking for a potential starting point.****

1.2.2 Lens Evaluation

This is generally performed by tracing a sufficient number of rays through
the lens by accurate trigonometrical methods. At first only two or three rays
are required, but as the design progresses more rays must be added to provide
an adequate evaluation of the system. There are a variety of graphs that can
be plotted to represent the various aberrations, and a glance at these will often
suggest to the designer what is wrong with the system. In addition to ray error
plots, the ray data can be used for a number of purposes including analysis of
wavefront error, encircled energy, line scans, optical transfer function, point
spread function, and so on (see Section 8.4).

At the time of the first edition of this book, it was unthinkable to be able to
perform most of these complex analyses on anything less than a mainframe
computer, and then at a nontrivial cost. Today, such analyses can be performed
on a laptop costing under a thousand dollars, in a very timely manner, and the
cost per run is essentially nil if the costs of the laptop, software license, and
annual support are ignored.

1.2.3 Lens Appraisal

It is often very difficult to decide whether or not a given lens system is suffi-
ciently well-corrected for a particular application.”® The usual method is to trace
a large number of rays from a point source in a uniformly distributed array over
the vignetted entrance pupil of the lens, and then plot a “spot diagram” of the
points at which these rays pierce the image plane. It may be necessary to trace
several hundred rays before a realistic appearance of the point image is obtained
(see Section 8.4). Chromatic errors can be included in the spot diagram by
tracing sets of rays in several wavelengths, the spacing of the rays as they enter
the lens being adjusted in accordance with the weight to be assigned to that
wavelength in the final image.

To interpret the significance of a spot diagram, some designers calculate the
diameters of circles containing 10, 20, 30, ..., 100% of the rays, and thus plot a
graph of “encircled energy” at each obliquity. An alternative procedure is to
regard the spot diagram as a point spread function, and by means of a Fourier
transform convert it into a curve of MTF (modulation transfer function) plotted
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against spatial frequency. Such a graph contains very much information both as
to the resolving power of the lens and the contrast in the image of coarse
objects. Moreover, in calculating the MTF values, diffraction effects can be
taken into account, the result being the most comprehensive representation of
lens performance that can be obtained. If the lens is then constructed with
dimensions agreeing exactly with the design data, it is possible to measure the
MTF experimentally and verify that the lens performance has come up to the
theoretical expectations.

1.2.4 System Changes

When working by hand or with a small computer, the designer will have to
decide what changes he should make to remove the residual aberrations in his
lens. This is often a very difficult problem, and in the following chapters many
hints are given as to suitable modifications that should be tried even when using
a lens design program. Often a designer will make small trial changes in some of
the lens parameters and determine the rate of change, or “coefficient,” of each
aberration with respect to each change. The solution of a few simultaneous
equations will then indicate some reasonable changes that might be tried,
although the extreme nonlinearity of all optical systems makes this procedure
not as simple as one would like.

Today there are many programs for use on a high-speed computer in which a
large number of aberrations are changed simultaneously by varying several lens
parameters, using a least-squares technique. In spite of the enormous amount of
computation required in this process, it can be performed remarkably cheaply
on today’s personal computers (see Chapter 17). A skew ray trace through a
spherical surface would take an experienced human computer using a Marchant
mechanical calculator about 500 seconds per ray surface (pre-1955). Today, the
time has been reduced using a multiprocessor personal computer to about less
than 10 ns or about fifty billion times faster!

1.3 OPTICAL MATERIALS

The most common lens material is, of course, optical glass, but crystals and
plastics are frequently used, while mirrors can be made of essentially anything
that is capable of being polished. Liquid-filled lenses have often been proposed,
but for many obvious reasons they were practically never used until
recently.?2"2%2 QOptical materials in general have been discussed by Kreidl
and Rood* and others.>"*
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1.3.1 Optical Glass

There are several well-known manufacturers of optical glass, and their cata-
logs give an enormous amount of information about the glasses that are avail-
able; in particular, the Schott catalog is virtually a textbook of optical glasses
and their properties.

Optical glasses are classified roughly as crowns, flints, barium crowns, and so
on, but the boundaries of the various classes are not tightly standardized (see
Figure 5.5). Optically, glasses differ from one another in respect to refractive
index, dispersive power, and partial dispersion ratio, while physically they differ
in color, density, thermal properties, chemical stability, bubble content, striae,
and ease of polishing.

Glasses vary enormously in cost, over a range of at least 300 to 1 from the
densest lanthanum crowns to the most common ordinary plate glass, which is
good enough for many simple applications. One of the lens designer’s most dif-
ficult problems is how to make a wise choice of glass types, and in doing so he
must weigh several factors. A high refractive index leads to weaker surfaces and
therefore smaller aberration residuals, but high-index glasses are generally
expensive, and they are also dense so that a pound of glass makes fewer lenses.
If lens quality is paramount, then of course any glass can be used, but if cost is
important the lower-cost glasses must be chosen.

The cost of material in a small lens is likely to be insignificant, but in a large
lens it may be a very serious matter, particularly as only a few types are made in
large pieces (the so-called “massive optics”), and the price per pound is likely to
vary as much as the cube of the weight of the piece. It is perhaps surprising to
note that in a lens of 12 in. diameter made of glass having a density of 3.5, each
millimeter in thickness adds nearly 0.75 1b to the weight.

The color of glass is largely a matter of impurities, and some manufacturers
offer glass with less yellow color at a higher price. This is particularly important
if good transmission in the near ultraviolet is required. A trace of yellow color is
often insignificant in a very small or a very thin lens and, of course, in aerial
camera lenses yellow glass is quite acceptable because the lens will be used with
a yellow filter anyway.

It will be found that the cost of glass varies greatly with the form of the
pieces, whether in random slabs or thin rolled sheets, whether it is annealed,
and whether it has been selected on the basis of low stria content. Some lens
makers habitually mold their own blanks, and then it is essential to give these
blanks a slow anneal to restore the refractive index to its stable maximum value;
this is the value stated by the manufacturer on the melt sheet supplied with the
glass.
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A most useful feature of modern lens design programs is their inclusion of
extensive catalogs of the optical properties of glasses available from the various
suppliers as well as many plastics and materials useful in the infrared.

1.3.2 Infrared Materials

Infrared-transmitting materials are a study in themselves, and many articles
have appeared in books and journals listing these substances and their proper-
ties.*®> With few exceptions, they are not generally usable in the visible, however,
because of light scatter at the crystal boundaries. An example of an exception is
CLEARTRAN™ which is a water-free zinc sulfide material with transmittance
from about 0.4 to 12 um.

1.3.3 Ultraviolet Materials

For the ultraviolet region of the spectrum we have only relatively few mate-
rials that include UV-grade fused silica, crystal quartz, calcium fluoride, magne-
sium fluoride, sapphire, and lithium fluoride, with a few of the lighter glasses
when in thin sections. With the advent of integrated circuits, the demand for
finer and finer optical resolution to make masks to produce the integrated cir-
cuits and to image onto the silicon wafer, significant design and fabrication
effort has been expended over the past several decades. Often these optical sys-
tems are catadioptric (see Chapter 15), but sometimes they are purely refractive.
It should also be realized that these lenses are very, very expensive due to the
cost of materials, fabrication, and alignment.34’35’3°

1.3.4 Optical Plastics

In spite of the paucity of available types of optical plastics suitable for lens
manufacture, plastics have found extensive application in this field since World
War I and particularly since the early 1950s."*%3 Since that time hundreds of
millions of plastic lenses have been fitted to inexpensive cameras, and they are
now used regularly in eyeglasses and many other applications. Plastic triplets
of f/8 aperture were first introduced by the Eastman Kodak Company in
1959, the “crown” material being methyl methacrylate and the “flint” a copoly-
mer of styrene and acrylonitrile. The refractive indices of available optical
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plastics are typically very low, so that they fall into the region below the old
crown—flint line, along with liquids and a few special titanium flints. The pres-
ently available optical plastics are shown in Table 1.3 and properties of
frequently used plastic optical materials are provided in Table 1.4.

These refractive index and dispersion data are not highly precise since they
depend on such factors as the degree of polymerization and the temperature.
The spectral dispersion curves for acrylic, polystyrene, and polycarbonate mod-
eled in the optical design programs CODE V, OSLO, and ZEMAX showed
nontrivial differences (up to about 0.005).*° This is an example where the lens
designer should take care to be certain the optical material data are adequately
valid for the intended purpose.

Table 1.3
Currently Available Plastic Optical Materials

Plastic Trade Name Nd V-value
Allyl diglycol carbonate CR-39 1.498 53.6
Polymethyl methacrylate Lucite/PMMA 1.492 57.8
Polystyrene 1.591 30.8
Copolymer styrene-methacrylate Zerlon 1.533 42.4
Copolymer methylstyrene-methyl methacrylate Bavick 1.519
Polycarbonate Lexan 1.586 29.9
Polyester-styrene 1.55 43
Cellulose ester 1.48 47
Copolymer styrene acrylonitrile Lustran 1.569 35.7
Amorphous polyethylene terephthalate APET 1.571
Proprietary LENSTAR 1.557
Pentaerythritol tetrakis thioglycolate PETG 1.563

Polyvinyl chloride PVC 1.538
Polymethyl a-chloroacrylate 1.517 57
Styrene acrylnitrile SAN 1.436

Poly cyclohexyl methacrylate 1.506 57
Poly dimethyl itaconate 1.497 62
Polymethylpentene TPX 1.463

Poly diallyl phthalate 1.566 33.5
Polyallyl methacrylate 1.519 49
Polyvinylcyclohexene dioxide 1.53 56
Polyethylene dimethacrylate 1.506 54
Poly vinyl naphthalene 1.68 20
Glass resin (Type 100) 1.495 40.5
Cyclic olefin copolymer COC/COP 1.533 30.5
Acrylic PMMA 1.491 57.5
Methyl methacrylate styrene copolymer NAS 1.564

Blend of KRO3 & SMMA NAS-21 Novacor 1.563 335

Polyolefin Zeonex 1.525 56.3




Table 1.4
Properties of Frequently Used Plastic Optical Materials

Acrylic Polycarbonate Polystyrene Cyclic Olefin Cyclic Olefin Ultem 1010
Properties (PMMA) (PC) (PS) Copolymer Polymer (PEI)
Refractive index
Nr (486.1 nm) 1.497 1.599 1.604 1.540 1.537 1.689
N, (587.6 nm) 1.491 1.585 1.590 1.530 1.530 1.682
N¢ (656.3 nm) 1.489 1.579 1.584 1.526 1.527 1.653
Abbe value 57.2 34.0 30.8 58.0 55.8 18.94
Transmission (%) 92 85-91 87-92 92 92 36—82
Visible spectrum
3.174 mm thickness
Deflection temp
3.6°F/min @ 66 psi 214°F/101°C 295°F/146°C 230°F/110°C  266°F/130°C 266°F/130°C 410°F/210°C
3.6°F/min @ 264 psi 198°F/92°C 288°F/142°C 180°F/82°C 253°F/123°C 263°F/123°C 394°F/201°C
Max continuous 198°F 255°F 180°F 266°F 266°F 338°F
service temperature 92°C 124°C 82°C 130°C 130°C 170°C
Water absorption % (in 0.3 0.15 0.2 <0.01 <0.01 0.25
water, 73°F for 24 hrs)
Specific gravity 1.19 1.20 1.06 1.03 1.01 1.27
Hardness M97 M70 M90 M89 M89 M109
Haze (%) l1to2 1to2 2t03 1to2 l1to2 -
Coeff of linear exp cm X 6.74 6.6—7.0 6.0—8.0 6.0-7.0 6.0-7.0 4.7-5.6
10—5/cm/°C
dN/dT X 10-5/°C -85 —11.8to —143 —12.0 —10.1 -8.0 -
Impact strength (ft-1b/in) 0.3-0.5 12—-17 0.35 0.5 0.5 0.60
(Izod notch)
Key advantages Scratch Impact Clarity High moisture Low Impact
resistance strength Lowest barrier birefringence resistance
Chemical Temperature cost High modulus Chemical Thermal and
resistance resistance Good eletrical resistance chemical
High Abbe properties Completely resistance
Low dispersion amorphous High index

Source: Reprinted by permission of G-S Plastic Optics.
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The advantages of plastic lenses are:

Ease and economy of manufacture in large quantities.

Low cost of the raw material.

The ability to mold the mount around the lens in one operation.
Lens thicknesses and airspaces are easier to maintain.

Aspheric surfaces can be molded as easily as spheres.

A dye can be incorporated in the raw material if desired.

AN e

The disadvantages are:

The small variety and low refractive index of available plastics.

The softness of the completed lenses.

The high thermal expansion (eight times that of glass).

The high temperature coefficient of refractive index (120 times that of glass).
Plane surfaces do not mold well.

The difficulty of making a small number of lenses because of mold cost.
Plastics easily acquire high static charges, which pick up dust.

Plastic lenses cannot be cemented*' and can be coated only with some
difficulty.*?

PN R WD =

In spite of these issues, plastic lenses have proved to be remarkably satisfactory
in many applications, including low-cost cameras, and as manufacturing and
materials technologies advance, so will the variety of applications. In some cases,
glass and plastic lenses have been used together effectively in optical systems.

1.4 INTERPOLATION OF REFRACTIVE INDICES

If we ever need to know the refractive index of an optical material for a
wavelength other than those given in the catalog or used in measurement, some
form of interpolation must be used, generally involving an equation connecting
n with . A simple relation, which is remarkably accurate throughout the visible
spectrum, is Cauchy’s formula**:

n=A+B/)>+CJi*

Indeed, the third term of this formula is often so small that when we plot n
against 1/)> we obtain a perfectly straight line from the red end of the visible
almost down to the blue-violet. For many glasses the curve is so straight that
a very large graph may be plotted, and intermediate values picked off to about
one in the fourth decimal place.

To use this formula, and the similar one due to Conrady,44 namely,

n=A+B/i+C/)? (1-1)
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It is necessary to set up three simultaneous equations for three known refrac-
tive indices and solve for the coefficients 4, B, and C. In this way indices may be
interpolated in the visible region to about one in the fifth decimal place.

Extrapolation is, however, not possible since the formulas break down
beyond the red end of the spectrum.

Toward the end of the last century, several workers, including Sellmeier,
Helmholtz, Ketteler, and Drude, tried to develop a precise relationship between
refractive index and wavelength based on resonance concepts.*> The one most
generally employed is

. B D F
At T et gt e

In this formula the refractive index becomes infinite when A is equal to C, E,
G, and so on, so that these values of 1 represent asymptotes marking the centers
of absorption bands. Between asymptotes the refractive index follows the curve
indicated schematically in Figure 1.5.

For most glasses and other transparent uncolored media, two asymptotes are
sufficient for interpolation purposes, one representing an ultraviolet absorption
and the other an infrared absorption. The visible spectrum is then covered by
values of A lying between the two absorption bands.

Expanding Eq. (1-2) by the binomial theorem, we obtain an approximate
form of this equation, namely,

4o (1-2)

W =al? +b+c/i?+d/)+ ...

in which the coefficient a controls the infrared indices (large 1) while coefficients
¢, d, and so on, control the ultraviolet indices (small 1). If the longer infrared is
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Figure 1.5 Schematic relationship between the refractive index of a glass and the log of the
wavelength.
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of importance in some particular application, then it is advisable to add one or
more terms of the type ei* + f4°, and so on.
Herzberger*® proposed a somewhat*” different formula, namely,

LD
P=lg (2= )

n=A+ B>+

in which 4, B, C, D are coefficients for any given glass, and 4, has a fixed
value for all glasses. He found that a suitable value is given by 4,> = 0.035, or
Ao = 0.187. This takes care of the ultraviolet absorption, and the near infrared
is covered by the B? term. If the infrared is more important, another infrared
term should be added.

In the first edition of this book, the then current Schott glass catalog
contained a six-term expression used for smoothing the stated index data. It was

1= Ao+ A\ 234 Ay )73+ A3 )I* + A4 )08 + As5) 2}

which provided a very high degree of control in the blue and ultraviolet regions,
but it is not valid much beyond 1 um in the infrared. Since then, Schott has
adopted the Sellmeier dispersion formula®® given by

B2 B2 B2
n(A) = 14—t .
A*C] ).7C2 A*C3

It should be noted that Schott now uses a nine-digit glass code where the first
three digits represent the refractive index, the next three the Abbe value, and the
final three the density of the glass. For example, the glass code for SF6 is
805254.518. Then n; = 1.805 (note that 1.000 is added to the first three digits),
va = 25.4 (second three digits are divided by 10), and the density is 5.18 (third
three digits are divided by 100).

The Bausch and Lomb Company® has used the following seven-term for-
mula for its interpolation:

el?
(Z—f)+e2/ (@ ~f)

This is an awkward nonlinear type of relationship involving a considerable com-
puting problem to determine the seven coefficients for any given type of glass.

d
n=a+b’+ct+ =+
y

1.4.1 Interpolation of Dispersion Values

When using the (D — d) method of achromatism (Section 5.9.1), it is neces-
sary to know the An values of the various glasses for the particular spectral
region that is being used. For achromatism in the visible, the An is usually taken
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to be (ny— nc), but for any other spectral region a different value of An must be
used. Indeed, a change in the relative values of An is really the only factor that
determines the spectral region for the achromatism.

To calculate An we must differentiate the (n, 1) interpolation formula. This
gives us the value of dn/dA, which is the slope of the (n, 4) curve at any particular
wavelength. The desired value of An is then found by multiplying (dn/d2) by a
suitable value of AA. Actually, the particular choice of AZ is unimportant since
we shall be working toward a zero value of X (D — d) An, but if we are expecting
to compare a residual of £ (D — d) An with some established tolerance, it is nec-
essary to adopt a value of A/ that will yield a An having approximately the same
magnitude as the (ny — n¢) of the glass.

As an example, suppose we are using Conrady’s interpolation formula, and
we wish to achromatize a lens about some given spectral line. Then by differen-
tiating Eq. (1-1), we get

dn b T ¢

PP AR Y (1)
This formula contains the » and c¢ coefficients of the particular glass being
used, and also the wavelength A at which we wish to achromatize, say, the mer-
cury g line.

Suppose we are planning to use Schott’s SK-6 and SF-9 types. Solving
Eq. (1-1) for two known wavelengths, we find

Glass b c dn/dj at the g line
SK-6 0.0124527 0.000520237 -0.142035
SF-9 0.0173841 0.001254220 -0.275885

For wavelength 0.4358 um, we find for these two glasses that An = 0.010369 and
0.020140, respectively, using the arbitrary value of AL = —0.073. These values
should be compared with the ordinary An = (ny — n¢) values, which for these
glasses are 0.01088 and 0.01945 respectively. It is seen that the flint dispersion
has increased relative to the crown dispersion, which is characteristic of the blue
end of the spectrum.

1.4.2 Temperature Coefficient of Refractive Index

If the ambient temperature in which the lens is to be used is liable to vary
greatly, we must consider the resulting change in the refractive indices of
the materials used. For glasses this usually presents no problem since the
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temperature coefficient of refractive index is very small, on the order of
0.000001 per °C.>° However, for crystals it is likely to be much greater, and
for plastics it is very large:

® fluorite: 0.00001 per °C
® plastics: 0.00014 per °C

Thus over a normal temperature range, say from 0 to 40°C, the refractive
index of plastic lenses changes by 0.0056, quite enough to alter the focus signifi-
cantly. In a reflex camera this would be overcome during the focusing operation
before making the exposure, but in a fixed-focus or rangefinder camera, or one
depending on the use of a focus scale, something must be done to avoid this
temperature effect. One way that has been proposed is to place all or most of
the lens power in a glass element, using the plastic elements only for aberration
correction.

Another suggestion is to mount the lens in a compensated mount of two
materials having very different coefficients of expansion, so that as the temper-
ature changes, one airspace of the lens is altered by just the right amount to
restore the image position on the film. The thermal expansion of plastics is also
large, but this is immaterial if the camera body is also made of plastic, since
a temperature change then merely expands or contracts the entire apparatus,
leaving the image always in the same plane.

1.5 LENS TYPES TO BE CONSIDERED

Lenses fall into several well-defined and well-recognized types, many of
which will be considered in this book. They are

1. Lenses giving excellent definition only on axis
(a) Telescope doublets (low aperture)
(b) Microscope objectives (high aperture)
2. Lenses giving good definition over a wide field
(a) Photographic objectives
(b) Projection lenses
(c) Flat-field microscope objectives
3. Lenses covering a finite field with a remote stop
(a) Eyepieces, magnifiers, and loupes
(b) Viewfinders
(c) Condensers
(d) Afocal Galilean or anamorphic attachments
4. Catadioptric (mirror-lens) systems
5. Varifocal and zoom lenses



Chapter 1 21

Each of these types, and indeed every form of lens, requires an individual and
specific process for its design. Some lenses contain many refracting surfaces
while some contain few. In some lenses there are so many available parameters
that almost any glass can be used; in others the choice of glass is an important
degree of freedom. Some lens systems favor a high relative aperture but cover
only a small angular field, while other types are just the reverse.

Several classical lens types are considered in this book and the design of
a specific example of each is shown in detail. The reader is strongly advised to fol-
low through these designs carefully, since they employ a number of well-recognized
techniques that can often be usefully applied to other design situations.

Some of the procedures that have been utilized in the examples in this book
are as follows:

Lens bending

Shift of power from one element to another

Single and double graphs, to vary one or two lens parameters simultaneously
Symmetry, for the automatic removal of the transverse aberrations
Selection of stop position by the (H’ — L) plot

Achromatism by the (D — d) method

Selection of glass dispersions at the end of a design

The matching principle for the design of a high-aperture aplanat

Use of a “buried surface” for achromatism

10. Reduction of the Petzval sum by a variety of methods

11. Use of a narrow airspace to reduce zonal spherical aberration

12. Introduction of vignetting to cut off bad rim rays

13. Solution of four aberrations by the use of four simultaneous equations
14. Application of aspheric surfaces for aberration control

S AU o e
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Since this book is primarily directed toward the needs of the beginner, no ref-
erence has been made to the more complex modern photographic objectives.
This omission includes particularly high aperture lenses of the Double-Gauss
and Sonnar types, and wide-angle lenses such as the Biogon and reversed
telephoto. Zoom lenses and afocal and anamorphic attachments have been
omitted for the same reason. Today these complex systems are invariably
designed with the aid of an optimization program on a computer. Throughout
the following chapters, additional guidance is occasionally provided in high-
lighted sections denoted as Designer Note.
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Chapter 2

Meridional Ray Tracing

2.1 INTRODUCTION

It is reasonable to assume that anyone planning to study lens design is
already familiar with the basic facts of geometrical and physical optics.
However, there are a few points that should be stressed to avoid confusion or
misunderstanding on the part of the reader.

2.1.1 Object and Image

All lens design procedures are based on the principles of geometrical optics,
which assumes that light travels along rays that are straight in a homogeneous
medium. Light rays are refracted or reflected at a lens or mirror, where they
proceed to form an image. Due to the inherent properties of refracting and
reflecting surfaces and the dispersion of refracting media, the image of a point
is seldom a perfect point but is generally afflicted with aberrations. Further,
owing to the wave nature of light, the most perfect image on a point is always,
in fact, a so-called Airy disk, a tiny patch of light of the order of a few wave-
lengths in diameter surrounded by decreasingly bright rings of light.

It should be remembered that both objects and images can be either “real” or
“virtual.” The object presented to the first surface of a system is, of course,
always real. The second and following surfaces may receive converging or
diverging light, indicating respectively a virtual or real object for that surface.
It must never be forgotten that in either case the refractive index to be applied
to the calculation is that of the space containing the entering rays at the surface
under consideration. This is known as the object space for that surface.

Similarly, the space containing the rays emerging from a surface is called the
image space, and real or virtual images are considered to lie in this space.
Because of the existence of virtual objects and virtual images we must regard

Copyright © 2010, Elsevier Inc. All rights reserved. 25
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the object and image spaces as overlapping to infinity in both directions. It is
also a commonly accepted convention that light from the source propagates
initially from left to right.

2.1.2 The Law of Refraction

Over several millennia, attempts to uncover the secret of mathematically
describing the refraction of light remained undiscovered. About 1621, Snell suc-
cessfully provided the needed fundamental equation and insight that allowed
optics to have a firm foundation. Descartes published Snell’s discovery in
1637, appropriately crediting Snell. During the past four centuries, numerous
methods have been developed to trace rays through specifically shaped and
free-form surfaces. The well-known Snell’s law is generally written

n'sinl’ =nsin/l

where I and I’ are, respectively, the angles between the incident and refracted
rays and the normal at the point of incidence, while » and n’ are the refractive
indices of the media containing the incident and refracted rays, respectively.

Although Snell’s law is an elegantly simple equation, its actual application
often requires clever use of geometrical constructs. The second part of the law
of refraction is that the incident ray, the refracted ray, and the normal at the
point of incidence all lie in one plane called the plane of incidence. This part
of the law becomes important in the tracing of skew rays (see Chapter 8).
Computations historically were made by using trigonometric and logarithmic
tables, Newton’s method for determining the square root, and very talented
human computers. The time to trace a skew ray through a single refractive
surface was significant and nontrivial for even a meridional ray.

A more generalized form of Snell’s law useful for tracing rays in three dimen-
sions is expressed in vector form. Letting r and r’ be unit vectors along the inci-
dent and refracted rays respectively, and n being a vector along the interface
normal, the vector form of Snell’s law is given by »n’'(r' An) = n(r An). A good
human computer of yesteryear could hand-compute the path of a meridional
ray, with six-place accuracy, at a speed of 40 to 60 seconds per ray-surface.’
For the past several decades, ray tracing has been accomplished almost exclu-
sively using digital computers that can today trace rays billions of times faster
than the human computer.

Refractive index is the ratio of the velocity of light in air to its velocity in the
medium, and the refractive indices of all transparent media vary with wave-
length, being greater for blue light than for red. The refractive index of vacuum
relative to air is about 0.9997, which must occasionally be taken into account if
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a lens is to be used in vacuum. In addition, the refractive indices of air and
transparent media are a function of their temperature and the imposed pressure.
For example, an infrared lens made of germanium has a remarkably different
refractive index when used at room temperature or when cooled by liquid
nitrogen.

For reflection we merely write n’ = —n; this is because I’ at a mirror surface
is equal to 7 but with opposite sign. Thus, if a clockwise rotation takes us from
the normal to the incident ray, it will require an equal counterclockwise rotation
to go from the normal to the reflected ray.

2.1.3 The Meridional Plane

In this book we shall consider almost entirely centered systems, that is, lenses
in which the centers of curvature of spherical surfaces, and the axes of symmetry
of aspheric surfaces, all lie on a single optical axis. Such systems are also
referred to as rotationally symmetric systems. An object point lying on this axis
is called an axial object, while one lying off-axis is called an extraaxial or off-
axis object point. The plane containing an extraaxial object point and the lens
axis is known as the meridional plane; it constitutes a plane of symmetry for
the whole system (see Chapter 4).”

2.1.4 Types of Rays

Geometrical optics is based on the concept of rays of light, which are
assumed to be straight lines in any homogeneous medium and which are bent
at a surface separating two media having differing refractive indices. We often
need to trace the path of a ray through an optical system, which will generally
contain a succession of refracting or reflecting surfaces separated by given dis-
tances along the axis. A rough graphical procedure is available for rapid ray
tracing, but for more precision it is necessary to use a set of trigonometric
formulas executed in succession.

Rays in general fall into three classes: meridional, paraxial, and skew. For a
rotationally symmetric system, meridional rays lie in the plane containing the
lens axis and an object point lying to one side of the axis. This plane is called
the meridional plane. If the object point lies on the axis, all rays are necessarily
meridional.

An important limiting class of rays that has many applications are the
so-called paraxial rays, which lie throughout their length so close to the optical
axis that their aberrations are negligible. The ray tracing formulas for paraxial
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rays contain no trigonometric functions and are therefore well-suited to alge-
braic manipulation. A paraxial ray is really only a mathematical abstraction,
for if the diaphragm of a real lens were stopped down to a very small aperture
in an effort to isolate only paraxial rays, the depth of focus would become so
great that no definite image could be located, although the theoretical image
position can be calculated as a mathematical limit. Nevertheless, in the next
chapter, it is shown that a paraxial ray can actually be considered at finite
heights and angles.

Skew rays, on the other hand, do not lie in the meridional plane, but they
pass in front of or behind it and pierce the meridional plane at the diapoint.
A skew ray never intersects the lens axis. Skew rays are much more difficult
to trace than meridional rays, and we shall not refer to them again.

If the object point lies on the lens axis, we trace only axial rays. However, for
an extraaxial object point there are two kinds of rays to be traced, namely
meridional rays, which lie in the meridional plane, shown in the familiar ray dia-
gram of a system, and skew rays, which lie in front of or behind the meridional
plane and do not intersect the axis anywhere. Each skew ray pierces the meridi-
onal plane at the object point and also at another point in the image space
known as the diapoint of the ray. The paths of two typical skew rays are shown
diagrammatically in Figure 2.1.

Axial rays and meridional rays can be traced by relatively simple trigono-
metric formulas, or even graphically if very low precision is adequate. Skew
rays, on the other hand, are much more difficult to trace, the procedure being
discussed in Chapter 8.

For an oblique ray in the meridional plane it is useful to consider two limit-
ing rays very close to the traced ray, one slightly above or below it in the merid-
ional plane, and the other a sagittal (skew) ray lying just in front of or behind
the traced ray. These are used in the calculation of astigmatism (see Chapter 11).

\“\e&ée

Figure 2.1 A typical pair of skew rays.
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2.1.5 Notation and Sign Conventions

This is a very vexed subject, as every lens designer seemingly has his own
preferred system, which never seems to agree with that used by others. In spite
of the efforts of several committees that have been appointed since World
War II, no standard system has been established. Indeed, at the time of the
writing of this book, there is still no consistency between all lens design pro-
grams. In the first edition we adhered strictly to Conrady’s notation except
for the signs of the aberrations.

In Conrady’s day it was customary to regard all the properties of a single
positive lens as positive, whereas today it is universal to regard undercorrected
aberrations as negative and overcorrected aberrations as positive. This change
in the prevailing attitude leads to a reversal of the sign of all Conrady’s aberra-
tion expressions, requiring care on the part of any reader who is familiar with
the earlier writings on practical optics. In the first edition of this book, a left-
handed Cartesian coordinate system was used while in this second edition the
standard right-handed Cartesian coordinate system is utilized. Readers attempt-
ing to compare material from the first edition or Conrady’s books with the
second edition should exercise care.

So far as meridional rays are concerned, the origin of coordinates is placed at
the vertex A4 of a refracting or reflecting surface, with distances measured along
the axis (the Z axis) as positive to the right and negative to the left of this origin
(Figure 2.2). Transverse distances Y in the meridional plane are considered pos-
itive if above the axis and negative below it. For skew rays, distances X in the
third dimension perpendicular to the meridional plane are generally considered
positive when behind that plane, because then the X and Y dimensions occupy
their normal directions when viewed from the image space looking back into
the lens. However, in a centered system all X dimensions are symmetrical about
the meridional plane, so that any phenomenon having a +X dimension is
matched by a similar phenomenon having an identical —X dimension, as if
the whole of the X space were imaged by a plane mirror lying in the meridional
plane itself.

foo~.B

> 7

Figure 2.2 A typical meridional ray incident on a spherical surface.
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For the angles in the first edition, we regarded the slope U of a meridional
ray as positive if a clockwise rotation takes us from the axis to the ray, and
the angle of incidence I as positive if a counterclockwise rotation takes us from
the normal to the ray. These angle conventions are admittedly inconsistent, and
there was a strong move at that time to reverse the sign of U. Unfortunately this
change leads to the introduction of as many minus signs as it removes, and
worse still, it becomes impossible to draw an all-positive diagram for use when
deriving computing formulas. In Conrady’s system the paraxial ray height y is
equal to (lu), but in the proposed new system this becomes (—/u). The presence
of these negative signs is not an inconvenience, and we shall therefore not use
Conrady’s angle conventions. In the second edition, the angles are consistent
with the right-handed Cartesian coordinate system; that is, a ray having a
positive slope angle is considered positive.

Finally, all data relating to the portion of a ray lying in the space to the left
of a surface, usually the object space, are represented by unprimed symbols,
while data referring to the portion of a ray lying in the space to the right of a
surface are denoted by primed symbols. In a mirror system where the object
and image spaces overlap, data of the entering ray are unprimed while those
of the reflected ray are primed, even though both rays lie physically on the same
side of the mirror. Mirror systems are considered in Chapter 15.

2.2 GRAPHICAL RAY TRACING

For many purposes, such as in the design of condenser lenses, a graphical ray
trace is entirely adequate. The procedure is based on Snell’s construction; it has
been described by Dowell® and van Albada.* It is illustrated in Figure 2.3.
Having made a large-scale drawing of the lens, we add a series of concentric
circles at any convenient place on the paper about a point O, of radii

AN
N
N

N
AN

-
%bnormal =r

Parabola Y2=2rX

Figure 2.3 Graphical ray tracing.
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proportional to the refractive indices of all the materials in the system.’ A con-
venient scale for these circles is 10 cm radius for air and 16 cm radius for a glass
of index 1.6.

Having drawn the incident ray on the lens diagram, a line is drawn through
O parallel to the incident ray to cut at A4 the index circle corresponding to the
index of the medium containing the incident ray. A line is next drawn through
A parallel to the normal at the point of incidence, to cut the circle corresponding
to the index of the next medium at B; then OB will be the direction of the
refracted ray in the medium B.

This process is repeated for each refracting surface in the system. Mirrors
can be handled by drawing the normal line right across the diagram to intersect
the same index circle on the opposite side (point C). It is convenient to draw the
index circles in ink, and to indicate rays by little pencil marks labeled with the
same letters as the rays on the lens diagram. Some workers have made a practice
of erasing each mark after the next mark has been made, to avoid confusion.
System changes can be made conveniently by laying a sheet of tracing paper
over the diagram and marking the changes on the new paper; this permits the
previous system to be seen as well as the changes.

A ray can be traced graphically through an aspheric surface if the direction
of the normal is known. A parabolic surface is particularly simple, since the
subnormal of a parabola is equal to the vertex radius (Figure 2.3). Graphical
ray tracing is rapid and easy, and at any time the ray can be traced accurately
by trigonometry to confirm the graphical trace. It also enables the designer
to keep track of the lens diameters and thicknesses as he moves along. A
more complicated graphical ray trace ascribed to Thomas Young is given
in Chapter 11. Paraxial rays can also be traced graphically as discussed in
Chapter 3.

An alternative graphical ray tracing method is illustrated in Figure 2.4. In
this case two circles having radii proportional to the ratio of the refractive
indexes are drawn with the centers of the circles located at the intersection of

Figure 2.4 Alternative graphical ray tracing method.
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the incident ray “a” with the surface. The actual radius of each circle is deter-
mined by the selection of an arbitrary constant “k” to make the circles of con-
venient size for drawing. Actually, only arcs of the circles are needed to be
drawn as illustrated in the figure. The process is as follows.

First, a line is drawn from the center of curvature of the refractive surface to
the point of intersection of the incident ray with the surface. This line is the nor-
mal to the surface. Next extend the incident ray until it intersects the arc having
radius kn at point 4. Now draw a line starting at point A4 that is parallel to the
normal line and to the intersection of this line with the arc having radius of
kn' at point B. The refracted ray is now drawn from the surface intersection
point through B. In some cases this ray tracing method is found to be easier
and often more accurate, in part, because graphical spatial transfers are
minimized.

2.3 TRIGONOMETRICAL RAY TRACING
AT A SPHERICAL SURFACE

The path of a meridional ray through a single spherical refracting surface can
be traced with high accuracy by various well-established procedures that will
now be described. The ray emerging from one surface is then transferred to
the next surface, where the whole process is repeated until the ray emerges into
the final image space.

We define a meridional ray by its slope angle U, which is reckoned positive if
a counterclockwise rotation takes us from axis to ray, and by its perpendicular
distance Q from the surface vertex. The distance Q is reckoned positive if the
ray passes above the surface vertex.

A spherical refracting surface is defined by its radius of curvature r, which
is considered positive if the center of curvature lies to the right of the surface,
and by the refractive indices n and »n’ of the media lying to left and right of
the surface, respectively. The distance measured along the axis from one surface
to the next is given by d and is reckoned positive if the light is proceeding from
left to right.

The first step in the ray tracing process is to calculate the angle of incidence 7
between ray and normal, and this is reckoned positive if a counterclockwise
rotation takes us from the normal to the ray. All the data of the incident ray
are expressed by plain symbols, and the corresponding data for the refracted
ray are given in primed symbols. Figure 2.5a shows that for a spherical surface
with radius r = PC = AC, the line CN being drawn parallel to the ray shows
that the perpendicular distance Q from A is given by

Q=rsinl —rsin U,
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from which
sin/ = (Q/r) +sin U, 2-1)

or sin/ = Qc + sinU if the surface curvature ¢ is given instead of its radius
r (¢ = 1/r). We next apply the law of refraction to determine the angle of
refraction 7'

) n .
sinl’ = —sin /.
n/

The third ray-tracing equation is found from the obvious fact that the central
angle PCA in Figure 2.5a is the same for both the entering and emerging rays, or
PCA=1-U=1I-U,

from which
U=U+I-1
The final equation is found by adding primes to the first relationship, giving
Q' =r(sinl’ —sin U).

With these four equations we can determine the U’ and Q’ of the refracted ray,
given the U and Q of the incident ray and the data of the surface: r, n, and n’'.

These equations are perfectly general provided that the radius of curvature of
the surface is finite. They obviously cannot be applied to a plane surface because
then, in the fourth equation, we find that I’ = U’, and r is infinite, so we have
the product of oo and 0, which is indeterminate. Consequently, for a plane we
must develop a separate set of equations.

From Figure 2.5b we see that ¥ = Q/cos U = Q'/cos U’,
o)
cos U’
cos U

0.

In writing a computer program to trace meridional rays, our first act must be to
test the value of ¢ = 1/r, and if it is zero, we use the plane surface equations,
whereas if it is finite, we use the finite radius equations.

. n .
sinU' = —sinU and Q' =
n

i

(b)

Figure 2.5 Refraction of a meridional ray: (a) at a sphere, and (b) at a plane.



34 Meridional Ray Tracing

Figure 2.6 Transfer to the next surface: Q, = Q; + d sin Uj.

In both cases the transfer to the next surface is the same. The transfer equa-
tion can be derived from Figure 2.6, where we see that

0= Q| +dsinUj.

Example

As an example in the use of the ray-tracing equations, we will trace a ray
entering parallel to the axis at height 3.172 through the lens shown in
Figure 2.7. This is a typical f/1.6 projection lens used for many years for
projecting 16-mm and 8-mm movie films in a home projector. In Table 2.1,
we start by listing the lens data across the page, followed by the Q and Q’
values, and then the angles. The value of the incident ray height Y and the
sag Z are given as shown. The height Y and the sag Z are found by

Y =rsin(/ — U) and Z =r[l —cos({ — U)].

Throughout this book it is anticipated that calculations will be performed on a
small pocket electronic calculator where sines and arcsines are given to eight or
ten significant figures, electronic spreadsheet, or one of many software programs
that trace rays. Only some of the computed quantities need be recorded, there-
fore, and angles will be stated to five decimals of a degree, or 1/28 sec of arc. Obvi-
ously this precision is much higher than that to which optical parts can be
manufactured, but since we often calculate aberrations as the small difference

A
VY

Figure 2.7 Example f/1.6 projection lens.



Table 2.1
Example of Ray Tracing

S 0 >

8.572 —7.258
0.1166589 —0.1377790
2.4
1.0 1.52240
3.172 2.905252
3.224772 2.941579
21.71821 —32.23657
14.06750 —30.15782
0.0 —7.65070
3.172 3.020
0.608 —0.658
1.0 0.903927
0.0 —0.040031

0.4
1.61644

—5.57196

—0.030456

00 5.735 —3.807 —16.878
0 0.1743679 —0.2626740 —0.0592487
7.738 1.8 0.4
1.0 1.51625 1.61644
Marginal ray f/1.6
2.902741 1.665901 1.299741 1.254617
2.880377 1.663256 1.319817 1.200372
7.67363 —32.91271 —13.72930
5.05236 —30.64266 —22.55920
—9.02988 —11.65115 —9.38110
2917 1.648 1.381 1.280
0 0.242 —0.259 —0.049
Paraxial ray
0.891744 0.510797 0.397768 0.376798
—0.049231 —0.062794 —0.052426

—18.21100

—0.098505

Marginal L' = 3.840978, paraxial /' = 3.825163, and focal length = 10.151767.
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between two very nearly equal large numbers, this extra precision is quite useful.
Currently, it is rather uncommon to manually trace rays since computer software
is readily available to compute the propagation of rays through an optical system;
however, understanding how to trace rays through an optical system can be of
value when the other ray tracing tools are not available.

There are two special cases that should be recognized:

(a) If sin[ is greater than 1.0, this indicates that the radius is so short that
the ray misses the surface altogether.
(b) If sin/’ is greater than 1.0, this indicates total internal reflection.

2.3.1 Program for a Computer

When programming this procedure for a computer, it is of course possible to
use available sine and arc sine subroutines, but it is generally much quicker to
work through the square root, remembering

sin(a + b) = sinacosb + cosasinb
and
cos(a + b) = cosacosh —sinasinb
Given Q, sin U, and cos U, the equations to be programmed are
sin/ = Qc +sin U
cosl = (1-— sinzl)l/2
sin(I — U) = —sin UcosI +cos UsinI ¢ (A)
cos(I — U) =cosUcosI +sinUsin [
sin(=1") = —(n/n')sinI
cosI’ = [1 — sin®(=1")]"/?
sin U' = —sin(I — U) cos(I') + cos({ — U) sin(I") (B)
cos U' =cos(I — U)cos(—I") —sin(I — U) sin(—1")
G = Q/(cosU +cosI)
Q' = G(cos U’ +cosI')
Transfer:
0, =0 —dsinU

Note that the three equations in (4) and (B) are identical with different numbers
substituted. It is therefore convenient to write a “cosine cross-product subrou-
tine” to handle the three equations, and substitute the appropriate numbers
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each time it is used. Remember, of course, that the cosine of a negative angle is

positive. When using this routine, it is necessary to carry over both sin U’ and
cos U’ to become sin U and cos U at the next surface.

2.4 SOME USEFUL RELATIONS
2.4.1 The Spherometer Formula
The relation between the height Y and the sag Z of a spherical surface of

radius r is often required. It is evident from Figure 2.8 that > = Y2+
(r— Z)Z; hence

2 2
Z:L +7Y =r—Vr2-Y2
2r
This can be expanded by the binomial theorem to give
Y/(Y\ Y/Y\' v /r\
Z*E(?)W(?)*E(?)*” (2-2)

Because r can become infinite, it is generally better to express Z in terms of the
surface curvature ¢ rather than the radius r. Writing ¢ = 1/r gives

7 cY?
1+V1-2Yy?

This expression never becomes indeterminate. For a plane surface, ¢ = 0 and

of course Z = 0 also. Note that the first term in Eq. (2-2) is parabolic; that is,
2

Y .
Z = S5 In other words, a sphere and a parabola have essentially the same

geometric shape when Y /r < 1. The parabolic approximation for the sag of
a surface is useful to remember as it has many practical applications and can
serve as a quick “sanity check.” Figure 2.9 shows the percent sag error between
a spherical surface and a parabolic surface as a function of the ratio Y/r. For a
given Y value, the sag for the parabola is always less than that of the sphere.
Notice that the error is about 1% for Y/r of 0.2.

(2-3)

Figure 2.8 The spherometer formula.
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Y/r

Figure 2.9 Sag error between spherical and parabolic surfaces.

2.4.2 Some Useful Formulas

There are a number of useful relations that can be readily derived between

the quantities involved in ray tracing at a spherical surface. Some of them are

G =rtan} (I — U) = PA*/2Y
(chord)PA = 2rsini (I — U) = 2Gcosi (I — U)
Y = PAcosi(I — U) = PA*(cos U +cos1)/20Q
Z = PAsinl (1 — U) = PA*(sin] —sin U)/2Q
Z=Ytanl(I - U) = Y(sinI —sin U)/(cos U + cos )

The following relations also involve the refraction of a ray at a surface:

. . ! U — U
nsin U —n'sin U’ = Y{n cos chos }
P

Y{n’ cosl’ — ncosl}
r

nLsinU —n'L'sin U’ = r(nsinU —n'sinU') =n'Q" — nQ
n' cos U' —ncos U = cos(U + I)(n’ cosI' — ncos )

tan (I +1') =tan} (I — I')(n’ +n)/(n’ — n)
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Figure 2.10 Axial separation d such that the two adjacent surfaces intersect at a diameter 27Y.

2.4.3 The Intersection Height of Two Spheres

If we decide to make two lenses touch at the edge as an aid to mounting, we
must choose an axial separation such that the two adjacent surfaces intersect at
a diameter lying between the clear aperture and trim diameter of the lenses, as
illustrated in Figure 2.10. Or again, if we wish to reduce the thickness of a large
lens to its absolute minimum, we must be able to calculate the thickness so that
the lens surfaces intersect at the desired diameter, plus a small addition to pro-
vide sufficient edge thickness.

Given ry, rp, and the axial thickness d, we see by inspection of Figure 2.10
that

Zi=27,+d.
We first calculate
A= (2]”2 +d)/(2}"1 . d)

Then Z, = d/(A — 1) and Z, = AZ, = (Z, + d), and the intersection height Y is
given by

Y =(2nzZ —Z)'? = 2nz, - 73)'?

Example

If ry = 50, r, = 250, and d = 3, we find that 4 = 503/97 = 5.18556. Then
Z, =0.71675 and Z; = 3.71675, giving Y = 18.917.
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2.4.4 The Volume of a Lens

To calculate the volume of a lens, and hence its weight, we divide the lens
into three parts, the two outer spherical “caps” and a central cylinder. The vol-
ume of each of the caps is found by the standard formula

1
volume = 3n Z*(3r—2)

or, by eliminating r, we have
1 1
volume = S Y?Z + 8”23' (2-4)

For many purposes, only the first term of Eq. (2-4) need be used, showing that
the “average” thickness of the cap is approximately %Z. Hence, the lens has
approximately the volume of a cylinder of thickness %Zl +d— %Zz, remember-
ing that each Z must have the same sign as its corresponding r.

Example

As an example, consider the lens sketched in Figure 2.11 having r; = 20, r, = 10,
diam. = 16, and edge thickness = 6. The surface sags are found to be Z; = 1.6697
and Z, = 4.00. The three volumes to be added up are shown in Table 2.2. The
error in the approximate calculation is only 3%, even for such a very deeply
curved lens.

2.4.5 Solution for Last Radius to Give a Stated U’

In some cases we need to determine the last radius of a lens to yield a speci-
fied value of the emerging ray slope U’, given the Q and U of the incident ray at
the surface and the refractive indices n and n’.

—_
&)

Figure 2.11 The volume of a lens.
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Table 2.2

Computation of the Volume of a Lens

Accurate by Eq. (2.4) Approximate

Convex cap 54.2n 53.4n
Cylinder 384.0n 384.0n
Concave cap -138.7n —128.0n
Volume 299.5n 309.4n

Since I' =1+ (U’ - U),
sinf’ = sin/ cos(U' — U) +cosIsin(U' — U)
and dividing by sin I gives
sinl'/sin] = n/n’ = cos(U’' — U) + ctn I'sin(U’ — U).

Hence,
sin(U' — U)
tan/ = . 2-5¢
A=) — cos(U' — U) (2-5a)
Then knowing I we calculate r by
r=Q/(sinl —sin U). (2-5b)

2.5 CEMENTED DOUBLET OBJECTIVE

In many portions of this book, we will use the cemented doublet objective
shown in Figure 2.12 as the basis for discussing a variety of topics such as spher-
ical aberration, chromatic aberration, coma, and so on. The prescription for this
lens is as follows:

ry = 7.3895 c1 = 0.135327

dy =1.05 n = 1.517
rp=—5.1784 c; = —0.19311

d2 =0.40 ny; = 1.649
r3 = —16.2225 c3 = —0.06164

Figure 2.12 A cemented doublet objective.
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This lens has a focal length of 12 and will often be used with a marginal ray
entering parallel to the optical axis at a height of 2.0. The f~number for this lens
is f73 (in this simple case, focal length divided by the beam diameter of 4.0).

2.6 RAY TRACING AT A TILTED SURFACE

So far we have considered only a lens system in which the centers of curva-
ture all lie on a single axis. However, it is sometimes required to consider the
effect of a slight tilt of a single surface or element in order to compute a “tilt tol-
erance” for use in the factory. Special formulas are necessary to trace a meridi-
onal ray through such a tilted surface.

2.6.1 The Ray Tracing Equations

Suppose the center of curvature of a tilted surface lies at a distance 0 to one
side of the lens axis. The angular tilt o of the surface is then given by
sina = —d/r, the angle o being reckoned positive for a clockwise tilt. The vertex
remains on the original optical axis and not spatially displaced. The distance 0 is
positive if above the optical axis and negative if below.

In Figure 2.13a, P is the point of incidence of the ray at the tilted surface,
C is the center of curvature of the surface distance o below the axis, and angle
PCA is clearly equal to I — o — U. We draw a line through C parallel to the
ray, which intersects the perpendicular AL at H. Thus, Q is equal to LH +
HA. Angle PCH is equal to I, where LH is rsin/, and the length
HA =rsin(/HCA), where /HCA = /PCA — I = —(U + o). Consequently,

Q =rsinl +rsin(—U —a) or sin/ = Qc —sin(—U — a).

To complete the derivation, we turn to Figure 2.13b. Here angle PCA is
bisected to intersect the vertical line PN at O. By the congruence of the two
triangles POC and AOC, we see that PO = OA4 = G. Angle APO = /0JA4 =
/PAO = 0.

However, 0 = /ACJ + [JAC=1(I-o - U)+ o« =1+ a— U). Therefore,
angle AON =2 /APO = (I + o — U), where

Y =PN =G[l +cos({ + o — U)]
Z = AN = Gsin(I + o — U)

To relate Q and G, we draw the usual perpendicular from A4 onto the ray at L
and draw a line through O parallel to the ray intersecting Q at the point K. Then

Q=LK+ KA=GcosU+ Gceos(/KAO)
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(b)

Figure 2.13 A ray incident on a tilted surface.

However,
[KAO = /KAN — /NAO = (90° + U) — (90° —20) =20+ U = I + .
Therefore,
0 = Glcos U + cos(I + )]
or
G = Q/[cos U + cos(I + a)]

The ray tracing equations therefore become

sin/ = Qc —sin(—a — U)
sinf’ = (n/n')sinl

U=U+T-1

Short radius only: Q' = [sin I’ + sin(—a — U')]/c

43
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0'2 f u Axis of displaced element I

Figure 2.14 A decentered lens.

Universal: G = Q/[cos U + cos({ + «)]
Q' = Glcos U’ + cos(I' + )]

The transfer to the next surface is normal. In using these equations, it is
advisable to list the unusual angles as they arise. They are —o— U, I + o, I' + a,
and I + o — Ufor calculating Y and Z. It should be noted that a ray running along
the axis is refracted at a tilted surface, regardless of the surface power, and sets off
in an inclined direction, so that paraxial rays have no meaning. Calculation of
astigmatism through a tilted surface is covered in Chapter 11.

A lens element that has been displaced laterally by an amount A without
otherwise being tilted possesses two tilted surfaces, as indicated in Figure 2.14,
with respect to the optical axis of the system. The tilt of the first surface is «; =
arcsin(A/ry) and the tilt of the second surface is oy = arcsin(A/r;), the A being
reckoned negative if the lens is displaced below the axis, as shown in this dia-
gram. Care must be taken to compute the axial separations d along the main
axis of the system and not along the displaced axis of the decentered lens ele-
ment. For small displacements such as might occur by accident this is no prob-
lem, but if a lens has been deliberately displaced for some reason, this point
must be carefully watched.

2.6.2 Example of Ray Tracing through a Tilted Surface

Consider the cemented doublet lens, as described in Section 2.5, having the
following prescription, focal length of 12, and a marginal ray height of 2.0.

ry = 7.3895

dy =1.05 np = 1.517
r = —5.1784

d» =0.40 ny = 1.649
r3 = —16.2225
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Figure 2.15 A cemented doublet objective lens with final surface tilted.

Now imagine that the rear surface has been tilted clockwise by o = 3° as
shown in Figure 2.15. We shall have to trace the axial ray, the upper marginal
ray, and the lower marginal ray because all three of these rays are treated
differently by a tilted surface.

To understand what has happened as a result of tilting the rear surface by 3°,
we calculate the height at which each emerging ray crosses the paraxial focal
plane:

upper marginal ray: 0.429515
axial ray: 0.334850
lower marginal ray: 0.461098

In Figure 2.16 we have plotted on a large scale this situation as compared
with the case before the surface was tilted. It is clear that the entire image has
been raised, and there is a large amount of coma introduced by the tilting. Even
small tilts and decenters can ruin the image quality of an otherwise good lens
system. A lens designer should pay particular attention to tilt and decenter sen-
sitivities during the design process. Most modern lens design computer pro-
grams provide some means to aid the designer in achieving sensitivity objectives.

2.7 RAY TRACING AT AN ASPHERIC SURFACE

An aspheric surface can be defined in several ways, the simplest being to
express the sag of the surface from a plane as follows:

Z=aY*+a Y* +agY’+ ...

Only even powers of Y appear because of the axial symmetry. The first term is
all that is required for a parabolic surface. To express a sphere in this way we
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Paraxial
image
plane

Axial ray

___________ Original or
_______ - untilted image

Figure 2.16 Result of tilting a lens surface.

use the power series given in Eq. (2-2), but a great many terms will be required if
the sphere is at all deep, that is, has significant sag.

For many purposes it is better to express the asphere as a departure from a
sphere:

cY?

= Y+ aYO+-- (2-6)
14+ (1 -cry)'?

Here ¢ represents the curvature of the osculating sphere and ay, ag, ... are the
aspheric coefficients.
If the surface is known to be a conic section, we may express it by
cY?

Z= 2-7
141 = Y21 —e2)]/? &7

where ¢ is the vertex curvature of the conic and e its eccentricity. The term
1 — €2 in this expression is called @ conic constant, often designated as p, since
it defines the shape of the surface.® In optics, the term conic constant, K, is
generally used to imply that x = —e?. Their values are shown in Table 2.3.
To trace a ray through an aspheric surface, we must first determine the Y and
Z coordinates of the point of incidence. The asphere is defined by a relation
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Table 2.3

Relationship of Conic Surface Type to Eccentricity and Conic Constants

Conic Conic
Surface Eccentricity Constant p Constant x
Hyperbola >1 <0 <-1
Parabola 1 0 -1
Prolate spheroid (small end of ellipse) 0 <e® <1 <1 -1 <k <0
Sphere 0 1 0
Oblate spheroid (side of ellipse) <0 >1 0 <

between Y and Z, while the incident ray is defined by its Q and U. Now it is
clear from Figure 2.17 that

Q=7YcosU—[Z]sinU

where [Z] is to be replaced by the expression for the aspheric surface, giving an
equation for Y having the same order as the asphere itself.

To solve this equation, we first guess a possible value of Y, say ¥ = Q. We
then evaluate the residual R as follows:

R=YcosU—[Z]sinU - Q

Obviously the correct value of Y is that which makes R = 0. Now Newton’s rule
says that

(a better Y) = (the original Y) — (R/R’)
where R’ is the derivative of R with respect to Y, namely,

R ' =cosU —sinU(dZ/dY)

Figure 2.17 Ray trace through an aspheric surface.
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A very few iterations of this formula will give us the value of Y that will
make R less than any defined limit, such as 0.00000001. Knowing Y we imme-
diately find Z from the equation of the asphere. We then proceed as follows:

The slope of the normal is dZ/dY. Hence,

tan(/ — U) =dZ/dY
sinl' = (n/n")sinl
U=U+TI-1
Q' =YcosU — ZsinU'

The transfer to the next surface is accomplished as shown before.

Example
Suppose our asphere is given by
[Z] =0.1Y? +0.01Y* —0.001 Y
Then
dZ/dY =0.2Y +0.04Y* —0.006 V>

with n = 1.0 and n’ = 1.523. If our entering ray has U = -10° and Q = 3.0,
then successive iterations of Newton’s rule give the values in Table 2.4.
Hence

tan(l — U) = (dZ/dY) = 0.343244, and I — U = 18.94448°
But U = -10°. Therefore
I =2894448°, I = 5.85932°
U' = —13.08516°
Q' =YcosU' — ZsinU = 3.018913°

Table 2.4

Iterative Solution of Surface Intercept Coordinates

Y z dz/dy R R R/R
1 3.0 0.981 0.222 0.124772 1.023358 0.121924
2 2.878076 0.946119 0.344369 —0.001357 1.044607 —0.001299

3 2.879375 0.946566 0.343244 0
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Chapter 3

Paraxial Rays and First-Order
Optics

Suppose we trace a number of meridional rays through a lens from a given
object point, the incidence heights varying from the marginal ray height Y,
down to a ray lying very close to the lens axis. We then plot a graph (Figure 3.1)
connecting the incidence height Y with the image distance L'. This graph will
have two branches, the half below the axis being identical with that above the
axis but inverted. The precision of the various point locations is good at the
margin but drops badly when the ray is very close to the lens axis, and actually
at the axis there is no precision at all. Thus by ordinary ray tracing we can plot
all of this graph with the exception of the portion lying near the axis, and we
cannot in any way find the exact point at which the graph actually crosses the
axis. This failure is, of course, historically due to the limited precision of our
mathematical tables and our computing procedures.

However, the exact point at which the graph crosses the axis can be found as a
limit. A ray lying everywhere very close to the optical axis is called a “paraxial”
ray, and we can regard the paraxial image distance /” as the limit toward which
the true L' tends as the aperture Y is made progressively smaller, or

!'=1im L
y—0

Figure 3.1 Plot of Y against L.
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3.1 TRACING A PARAXIAL RAY

Since all paraxial heights and angles are infinitesimal, we can determine their
relative magnitudes by use of a new set of ray-tracing equations formed
by writing sines equal to the angles in radians, and cosines equal to 1.0. Since
infinitesimals have finite relative magnitudes, we may use any finite numbers
to represent paraxial quantities, but we must remember to assume that each
number is to be multiplied by a very small factor such as 10°°, so that a para-
xial angle written 2.156878 does not mean 2.156878 rad but 2.156878 x 107>°
rad. It is quite unnecessary to write the 10" every time, but its existence
must be assumed if paraxial quantities are to have any meaning. Of course,
the longitudinal paraxial data such as / and /’ are not infinitesimals.

It should be understood that imagery formed using paraxial ray tracing is
stigmatic (free from aberrations) since the paraxial heights and angles are
infinitesimal. Consequently, the imagery formed by a physically realizable lens,
when well corrected, will be in the same location along the optical axis as the
paraxial image.

3.1.1 The Standard Paraxial Ray Trace

Once this is understood, we can derive a set of equations for tracing paraxial
rays by modifying the equations in the early part of Section 2.3. Writing sines as
angles and cosines as unity, and remembering that in the paraxial region both
Q and Q’ degenerate to the paraxial ray height y, we get

i=yc+u, y=—-lu=-1"u
i’ = (n/n')i (paraxial law of refraction) (3-1)

W =u+i'—i=i—yc=1i—yc

with the transfer y, = y; + duj.

It should be observed that the convention is used where paraxial quantities
are written with lowercase letters to distinguish them from true heights and
angles, which are written in uppercase letters, such as are used in computing
the path of a real ray.

As an example, using the lens data given in Section 2.5 for a cemented
doublet, Table 3.1 contains the data for a paraxial ray traced through it with
the starting data y = 2.0 and u = 0. As before, the paraxial image distance is
found by dividing the last y by the emerging u’, giving I’ = 11.285849. This is
slightly different from the marginal L', which was found to be 11.293900. The
difference is caused by spherical aberration.
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Table 3.1
Tracing a Paraxial Ray through a Cemented Doublet

c 0.1353271 —-0.1931098 —0.0616427

d 1.05 0.4

n 1.517 1.649

y 2 1.9031479 1.8809730

i 0.2706542 -0.4597566 -0.1713856

i’ 0.1784141 —0.4229538 —0.2826148

u 0 -0.0922401 -0.0554373 -0.1666665

3.1.2 The (y — nu) Method

Because of the linear nature of paraxial relationships, we can readily submit the
paraxial ray-tracing equations to algebraic manipulation to eliminate some or all
of the paraxial angles, which are actually only auxiliary quantities. For example,
to eliminate the angles of incidence i and i’, we multiply the first part of
Eq. (3-1) by n and the corresponding expression for the refracted ray by »’, giving

ni =nu+nyc, n'i' =n'u +n'yc

Now the law of refraction for paraxial rays is merely ni = n’i’; hence equating
these two expressions gives

n'u' =nmu+yn—n)c (3-2)
This formula can be used to trace paraxial rays, in conjunction with the transfer

y2 = y1+ (d/n)(njuy) (3-3)

It will be noticed that, written in this way, Egs. (3-2) and (3-3) are of the same
form. That is, in each equation the new value is found by taking the former
value and adding to it the product of the other variable multiplied by a con-
stant. This leads to a remarkably convenient and simple ray-tracing procedure
known as the (y — nu) method. In Table 3.2 we have traced the paraxial ray of
Table 3.1 by this new set of equations.

The operating procedure is as follows. To calculate each number, be it a y or
a nu, we take the previous y or nu and add to it the product of the next number
to the right multiplied by the constant located immediately above it. Thus,
starting with y; and (nu);, we first find (nu); = (nu), + y1(n —n’), c1. Then for
> we take y; and add to it the product of (nu); and d/n, and so on, in a zigzag
manner right through to the last surface. The closing equation is, of course,

I'= (last y)/[last (nu)']
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Table 3.2
The (y — nu) Method for Tracing Paraxial Rays

c 0.1353271 -0.1931098 -0.0616427

d 1.05 0.4

n 1.517 1.649

—b=m-n")ce —0.0699641 0.0254905 —0.0400061

d/n 0.6921556 0.2425713

y 2 1.9031479 1.8809730 /[’ = 11.285856
nu 0 —0.1399282 —0.0914160 —0.1666664

! 00 20.632549 33.929774

14 21.682549 34.329774 11.285856

The numbers in the (y — nu) ray-tracing table obviously resemble perfectly
the corresponding numbers in Table 3.1, where the paraxial ray was traced by
conventional means. The amount of work involved in the (y — nu) method is
about the same as by the direct method, but there are many advantages in
tracing rays this way, as we shall see.

Since the image distance !’ is the same for all paraxial rays starting out from
the same object point, we may select any value we please for either the starting
y or the starting nu, but not both, since they are related by y = —/u. Many
designers always use y; = 1.0 and calculate the appropriate value of (nu),. Thus
if an object is located at 50 units to the left of the first surface, we could take
y1 = 1.0 and (nu); = 0.02, remembering that / is negative if the object lies to
the left of the surface. A positive / implies a virtual object lying to the right of
the first lens surface when the entering rays come in from the left.

When tracing a paraxial ray backwards from right to left, we must subtract
each product from the previous value instead of adding it. Thus for right-to-left
work we have

nu=n'u'"—y(n—n)e, yy =y, —(d/n)(nu),

3.1.3 Inverse Procedure

One advantage of the (y — nu) method over the straightforward procedure
using 7 and i’ is that we can, if we wish, invert the process and work upward
from the ray data to the lens data. Thus if we know from some other consi-
derations the succession of y and nu values, we can calculate the lens data by
inverting Egs. (3-2) and (3-3) giving

¢_n’—n_(nu)'—nu d_y»—y

r y n nu
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This is often an extremely useful procedure, which cannot be performed when
using the straightforward ray trace.

3.1.4 Angle Solve and Height Solve Methods

When making changes in a lens, it is sometimes desired to maintain either the
height of incidence of a paraxial ray at a particular surface by a change in the
preceding thickness, or to maintain the paraxial ray slope after refraction by a
change in the curvature of the surface. Both of these can be achieved by an
inversion of Egs. (3-2) and (3-3). Thus for a height solve we determine the prior
surface separation by

d=(y2—y1)/u

and for an angle solve we use

¢ = [(nu) —nu]/y(n—n')

The last formula is particularly useful if we wish to maintain the focal length of
a lens by a suitable choice of the last radius. It should be noted that this formula
is the paraxial equivalent of Eq. (2.5), obtained by writing i for tan I, (u —u') for
sin(U — U’), 1.0 for cos(U — U’), u and i for sin U and sin I, respectively, and
y for Q.

Although it is possible to maintain the focal length of a lens having many
elements by changing any of the curvatures preceding the final curvature, it will
not generally be found prudent to do so. As will be explained later, using
an internal curvature for focal length control during the design process will
generally upset the optimization because of extrinsic aberration contributions
being transferred and other factors.

3.1.5 The (I, I') Method

In the derivation of Eq. (3-1) we eliminated the angles of incidence as
being unnecessary auxiliaries. Actually we can go further and also eliminate
the ray slope angles u and u’. To do this we divide Eq. (3-1) by y and
note that / = y/u, while I’ = y/u'. These substitutions give the well-known
expression

AN G4
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In computations, this is used in the form

n/

/=—"

¢ — (n/1)
where
¢=(n"—n)/r=(n"—n)e
The transfer now is merely
L=1—-d

Remember that / and /' refer to the portions of a ray lying to the left and right
of a surface, respectively. Of course, in the spaces between surfaces the ray
almost never reaches the optical axis, so that neither the / nor the /' is actually
realized.

3.1.6 Paraxial Ray with All Angles

There are, of course, other ways to trace a paraxial ray. For instance, we can
trace a paraxial ray with all angles by using these equations in order. Given the
[ and y of the incident ray and that ¢ = 1/r and ¢ is the distance between sur-
faces, we have

u=—y/l
i=yc+u
. n.,

l :;l
u'=i—yc
/ Y

l = 7;

with the transfer
b :l/l — 1.

These equations can be collected together to give
n
u' = (yc—&—u);—yc.
The transfer is now

2=+ tlull-
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3.1.7 A Paraxial Ray at an Aspheric Surface

In tracing a paraxial ray, the aspheric terms have no effect and we need to
consider only the vertex curvature of the surface. This is given by the coefficient
of the second-order term in the power series expansion. In the paraxial region,
the surface equation for both spherical and parabolic surfaces is the same;
however, for typical finite dimensions they are not the same.

3.1.8 Graphical Tracing of Paraxial Rays
at Finite Heights and Angles

As mentioned in the introduction to this section, Egs. (3-1), (3-2), and (3-3)
were derived on the assumption that the y and u are too small to form stigmatic
imagery. Nevertheless, we will now show that it is possible to trace paraxial rays
at finite heights and angles, which is both a remarkable and a very useful reality.

Figure 3.2 depicts a single refracting surface that images object O at a dis-
tance d from the surface to the image O’ located at d’ along the optical axis.
The refracting surface in the paraxial region is represented as a plane. Consider
now a ray A4 from O having an angle u# and height at the refracting surface of y.
The refracted ray intercepts the optical axis at O’ at angle «’. Since u and «’ in
Egs. (3-1), (3-2), and (3-3) were assumed to be very small, it follows from the
geometry shown in Figure 3.2 that they can be replaced by tanu = y/d and
tanu’ = —y/d’, respectively. It is noted that the expansion series for both
tanu and sinu have the same first-order term, namely u.

Recalling that n'u’ = nu+ yc(n —n’), we can now substitute the preceding
values for u and »’, which yields that

Figure 3.2 Tracing a paraxial ray through a refracting surface.
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Dividing both sides by y gives

n n n—-n

dad T
which is recognized as the imaging equation for a paraxial surface. The signi-
ficance of this equation is that it is independent of u,u’, and y, which means
that any ray, such as B, from the object O will be imaged at O’; that is, paraxial
imaging is stigmatic or free of aberrations. For objects located off of the optical
axis, the same stigmatic imaging property can be readily shown.

In Section 2.2, graphical ray tracing of real rays was presented. Tracing
paraxial rays graphically is accomplished by replacing circles representing
refractive index with tangent planes located proportionally to the refractive
indexes. Also, spherical surfaces are replaced by tangent planes. Figure 3.3a
shows the geometry for constructing the ray path. The incident ray intersects
the refracting surface at D, as illustrated in Figure 3.3b. Next, draw a line par-
allel to the optical axis and a pair of planes orthogonal to this line at distances
proportional to the n and n’. Now project the incident ray from D to intersect
the n-plane at 4 and then draw a line from A that is parallel to the surface
normal CD. Finally, the refracted ray is the line drawn from D through B on
the n’-plane.

We also see that y; = ntanu and y, = n’ tanu’. Since line AB in Figure 3.3a
is parallel to line DC in Figure 3.3b, by similar triangles,

yi—y2 _n—n

Refracted ray

(@) (b)

Figure 3.3 Graphical paraxial ray tracing.
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Now substituting y; and y» into this equation, we obtain
n'tanu’ = ntanu + yc(n —n').

The importance of this equation is that it shows that the standard paraxial ray
trace equations
! d [ !
y :y+;(nu) and n'u’ = nu+ yc(n —n')
can be used to trace paraxial rays incident at any finite height and finite angle
with respect to the optical axis as long as the angles « and ' are interpreted to
mean tanu and tanu’. This understanding is important when using optical
design programs. For example, if we desire to control the focal length of a
lens by solving for the final surface curvature (see Section 3.1.4) to achieve
a specific final marginal ray slope angle, then we use tan u;,, in the paraxial
curvature solve.
The linear nature of paraxial optics is convenient for rapidly making layouts
of optical systems. When using paraxial equations, one should remember that
the angles in the equations should be interpreted as tanu.

3.1.9 Matrix Approach to Paraxial Rays

It has been pointed out by Gauss and others that the similarity between
the paraxial equations for nu and y suggests a simple matrix formulation for
these relations.** The rules of matrix algebra are simple. Suppose we have
two simultaneous equations in x and y such as

A=ax+ by
B=cx+dy

Then in matrix notation we can write

4-1206)

Furthermore, the product of two matrices is another matrix, of which the
elements are

abllef| |ae+cg af +ch
cd||gh| |be+dg bf+dh

To apply matrix notation to the case of a paraxial ray through a lens, we
note that, for the first lens surface,
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(nu)'l = (nu); — y1¢,
Yi=>n

In matrix notation these formulas become

][5 1]

This square matrix is known as the refraction matrix for the first surface.
The transfer to the next surface is performed by
(nu)y = (ma); and  y2 = y1 + (mu)y(1/n);,

which in matrix notation becomes

)= Lm0

This square matrix is known as the transfer matrix from surface 1 to
surface 2. But the last matrix here is the left side of the above refraction matrix.
Substituting this into the last relation gives

)= Lm0 0] L)

We can verify this by multiplying the two square matrices together. This gives

] L [0
B (t/n)y 1=by(t/n); | |

which correctly represents the two equations
(nu)y = (nu); — y1;
v2 =1+ [(nu)y = yiy](t/m)

We can extend this argument to an optical system containing any number
k of surfaces, giving

[Szun]_:é—ﬂ Hr/m;l ;) Ll) —;zsk,l}“_
—

refraction at  transfer from refraction at
surface k surface (k—1) 10 k surface k—1
L 011 =] [(m),
/
L(¢/n); 1110 1 1 »
transfer from refraction at

surface 1 to 2 surface 1
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The product of all the square matrices, taken in order, is another square matrix
which is a pure property of the lens. It can be written as

B —4
5
with the property that the determinant of this matrix, BC — AD, equals 1.0. The
four quantities 4, B, C, and D are called the Gauss constants of the lens. Here A4
is the lens power, B the ratio of the front focal distance to the front focal
length, and C the ratio of the back focal distance to the rear focal length. We
find D by (BC —1)/A. Knowing the four elements of this matrix, we can
immediately find the values of (nu), and y, for any ray defined by its entering
values of (nu), and y.

As an example we will take the doublet in Section 2.5. We find that for this
lens the Gauss constants are

A= 0.0833332=1/f

B= 09800774 = —FF/f

C = 0.9404865 = BF/J'

D = —0.9390067 = (BC—1)/4

Using this matrix, if (nu), =0.02 and y; = 1.0, for example, we find that
(nu); = —0.063732 and y; = 0.959267, both agreeing perfectly with the results
of a direct paraxial ray trace.

In practice it is generally easiest to find the lens power and the positions of
the focal points by tracing right-to-left and left-to-right paraxial rays through
the lens and then to determine the Gauss constants by their meanings given
above. Then for any ray defined by its (nu) and y, we have for the emerging ray

(), = Bonu), — Ay,
Vi = _D(”“)l +Cn

A Single Thick Lens

Since ¢; = (n— 1)c¢; and ¢, = (1 — n)c,, we see that the Gauss constants of a
single thick lens are

A=+ ¢y — (t/n)d ¢,
B=1—(t/n)¢,
C=1-(t/n)¢,

D = —(t/n).
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Example

Suppose r; = 5.0 and r, = —10.0 for a biconvex lens, with + = 1.5 and
n = 1.52. Then (n — 1)/n = 0.343401; hence 1/f’ = 0.151512. This gives

! = 6.600137
FF = —6.260163
BF = 5.920189

hence,

I, = 0.339974
I, = —0.679948

and the Gauss constants are

A =0.151512
B =0.948490
C =0.896980
D = —0.984898

with BC — AD =1 (as it should).

A Succession of Separated Thin Lenses

If we apply the matrix notation to a succession of thin lenses separated by
air, the refraction matrix becomes
1 —¢
0 1

for each thin lens, and the transfer matrix becomes

o]

for each space between lenses. Thus, for a system of two thin lenses, 4 and B,
separated by a distance d, we have

el = Lol Sl

Since the product of these three matrices must be equal to {_5 _Ié} for two
thin lenses we have



3.2 Magnification and the Lagrange Theorem 63

A=¢ + Py —do9,

B=1-dd,
C:1—d¢1
D=—d.

3.2 MAGNIFICATION AND THE LAGRANGE
THEOREM

3.2.1 Transverse Magnification

Consider first a single refracting surface as in Figure 3.4. Let B, B’ be a pair
of axial conjugate points, their distances from the surface being / and /', respec-
tively. We now place a small object at B and draw a paraxial ray from the top of
the object to the vertex of the surface. The ray will be refracted there, the slope
angles 0 and 0’ being the angles of incidence and refraction. Hence n0 = n'¢’,
and therefore nh/l = n'I//I'. Multiplying both sides by y gives

hnu = h'n'u’ (3-5)

This important relationship is called the theorem of Lagrange, or sometimes
the Smith-Helmholtz theorem. Because the /', ', and u’ on the right-hand side
of one surface are, respectively, equal to the same quantities on the left-hand side
of the next surface, it is clear that the product Anu is invariant for all the spaces
between surfaces, including the object space and the image space. This product
is called the Lagrange invariant or, more often nowadays, the optical invariant.

Since this theorem applies to the original object and also the final image, it is
clear that the image magnification is given by

m="n/h=nu/n"v

For a lens in air, the magnification is merely u;/uj (assuming that there are k
surfaces in the system). The fact that the ratio of the nu values at the object

Figure 3.4 The Lagrange relationship.
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Figure 3.5 The Lagrange equation relationship for a distant object.

and at the image determines the magnification is one of the reasons it is usually
preferred to trace a paraxial ray by the (y — nu) method.

In the case where the object is located at infinity, Eq. (3-5) is indeterminate
(u=0 and h=o0). Figure 3.5 shows a very distant object where
W'n'v' = (h/l) n(lu). As [ — oo, the ratio (h/l) tends toward tanu, as (lu)
becomes —y, where y is the height on the first principal plane (see Section
3.3). Since y/u’ = —f" (posterior or rear focal length), then

h' = —%%tanup = %f’tanu,,
where u, is the slope of an entering parallel beam of light. Therefore the image
height for an infinitely distant object is equal to the focal length times the angu-
lar subtense of the object.

DESIGNER NOTE

Recall that the anterior (front) focal length is f = —(n/n’)f’, so using the preceding
equation, we see that /' = —f tanu,. This can be interpreted by considering a ray
passing through the anterior focal point with an angle u,. It is evident that the ray
will exit the lens parallel to the optical axis at a height 4’. Since for small angles the
tangent equals the angle in radians, we have two relationships to express focal length,
namely,
)Y ,_ K
7= ” and f 0

Both of these equations refer to paraxial rays. Although the following points will be
covered in Chapter 4 and others, it should be observed that if the focal length varies
with the lens aperture, the lens suffers coma. Should the focal length vary with
obliquity, then distortion is present.
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3.2.2 Longitudinal Magnification

If an object has a small longitudinal dimension ¢/ along the lens axis, or if it
is moved along the axis through a small distance d/, then the corresponding lon-
gitudinal image dimension is /', and the longitudinal magnification 77 is given
by m = dl'/6l. By differentiating Eq. (3-4) we find

—n'SI/1% = = 51/
and multiplying both sides by y* gives
n' o' = n 8l u?

This is the longitudinal equivalent of the Lagrange equation, and the product
n 8l u? is also an invariant. The longitudinal magnification is found to be

i = ol' /5l = mul® Jn'u* = (' /n)m? (3-6)

so that for a lens in air, 7 = m?. Hence longitudinal magnification is always
positive, meaning that if the object is moved a short distance from left to right
the image will move from left to right also. On the other hand, for a mirror, the
signs of n and n’ are equal and opposite, so that when the object moves from left
to right the image must move from right to left.

In situations where the ordinary magnification m is large, such as in a micro-
scope objective, the longitudinal magnification will be very large, which explains
the small depth of field noticed in a microscope. On the other hand, in a camera
the ordinary magnification is small, so the longitudinal magnification is very
small, accounting for the great depth of field noticed in most cameras.

Even when the object and image longitudinal dimensions are large, a useful
expression for the longitudinal magnification can be derived. Using the Newtonian
imaging equation, the magnifications of objects 4 and B, as shown in Figure 3.6,
are related to their image distances z and z’ from the rear focal point of the
lens by using this equation

Zy=—f'myand 2 = —f'my + 81

A B 1T F A B
—————

Zp

‘
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2

Figure 3.6 Longitudinal magnification.
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When an object moves from A4 to B, the change in image distance 4'B’ is then
given by
A'B' = (2 —zp) = f'(m — mp).

The corresponding change in object distance 4B is likewise given by

1 1
(1)
my  my
Therefore, the large-scale longitudinal magnification A’B’/AB is given by
! J—

f (n;A n;B) e —
filam-—

mg My
When the longitudinal displacements 4B and A’B’ are so small that magnifica-

tion m hardly changes, then the above equation for longitudinal magnification
reduces to 717 = m?. The following example illustrates one application of 2 and 7.

m =

Example

Consider that a spherical object of radius r, is to be imaged as shown in Fig-
ure 3.7. The equation of the object is 12 = 2 + z2, where z is measured
along the optical axis and is zero at the object’s center of curvature. Letting
the surface sag as measured from the vertex plane of the object be denoted as
{,, the equation of the object becomes 12 = (r, — {,)* +y2 since z = r,—(,.
In the region near the optical axis, Ci < r?, which implies that r, ~ y2/2(,.
The image of the object is expressed in the transverse or lateral direction by y;
= my, and in the longitudinal or axial direction by {; = m(, = {,m*(n:/n,).

In a like manner, the image of the spherical object is expressed as r; &~ (y;)*/
2C,. By substitution, the sag of the image is expressed by

2
o= oy, ; Ny
' 2n;é, ’ n;

A N LA
N N

Figure 3.7 Imaging of a spherical object.
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Hence, in the paraxial region about the optical axis, the radius of the image of
a spherical object is independent of the magnification and depends only on the
ratio of the refractive indices of the object and image spaces.

3.3 THE GAUSSIAN OPTICS OF A LENS SYSTEM

In 1841, Professor Carl Friedrich Gauss (1777-1855) published his famous
treatise on optics (Dioptrische Untersuchungen) in which he demonstrated that,
so far as paraxial rays are concerned, a lens of any degree of complexity can be
replaced by its cardinal points, namely, two principal points and two focal points,
where the distances from the principal points to their respective focal points are
the focal lengths of the lens. Gauss realized that imagery of a rotationally
symmetric lens system could be expressed by a series expansion where the first
order provided the ideal or stigmatic image behavior and the third and higher
orders were the aberrations. He left the computation of the aberrations to others.

To understand the nature of these cardinal-point terms, we imagine a family
of parallel rays entering the lens from the left in a direction parallel to the axis
(Figure 3.8). A marginal ray such as A will, after passing through the lens, cross
the axis in the image space at J, and so on down to the paraxial ray C, which
crosses the axis finally at F5.

If the entering and emerging portions of all of these rays are extended until
they intersect, we can construct an “equivalent refracting locus” as a surface
of revolution about the lens axis, to contain all the equivalent refracting points
for the entire parallel beam. The paraxial portion of this locus is a plane perpen-
dicular to the axis and known as the principal plane, and the axial point itself is
called the principal point, P,. The paraxial image point F5, which is conjugate to
an axial object point located at infinity, is called the focal point, and the longi-
tudinal distance from P, to F, is the posterior focal length of the lens, marked f”.

A beam of parallel light entering parallel to the axis from the right will simi-
larly yield another equivalent refracting locus with its own principal point P,

[ Fy
[P, TN o~

j Equivalent
refracting locus

Figure 3.8 The equivalent refracting locus.
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and its own focal point Fj, the separation from P; to F; being known as the
anterior focal length f. The distance from the rear lens vertex to the F, point
is the back focal distance/length or more commonly the back focus of the lens,
and of course the distance from the front lens vertex to the F; point is the front
focus of the lens. For historical reasons the focal length of a compound lens has
often been called the equivalent focal length, or EFL, but the term equivalent is
redundant and will not be used here.*

3.3.1 The Relation between the Principal Planes

Proceeding further, we see in Figure 3.9 that a paraxial ray A traveling from
left to right is effectively bent at the second principal plane Q and emerges
through F,, while a similar paraxial ray B traveling from right to left along
the same straight line will be effectively bent at R and cross the axis at Fj.
Reversing the direction of the arrows along ray BRF) yields two paraxial rays
entering from the left toward R, which become two paraxial rays leaving from
the point Q to the right; thus Q is obviously an image of R, and the two princi-
pal planes are therefore conjugates. Because R and Q are at the same height
above the axis, the magnification is +1, and for this reason the principal planes
are sometimes referred to as unit planes.

When any arbitrary paraxial ray enters a lens from the left it is continued until
it strikes the P; plane, and then it jumps across the hiatus between the principal
planes, leaving the lens from a point on the second principal plane at the same
height at which it encountered the first principal plane (see Figure 3.10).

Figure 3.10 A general paraxial ray traversing a lens.
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3.3.2 The Relation between the Two Focal Lengths

Suppose a small object of height /% is located at the front focal plane F; of a
lens (Figure 3.11). We draw a paraxial ray parallel to the axis from the top of
this object into the lens; it will be effectively bent at Q and emerge through F,
at a slope «’. A second ray from R directed toward the first principal point
P, will emerge from P, because P; and P, are images of each other, and it will
emerge at the slope o’ because R is in the focal plane and therefore all rays start-
ing from R must emerge parallel to each other on the right-hand side of the lens.
From the geometry of the figure, o = — h/f and o’ = h/f’; hence,

o fo=—f/f' (3-7)

We now move the object /& along the axis to the first principal plane P;. Its
image will have the same height and will be located at P,. We can now apply the
Lagrange theorem to this object and image, knowing that a paraxial ray is entering
Py at slope w and leaving P, at slope ’. Therefore, by the Lagrange equation,

hno = hn'e or ' /o = n/n’ (3-8)
Equating Egs. (3-7) and (3-8) tells us that
SIf ==

The two focal lengths of any lens, therefore, are in proportion to the outside
refractive indices of the object and image spaces. For a lens in air, n = n’ = 1,
and the two focal lengths are equal but of opposite sign. This negative sign sim-
ply means that if F| is to the right of P, then F, must lie to the left of P,. It does
not mean that the lens is a positive lens when used one way round and a negative
lens when used the other way round. The sign of the lens is the same as the sign
of its posterior focal length f’. For a lens used in an underwater housing,
n = 1.33 and n’ = 1.0; hence, the anterior focal length is 1.33 times as long as
the posterior focal length.

-— [ — -— [ —

R -}--12

h - o Fa

F, pl p,I & T~

Figure 3.11 Ratio of the two focal lengths.
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3.3.3 Lens Power

Lens power is defined as

n' n

T
Thus for a lens in air the power is the reciprocal of the posterior focal length.
Focal length and power can be expressed in any units, of course, but if focal
length is given in meters, then power is in diopters. Note also that the power
of a lens is the same on both sides no matter what the outside refractive indices
may be.
Applying Eq. (3-2) to all the surfaces in the system and summing, we get

(), _ <~y < - )
power = P =—*~ = = — (3-9)
ey
The quantity under the summation is the contribution of each surface to the
lens power. The expression in parentheses, namely, (n’' — n)/r, is the power of
a surface which is also called surface power.

3.3.4 Calculation of Focal Length

1. By an Axial Ray

If a paraxial ray enters a lens parallel to the axis from the left at an incidence
height y; and emerges to the right at a slope u’ (see Figure 3.12a), then the pos-
terior focal length is /' = y,/u’. The anterior focal length f'is found similarly by
tracing a parallel paraxial ray right to left, and of course we find that f = —f" if
the lens is in air. The distance from the rear lens vertex to the second principal
plane is given by

=1~
and similarly
bp=1—f

2. By an Oblique Ray

The Lagrange equation can be modified for use with a very distant object in
the following way. In Figure 3.12b, let 4 represent a very distant object and
A’ its image. As the object distance / becomes infinite, the image A" approaches
the rear focal point. Then by the Lagrange equation, the following equation
applies:
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Wn'v' = hnu = (h/D)n(lu) = —ny; tan ¢
or

W= —(ﬁ,)f' tan ¢ = f tan ¢ (3-10)
n

where fis the anterior focal length of the lens, no matter what the outside refrac-
tive indices may be. This equation forms the basis of the current ANSI defini-
tion of focal length. Actually this relation is obvious from a consideration of
Figure 3.12c where a paraxial ray is shown entering a lens through the anterior
focal point at a slope angle ¢.

Figure 3.12 Focal-length relationships.

3.3.5 Conjugate Distance Relationships

It is easy to show by similar triangles that if the distances of object and image
from the corresponding focal points of a lens are x and x’, then

m=~f/x=—xf
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hence,

xx! = ff' (3-11)

This relationship is called Newton’s equation or the Newtonian imaging equation.
Similarly, if the distances of object and image from their respective principal
points are p and p’, then

n'/p' —n/p=n'/f' = —n/f =lens power and m = np’ /n'p (3-12)

For a lens in air this becomes simply
———=— and m==— (3-13)

It is often convenient to combine the last two equations for the usual case of
a positive lens forming a real image of a real object. Furthermore, if we then
ignore all signs and regard all dimensions as positive, with a positive magnifica-
tion, we get

!

1
p= = (1) =) (14

These relations are often expressed verbally as “Object distance is [1 + (1/m)]
focal lengths, and image distance is (1 + m) focal lengths.”
Combining these we get an expression for the object-to-image distance D as

1
D:f’(2+m+—) (3-15)
m
Inverting this we can calculate the magnification when we are given f’ and D:

m=Lk=1+0Lk2—%)'"" where k=D/f (3-16)

It is important to understand that p and x refer to that section of the ray that lies
to the left of the lens, no matter whether that ray actually crosses the axis to the left
of the lens, and no matter whether that ray defines the “object” or the “image” in
any particular situation. Similarly, p’ and x’ refer to the section of a ray lying to
the right of the lens. The p’ and x’ are positive if they lie to the right of their origins,
namely, the second principal point and the second focal point, respectively.

3.3.6 Nodal Points

Professor Johann Benedict Listing (1808-1882) was one of eight of Gauss’
doctoral students and received his degree in 1834. Listing was appointed professor
of physics at Gottingen in 1839 and began to study the optics of the human eye.
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He published Beitrige zur physiologischen Optik in 1845, which became a classic.
In this work, Listing introduced the concept of nodal points in a lens system
because he needed a means to describe a simple model of the eye. He determined
that conjugate points having unit angular magnification exist and named them
Knotenpunkte or knot points. In the 1880s, they became known as nodal points.
Listing also derived the imaging equations using nodal points (N; and N,) and
proved that the distances P P> and NN, are equal and that nodal points are also
in the set of cardinal points.

Since the nodal points of a lens are a pair of conjugate points on the lens axis
having unit angular magnification, any paraxial ray directed toward the first
nodal point emerges from the second nodal point at the same slope at which
it entered. In Figure 3.13, ray A enters the first nodal point N, at a slope angle w
and exits N, at the same angle. Consider now an object of height / located at N;.
Application of the Lagrange invariant leads to

h'n'o = hno,

hence the magnification for these conjugate points is given by

=
=

In a manner equivalent to the principal planes, the above can be interpreted that
nodal planes have a magnification of - 3 illustrated in Figure 3.13. It is easy to

show (Figure 3.14) that the equation at the top of the next page applies:

- f’—»‘
/ X/ﬂ °
L L PP h] f’l’_ oY B
F; ol _4+1-7 Ny N, F,
A (n) (m)
Low High

Figure 3.13 Nodal points of a lens.
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Figure 3.14 The principal and nodal points.
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F1P1:F2N2:f and F1N1:P2Fz :f,.

Listing consequently showed that there are actually six cardinal points that are a
property of the lens and the mediums in which the lens is immersed. If the lens is
in air (or in general, if the mediums are the same, for example water), the two
focal lengths are equal, and the nodal points coincide respectively with the
two principal points.

As mentioned in Section 3.3.1, the principal planes are conjugate planes with
unit lateral magnification. When n # n’, a ray incident at the first principal

point with angle w will exit the second principal point with angle zla). Although
n

imaging can be done solely using % and either the principal point and planes, or

the nodal point and planes, it is customary and easier to use a mixed set: prin-
cipal planes and nodal points. In this manner, the lateral and angular magnifi-
cations are both unity. This is particularly useful when performing graphical
ray tracing. It should be understood that even though the cardinal points are
valid only in the paraxial region, they very often are useful for practical lenses
and moderate angles and heights.

An important application of the nodal points is as an experimental method to
determine the focal length of a lens. Figure 3.15 shows a lens mounted on a rotat-
able stage with its axis orthogonal to the optical axis of the lens being evaluated.
This stage allows the rotational axis to be situated anywhere along the lens’ optical
axis. A microscope or a TV camera is used to view the image of a distant point
source (parallel rays of light). The light from the light source is aligned with the
optical axis as is the microscope. The lens is then rotated (see black dot within
the small circle on the axis in Figure 3.15) and the position of the image is observed.
When in the position that is shown in the figure, the image will move to the left
and right.

Once the lens is shifted such that the rotation axis is coincident with the sec-
ond nodal point N,, the image will be stationary. The distance from the rotation
axis to the image is therefore the focal length (N,P,). The reason that this works
is that when the lens is rotated about N, by an angle 0, the nodal ray leaving N,
follows along the original optical axis (and that of the microscope). The

Parallel light

Figure 3.15 Nodal slide to determine focal length.
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corresponding entering nodal ray will lay away from the original optical axis by
an amount NN sin 0. The first nodal point can be located in a like manner by
reversing the lens in the rotating stage. Should the measurement be made when
n # n', rotation about N, will yield the anterior focal length and rotation about
N will yield the posterior focal length.

In addition to the principal planes and nodal points, there are also anti-
principal planes and anti-nodal points (also called negative-principal planes
and negative-nodal points). Anti-principal planes are conjugate planes having
negative unit lateral magnification, while anti-nodal points are conjugate points
having negative unit angular magnification. When a lens is immersed in the
same medium, the anti-nodal points are located a distance +f from F; and F>.
An example is a thin lens being used at negative unity magnification (m = —1)
with the object located at —2f and the image at 2f.

3.3.7 Optical Center of Lens

Consider the nodal ray passing through the thick lens shown in Figure 3.16.
As previously explained, a ray aimed at the first nodal point will pass through
the lens undeviated (although translated) and appear to emerge from the lens
from the second nodal point. The optical center of the lens is where the nodal
ray intersects the optical axis.®” The optical center OC location can be deter-
mined by realizing that the ratio of the height at each surface is equal to the
ratio of the respective radii, that is,

n_n
Y2 n

Figure 3.16 Optical center.
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Letting the distance from the first surface vertex to the OC be t; and the dis-
tance from the second surface vertex to the OC be t,, then the lens thickness ¢ is
given by t = t; — t,. It is also evident that

n_n

y2_12.

Solving for # in terms of radii, the optical center is located at

ot
f - 1 _n 1 _ar
ry (&)

A remarkable property of the optical center is its wavelength independence (»
does not appear in the preceding equation), which means that the OC spatial
position is fixed. In contrast, the spatial positions of the six cardinal points
are a function of wavelength because of their dependence on n.

The location of the optical center can occur before, between, or after the
nodal points. For example, for a symmetrical bi-convex lens (r; = —r;), the
optical center lies exactly at the center of the lens and between the nodal points.
For a lens having r; =20,r, =5,t =38, and N = 1.5, both nodal points and
the optical center are located behind the lens in the order N, N,, and OC.
In the first example, a nodal ray transversing the lens physically crosses the
optical axis at the optical center while in the second example it does not.
In the second case, back-projecting the transversing nodal ray locates the inter-
section with the optical axis. Also, when the radii have equal value and sign,
the optical center is located at infinity.

The optical center point (plane) is conjugate with the nodal points (planes);
however, while the nodal points are related by unit angular magnification, the
nodal-point to optical-center magnification (mp¢) is not necessarily unity. In
general, moc is the ratio of the nodal ray slope angles at the first nodal point
and the optical center. For a single thick lens, the magnification mgc can be
readily shown to be given by

ro—r
N(ri —r) —t(N—-1)

moc =

It is noted that as t — 0, moc — % and as t — ry — rp, moc — 1 for all N.

All rotationally symmetric lenses have an optical center just as they possess
the six cardinal points. Since the optical center is conjugate with Ny and N,
the optical center can also justifiably be considered a cardinal point. Should the
aperture stop be located at the optical center, then the entrance pupil will be
located at the first nodal point and the exit pupil will be located at the second
nodal point with a unity pupil magnification. This statement is true whether the
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lens is of symmetrical or unsymmetrical design. When n # n’, the exit pupil mag-
nification will be — rather than unity. The meaning of the aperture stop and
n

entrance/exit pupils will be discussed in detail in Chapter 8.

3.3.8 The Scheimpflug Condition

When an optical system as shown in Figure 3.17 images a tilted object, the
image will also be tilted. By employing the concept of lateral and longitudinal
magnifications, it can be easily shown that the intersection height of the object
plane with the first principal plane P; of the lens must be the same as the inter-
section height of the image plane with the second principal plane P, of the lens.
This principle was first described by Captain Theodor Scheimpflug of the
Austrian army in the early twentieth century and is known as the Scheimpflug
condition. This can be proved for the paraxial region in the following manner.

Referring to Figure 3.17, axial point object A at the center of the tilted planar
object is imaged on the optical axis at 4’ and point B at the bottom end of the
tilted planar object is imaged at B’. A plane passing through 4 and B will inter-
sect the first principal plane at C. In a like manner, a plane passing through A4’
and B’ will intersect the second principal plane at D. The intersection heights
P1C and P,D are given by

!
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Figure 3.17 Imaging of a tilted object illustrating the Scheimpflug condition.
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where y and z are the coordinates of B with respect to 4 and s is the distance
from P; to A. Similarly, the image space coordinates are denoted with primes.
Now, y' = my and s’ = ms, and z’ = m?z using the longitudinal magnification
relationship; hence P;C = P, D proving the Scheimpflug condition.

Consider the following examples of the utility of understanding the Scheimp-
flug condition. Tilting a camera when taking a photograph of a building causes
a defect known as keystone distortion, which is observed to have parallel lines in
the scene appearing as converging lines in the film negative or digital image.
This defect can be corrected when making a print by tilting the easel and
enlarger lens appropriately so that the film plane, easel plane, and principal
planes of the enlarger lens intersect in accordance with the Scheimpflug condi-
tion. The sharpness of the imagery will then also be as good as possible.

A projector whose film or LCD/DLP is not parallel with the screen will show
the keystone defect. The simple way to correct this problem is to tilt the screen
to be parallel with the projector’s projection plane. The intersections are at
infinity in accordance with the Scheimpflug condition. Some projectors provide
a means to tilt the projection plane to compensate for keystone introduced by
the physical relationship of the screen and projector. It is noted that some mod-
ern digital projectors compensate by distorting the shape of the imagery being
projected, but this does not allow sharp focusing over the screen and also
degrades the displayed resolution.

3.4 FIRST-ORDER LAYOUT OF AN OPTICAL SYSTEM

Most optical systems, as opposed to a specific objective lens, are assembled
first from a series of “thin” lens elements at finite separations, and it is therefore
of interest to collect here a few useful relations governing the properties of a sin-
gle thick lens and a set of thin lenses.

3.4.1 A Single Thick Lens

By setting up the familiar (y — nu) table for the two surfaces of a single thick
lens, it is easy to show that

1 I 1 ¢tN-1
poer == (0= (3= )

where N is the refractive index of the glass. The back focus is given by

1 __ gl _LN_I
sz(l o )
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and the rear principal plane is located at

ro_ g /7_ILN71
)

Similar relations exist for the front focal length and front focal distance. The
hiatus or separation between the two principal planes is

Zpp =141, — by = t(N = 1)/N

For common crown glass with a refractive index of approximately 1.5, the value
of Z,, is about #/3.

3.4.2 A Single Thin Lens

If a lens is so thin that, within the precision in which we are interested, we
can ignore the thickness for any calculations, then we can regard it as a thin lens.
For accurate work, of course, no lens is thin. Nevertheless, the concept of a thin
lens is so convenient in the preliminary layout of optical systems that we often
use thin-lens formulas in the early stages of a design and insert thickness for
the final studies.

The power of a thin lens is the sum of the powers of its component surfaces,
or component elements if it is a multielement thin system. This is because an
entering ray remains at the same height y throughout the thin system. Hence
for a single lens,

1
f/
and for a thin system,

power = Z 1/f

3.4.3 A Monocentric Lens

A lens in which all the surfaces are concentric about a single point is called
monocentric. The nodal points of such a lens are, of course, at the common cen-
ter because any ray directed toward this center is undeviated. Hence the princi-
pal and nodal points, as well as the optical center, also coincide at the common
center. The image of a distant object is also a sphere centered about the same
common center, of radius equal to the focal length. Monocentric systems can
be entirely refracting or may include reflecting surfaces.
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3.4.4 Image Shift Caused by a Parallel Plate

It is easy to show (Section 6.4) that if a parallel plate of transparent material
is inserted between a lens and its image, the image will be displaced further from

the lens by an amount
1
=t1-=
(%)

Thus, if N = 1.5, s will be one-third the thickness of the plate. The image mag-
nification is unity, and this is a well-known method for displacing an image lon-
gitudinally without altering its size.

A prism lying between a lens and its image also displaces the image by this
distance measured along the ray path in the prism; however, the actual physical
image displacement will depend on the folding of the ray path inside the prism,
and it is possible to devise such a prism that it may be inserted or removed with-
out any physical shift of the final image.

3.4.5 Lens Bending

One of the most powerful tools available to the lens designer is bending; that
is, changing the shape of an element without changing its power. If the lens is
thin, we know that its focal length is given by

PG

We may write ¢; = 1/r; and ¢; = 1/r,. Then ¢ = ¢; — ¢; and we have

1/f'=(N—=1)(c1 —c2) = (N = 1)c

So long as we retain the value of ¢, we can obviously select any value of ¢; and
solve for ¢,. If our thin system contains several thin elements, we can state ¢;
and then find the other radii in the following manner:

With ¢; as a given, then ¢; = ¢; — ¢4, ¢3 = ¢3 — ¢, and so on

Alternatively, we can take the data of a given lens and change each surface cur-
vature by the same amount Ac. Then

new ¢; = old ¢ + Ac

new ¢; = old ¢; + Ac
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C=02
Cy= -041 0 0.1 0.2 0.3
C,= 03 -0.2 -0.1 0 0.1
X= =2 -1 0 1 2

Figure 3.18 Bending a single thin lens.

In Figure 3.18 is shown a series of bendings of a lens in which ¢ = 0.2, and we
start with a bending having ¢; = —0.1. We then add Ac = 0.1 each time, giving
the set of lens shapes shown here. Note that a positive bending bends the top
and bottom of the lens to the right, whereas a negative bending turns them to
the left.

A convenient dimensionless shape parameter X has been used to express the
shape of a single lens. It is defined by

_ htrn a+ao

X
Fp—=ry (1 =0
Then if we are given /" and X, we can solve for the surface curvatures of a thin
lens by

a=%3cX+1) and o =Lc¢X-1)
or

x+1 d X -1
“Tv-ny Y T
Note that for an equiconvex or equiconcave lens, X = 0. A plano lens has an X
value of +1.0 or —1.0, while X values greater than 1.0 indicate a meniscus ele-
ment. X is always positive when the lens is bent to the right and negative to
the left.

If the lens to be bent is thick, and especially if it is compound, we can bend it
by applying the same Ac to all the surfaces except the last, and then solve the
last radius to give the desired lens power by holding the final «’. This is an angle
solve problem, discussed in Section 3.1.4. However, if the lens is a single thick
element, we can still use the X notation for the lens shape if we wish. For a thick
lens of focal length f/, we find that

LT+ (SYNX + DX = 1))

V]I(N—l) X1
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or

N[N+ (N/f)(X + D) (X - 1))
a= (N—D(X —1)

We can then find r, or ¢, by the relation

=r 7X+1 or ¢ ==¢ 7X_1
rp=r Y —1 2 = (] X +1

Example

If /=8, ¢t=0.8, N=1.523, and X = 1.2, then the thin-lens formulas give
¢; = 0.26291 and ¢, = 0.02390. If the thickness is taken into account, the
thick-lens formulas give ¢; = 0.26103 and ¢, = 0.02373. The effect of the
finite thickness is remarkably small, even for a meniscus lens such as this.

3.4.6 A Series of Separated Thin Elements

In the case of a series of separated thin elements we cannot merely add the
lens powers to get the power of the system because the y at each element varies
with the separations. Instead we must use the result of Eq. (3-9), namely,

power = > (y/y1)¢

where ¢ is the power of each element.

The familiar (y — nu) ray-tracing procedure can be conveniently applied to a
series of separated thin lenses of power ¢ and separation d, noting that the
refractive indices appearing in the (y — nu) method are now all unity. The equa-
tions to be used are

W =u—yp and y,=y +d\u (3-17)

As an example, we will determine the power and image distance of the fol-
lowing system:

b, =0.125 ¢,=—020, ¢, =0.14286

d\=20,d,=3.0

The (y — u) table for this system is shown in Table 3.3.
Hence the focal length is 1/0.09286 = 10.769, and the back focus is 0.825/
0.09286 = 8.885. Of course, as always, the (y, u) process is reversible, and if
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Table 3.3
The (y — u) Table for Example System

—$ ~0.125 +0.2 0.14286

d 2.0 3.0

y 1 0.75 0.825

u 0 -0.125 40.025 -0.09286

we know what values of y and u the ray should have, we can readily work
upwards in the table and find what lens system will give the desired ray path.

As another illustration, suppose we have two lenses at 2-in. intervals between a
fixed object and image 6 in. apart, and we wish to obtain a magnification of -3 times.
‘What must be the powers of the two lenses? We proceed to fill out what we know, in
a regular (y, u) table, as shown in Table 3.4. Since the magnification is to be -3, the
entering part of the ray must have minus three times the slope of the emerging part,
and the two lenses must join up the two ray sections shown in Figure 3.19.

Obviously, the intermediate ray slope u, = (2 — 6)/(-2) = 2.0. Then ¢, =
(up + 3)/6 = 5/6 = 0.8333, and ¢, = (1 —up)/2 = -0.5. The required focal lengths
are therefore 1.2 and -2 in., respectively.

A glance at Figure 3.19 will reveal that any lens system that joins the two sec-
tions of the ray will solve the problem; indeed, it could be done with a single lens
located at the intersection of AB and CD, shown dashed. For this lens f, = 1.5,
f, = 4.5, and f’ = 1.125 inches.

Table 3.4
The (y — u) Table for Two-Lens System at Finite Magnification

¢ ¢H ¢b
—d -2
=20 6 2
u -3 (up) 1 I"'=20

Figure 3.19 A two-lens system at finite magnification.
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3.4.7 Insertion of Thicknesses

Having laid out a system of thin lenses to perform some job, we next have to
insert suitable thicknesses. A scale drawing of the lenses (assumed equiconvex or
equiconcave) will indicate suitable thicknesses, but we must then scale the lenses
to their original focal lengths. We next calculate the positions of the principal
points of each element, and adjust the air spaces so that the principal-point
separations are equal to the original thin-lens separations. If this operation is
correctly performed, tracing a paraxial ray from infinity will yield exactly the
same focal length and magnification as in the original thin system.

3.4.8 Two-Lens Systems

Figure 3.20 illustrates the general imaging problem where an image is formed
of an object by two lenses at a specified magnification and object-to-image
distance. Most imaging problems can be solved by using two equivalent lens
elements. An equivalent lens can comprise one lens or multiple lenses and may
be represented by the principal planes and power of a single thick lens. All dis-
tances are measured from the principal points of each equivalent lens element.
For simplicity, the lenses shown in Figure 3.20 are thin lenses. If the magnification
m, object-image distance s, and lens powers ¢, and ¢, are known, then the
equations for sy, 55, and s3 are given by

_ dp(s—s2)—1+m
md)a + d)b
5 4[smigs + ) + (m—1)’]
—|1+14|1—
2 S2m¢a¢b

Sy =

S3=85—851—5

’ % 7
s, // s, 55 h l
1

4
¢a ¢b

Figure 3.20 General imaging problem.
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The equation for s, indicates that zero, one, or two solutions may exist.
If the magnification and the distances are known, then the lens powers can be
determined by

s+ (s +s2)(m — 1)

$a = ms1 82
and
s+si(m— 1)
e
s2(8 — 851 — $2)

It can be shown that only certain pairs of lens powers can satisfy the magnifica-
tion and separation requirements. Commonly, only the magnification and
object-image distance are specified with the selection of the lens powers and
locations to be determined. By using the preceding equations, a plot of regions
of all possible lens power pairs can be generated. Such a plot is shown as the
shaded region in Figure 3.21 where s = 1 and m = —0.2.

Examination of this plot can assist in the selection of lenses that may likely
produce better performance by, for example, selecting the minimum power
lenses. The potential solution space may be limited by placing various physical
constraints on the lens system. For example, the allowable lens diameters can
dictate the maximum powers that are reasonable. Lines of maximum power
can then be plotted to show the solution space.®

Py
20}

-20 : 20

420

Figure 3.21 Potential power pairs shown in shaded regions.
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When s, becomes very large compared to the effective focal length efl of the
lens combination, the optical power of the combination of these lenses is
expressed by

d)ab = d)a + d)b - Szd)ad)b

The effective focal length is ¢, or

Jafo

Jab = s,

and the back focal length is given by

(i)

The separation between lenses is expressed by

1y
Job

Figure 3.22 illustrates the two-lens configuration when thick lenses are used.
The principal points for the lens combination are denoted by P; and P», P, and

s2=fa+Jb—

Focal

|
|
P P
| ' ' |
| |
| | ,
| S, i bf1
(Pa | ¢b
|
e fporel — &
First principal Second principal
plane of system plane of system

Figure 3.22 Combination of two thick lenses illustrating the principal points of each lens and
the system, the f,, or efl, and the bfl. Distances are measured from the principal points with the
exception of the bfl. (Source: Adapted from Vol. 2, Chapter 1, Figure 18, Handbook of Optics,
Second Edition. Used with permission.)
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P, for lens a, and P, and P, for lens b. With the exception of the back focal
length, all distances are measured from the principal points of each lens element
or the combined lens system as shown in the figure. For example, s, is the dis-
tance from P, to P, . The bfl is measured from the final surface vertex of the
lens system to the focal point.

3.5 THIN-LENS LAYOUT OF ZOOM SYSTEMS

A zoom lens is one in which the focal length can be varied continuously by
moving one or more of the lens components along the axis, the image position
being maintained in a fixed plane by some means, either optical or mechanical.
If the focal length is varied but the image is not maintained in a fixed plane, the
system is said to be varifocal. The latter type is convenient for projection lenses
and the lenses on a reflex camera, in which the image focus is observed by the
operator before the exposure is made. A true zoom lens must be used in a movie
camera or in any situation in which it is necessary to be sure that the focus is
maintained during a zoom.

3.5.1 Mechanically Compensated Zoom Lenses

A zoom camera lens is usually composed of a Donders-type afocal system
mounted in front of an ordinary camera lens (Figure 3.23). To vary the focal
length, the middle negative component is moved along the axis, the focal posi-
tion being maintained by simultaneously moving either the front or the rear
component by an in-and-out cam.

T

! I
\ /
\ /

Camera
~N lens
Afocal attachment

Figure 3.23 A mechanically compensated zoom system.
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Example

Suppose we wish to design a symmetrical Donders telescope in which the
magnifying power can be varied over a range of 3:1. The magnification of
the negative component must therefore vary from /3 to 1/4/3, or from
1.732 to 0.577. The focal length of the negative component is found by

shift of lens

focal 1 h=
ocal lengt change in magnification

Suppose f, = f. = 4 in., and f;, = —1.0 in. A series of lens locations are
shown in Table 3.5. The last column of the table, image shift, indicates the
required movement of either the front or the rear component of the afocal
Donders telescope to maintain the image at infinity, so that the telescope
can then be mounted in front of a camera set to receive parallel light. Focus-
ing on a near object must be performed by moving the front component axi-
ally; otherwise, the zoom law will not hold for a close object. Of course, if
this is to be a projection lens, there is no need to maintain the afocal condi-
tion or to provide any focusing adjustment for near objects.

The focal length of the camera lens attached to the rear of the Donders tele-
scope can have any value, and it is generally best to use as large an afocal
attachment as possible to reduce the aberrations. The early zoom lenses of this
type were equipped with simple achromatic doublets for the zoom components.

Table 3.5

Image and Component Movement of the Afocal Donders Telescope

Data of middle component Thin-lens separations
Magnification Object dist. Image dist. Front Rear Image shift
1.732 1.577 -2.732 2.423 1.268 -0.309
1.4 1.714 -2.400 2.286 1.600 -0.114
1.0 2.000 -2.000 2.000 2.000 0
0.7 2.429 -1.700 1.571 2.300 -0.129
0.577 2.732 -1.577 1.268 2.423 -0.309

3.5.2 A Three-Lens Zoom

In this mechanically compensated system once more we have three components,
plus—minus—plus, with no fixed lens in the rear (Figure 3.24). The first lens is fixed,
and the second and third lenses move in opposite directions. The focal length of the
system is equal to the focal length of lens @ multiplied by the magnifications of lenses
b and c. It is therefore highly desirable that » and ¢ should both magnify or both
demagnify together; otherwise the action of ¢ will tend to undo the action of b.
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Figure 3.24

Layout of a three-lens zoom with mechanical compensation.

89

When the negative-power lens b is at unit magnification, the image 7, will lie as far

to the right (towards lens b) as possible. When b moves to the right its magnification
will increase, and while this is occurring lens ¢ should be moved to the left so that its
magnification will also increase. The computation procedure is simple. Lens a being
fixed, its image is also fixed at O. For each position of lens b, its image can be located,
and so the object-to-image distance D, for lens ¢ can be found. Equation (3-16) is
then employed to calculate m,. and hence the conjugate distances of the third lens.

Example

Let f, = 3.0 with a very distant object, f, = —1.0, and f, = 2.7. The distance
from lens « to the image plane is to be 10.0. Four typical positions of the
lenses are indicated in Table 3.6. The focal length range is thus just over
3:1, although the range of the negative-lens magnification is only 2.3:1. The
motions of the two lenses are indicated in Figure 3.25 on the next page.
The focal length of lens a can be anything, and the original object distance
can be anything, but the image produced by lens @ must lie at 7 units in front
of the final image plane for these data to be applicable. This type of zoom
system is used in a zoom microscope, the objective lens alone producing a
virtual object at the final image position.

Table 3.6

Positions of Lenses for Example Zoom Lens

Separation Separation Focal
m,  1/my, 1y ab Iy D, m, l. be !, length
1.0 1.00  2.00 1.00 2.0 11.00 1.3117 47584 27584 6.2416 3.935
1.5 0.67 1.67 .33 25 1117 1.4426 4.5716 2.0716  6.5951 6.492
2.0 0.50 1.50 1.50  -3.0 11.50 1.6550 4.3314 1.3314 7.1686 | 9.930
2.3 0435 1435 1.565 -33 11.735| 1.7864 4.2114 09114 7.5234 | 12.326
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Lens a
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L Lens ¢
2 8t ko]
ro) | o
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g 6 ~ Lens b =
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o[ Focus of Lens a

0o 1 2 3 4 5 6 7 8 9 10
Distance from Lens a

Figure 3.25 Lens motions in a three-lens zoom system.

3.5.3 A Three-Lens Optically Compensated
Zoom System

This system was introduced in 1949 by Cuvillier” under the name Pan-Cinor.
Two moving lenses are coupled together with a fixed lens between them. Gener-
ally the coupled lenses are both positive and the fixed lens is negative, but other
arrangements are possible. If the powers and separations of the lenses are prop-
erly chosen, then the image will remain virtually fixed while the outer lenses are
moved, without any need for a cam, hence the name optical compensation.
To focus on a close object, it is necessary to move the inside negative lens or
to vary the separation of the two moving lenses.

The thin-lens predesign of such a system is straightforward, although the
algebra involved is complicated. In Figure 3.26 we see the system in its initial

_ /v(b .fb .fc > ;
v ‘ \/ s |par
. , X
/.

a

Figure 3.26 Layout of a three-lens optically compensated zoom system.
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Table 3.7
Thin-Lens Predesign of a Three-Lens Optically Compensated Zoom System

¢ Ufa f; 1f.
—d ~fat+ 1o =X Lo+ S
y 1 X = folfa JP XS+ XS
S
u 0 1. Xifol» —fZ + XS

Jalofe

configuration. The separation of adjacent focal points of lenses @ and b is X, as
shown, and the separation of adjacent foci of lenses b and ¢ is S. Then we can
construct a table of the three lenses, and trace a paraxial ray by the (y — u)
method, as shown in Table 3.7.

The initial focal length is therefore

~fafo fe] (fyy + XS) (3-18)

and the initial back focus is £, + £, X/( f,> + XS). Note that the initial back focus
is independent of f,.

Suppose we now move the zoom section (lens a plus lens ¢) to the right by a
distance D. Then X and S will both be increased by D, but to hold the image in
a fixed position we require the back focus to be reduced by D. Thus

D = (initial back focus) — (new back focus)

_ f2x 2(X + D) (3-19)
_{f" iz +XS] {f“Jrf,f + (X +D)(S+D)

from which we get

I+ (7 +SX)(S+ D)X +D)+ 17 (f2+SX) - fX(X+D)=0  (3-20)
Now, for this system to be an effective zoom lens, we require the image plane to
lie in a fixed position for a shift D and also for a shift 2D. Substituting 2D for D
in Eq. (3-20) gives
i+ (fi + SX)(S +2D)(X +2D) + 17 (2 + SX) = f2X (X +2D) =0 (3-21)
Subtracting Eq. (3-20) from Eq. (3-21) gives

(/2 + SX)(X + S +3D)

2 _
Jo= X
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and substituting this into Eq. (3-19) gives

X(X + D)(X +2D)

2 -
fy = S+2X +3D (3-22)

Thus for any set of values for X, S, and D we can solve for the powers of the
two lenses b and c. However, we can simplify these expressions by introducing
the “zoom range” R, which is the ratio of the initial to the final focal length.
Using Eq. (3-18) we see that

_Ji + (X +2D)(S +2D)

R
f+Xs

which gives us

(X +2D)(S +2D) — RXS

2 _
Iy = 21 (3-23)

Combining Egs. (3-22) and (3-23) we eliminate f;, and solve for S as a func-
tion of R, X, and D:

S%[X(1 — R) +2D] + S[2X*(1 — R) + 3DX(3 — R) + 10D?]
— (X +2D)[X(R-1)(X + D) —2D(2X +3D)| =0

For simplicity we can now normalize the system by writing D = 1, and then
solving for S,

:ZXZ(R— 1) +3X(R-3)— 10+ [X(R+1)+2]

S 2X(1—R) + 4

It will be found that the negative sign of the root gives useful systems, for which

X*R-1)+X(R-5)-6

S = T XR_T) (3-24)
Then
X+1 4R 2+ X+ XR
2="" (XR—X-2), 2= : 3-25
Ty R_l( ) Sy R—1 2+x_ xR (3-25)

If R is greater than 1, the moving lenses will be positive, and if R is less
than 1, the moving lenses will be negative. In order that the rear air space will
be positive, where d) = (f; + f. + S), we must select reasonable starting values
for X. Approximate suitable values are

R: 5 4 3 2 05 04 03 02
X: 13 1.7 24 45 -70 -55 —-45 -38
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Example
Suppose we wish to lay out an optically compensated zoom having R = 3,
with X = 2.2. Then Egs. (3-24) and (3-25) give
§=03, fZ=384, f2=1125

Since R is greater than 1, the two moving lenses will be positive and the
fixed lens will be negative. Taking square roots gives

Sr=—1.95959 and f.= 3.35410

Assuming that the initial separation between lenses « and b is to be 3.0, we
find that the focal length of the front lens must be 7.15959, and the rear air
space d), will be initially 1.69451. Using the (y — u) method, we calculate the
data shown in Table 3.8.

Table 3.8

Performance of Example Zoom Lens

Shift of zoom components Back focus Image shift Focal length
(Initial position) -0.5 8.81839 —0.5357
0 8.85410 0 10.457
0.5 8.41660 0.0625
D= 1.0 7.85410 0 5.882
1.5 7.31839 —0.0357
2.0 6.85410 0 3.486
2.5 6.46440 0.1103

It is clear that the image plane passes through the three designated posi-
tions corresponding to D = 0, 1, and 2, but it departs from that plane for
all other values of D. These departures, commonly called loops, will be very
noticeable if the system is made in a large size, but they can be rendered neg-
ligible if the zoom system is made fairly large and is used in front of a small
fixed lens of considerable power, as on an 8-mm movie camera. It will be
noticed, too, that the law connecting image distance with zoom movement
is a cubic (Figure 3.27).

3.5.4 A Four-Lens Optically Compensated Zoom System

We can drastically reduce the sizes of the loops between the in-focus image
positions by the use of a four-lens arrangement, as shown in Figure 3.28. Here
we have a fixed front lens, followed by a pair of moving lenses coupled together
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Figure 3.27 Image motion with a three-lens optically compensated zoom system.

(h) (a) (b) (©

Figure 3.28 Layout of a four-lens optically compensated zoom system.

with a fixed lens between them. The algebraic solution for the powers and
spaces of the four lenses is similar to that already discussed, but it is vastly more
complicated.

We now designate the separations between adjacent focal points in the three
airspaces by H, X, and S, the X and S serving the same functions as before. The
initial lens separations are

W=l tfa—H dy=fo+fi+X dy=fi+fc+S
The initial focal length and the initial back focus are

Intafvfe fi+HX
f2S+ HXS —f?H’ f2S + HXS — f2H

ﬁ+ﬁ(
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respectively, the denominators being the same in each case. We now shift the
moving elements by a distance D, so that S is increased by D, but H, X, and
the back focus will be reduced by D. We then substitute 2D and 3D for D,
and after three subtractions we obtain the relationship

FA(f2+ HX) + (f}H - f2S — HSX)(S— X — H+6D) =0 (3-26)

We can considerably simplify the problem by assuming that the moving
lenses a and ¢ have equal power. Then Eq. (3-26) becomes

i —=fI-HX+S(S—X—H+6D)|+H(f} —SX)(S—X —H+6D)=0
We solve this for f;* in terms of £,?, giving

s _ o tHX [ 1i
1= S
H S—X—H+6D

Substituting f;,* in the original equation relating the back focus before and after
the zoom shift, and noting that now S = (X — 3D), we get
f¥ 4 f2(2H - 3D)(H + X — 3D)
— H(H — D)(H —2D)(H —3D) =0

2 2
2 a+HX fa
and =" |H-3D

(3-27)

+ (X —3D)

The focal-length range R, the ratio of the initial to the final focal lengths, is now

_ —f2X + X(H - 3D)(3D — X) + f}(H — 3D)

R —(HX +f2)(3D — X) — Hf?

This ratio R will be less than 1.0 if the moving lenses are negative.

Example

As an example we shall set up a system having the same range of focal
lengths as in the last example, so that we can compare the sizes of the loops.
We find that for this case we put X = 3.5, D = 1, and H = 10.052343. The
equations just given yield

f2=25.130858 or f,=f.=—5.0130687

2 — 24380858 or f, =4.937698
R=0.333333 (5=0.5)
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The initial air spaces are

d,=fi+f.—H=05(say); hence f, = 15565412
d' = 3.424629
dj, = 0.424629

We find that using these four lens elements, the overall focal length is neg-
ative, and so we must add a fifth lens at the rear to give us the desired posi-
tive focal lengths. To compare with the three-lens system in Section 3.5.3, we
set the initial focal length at 3.486, which requires a rear lens having a focal
length of 4.490131 located initially 4 units behind the fourth element. Tracing
paraxial rays through this system, at a series of zoom positions, gives the
data shown in Table 3.9 and is plotted in Figure 3.29 is on facing page.

It will be noticed that the loops are only about one-fiftieth of their former
size, and that the error curve is now a quadratic. Obviously, with these very
small errors, it would be quite reasonable to design a four-lens zoom of this
type covering a much wider range of focal lengths, say 6:1 or even more, and
this indeed has been done.

Table 3.9

Performance of Four-Element Optically-Compensated Zoom Lens

Shift of zoom components Back focus Image shift Focal length

(Initial position) -0.5 6.22805 -0.00383

D 0 6.23188 0 3.486
0.5 6.23267 0.00079

D= 1.0 6.23188 0 5.026
1.5 6.23120 -0.00068
2.0 6.23188 0 7.253
25 6.23352 0.00164
3.0 6.23188 0 10.458
3.5 6.21538 -0.01650

3.5.5 An Optically Compensated Zoom
Enlarger or Printer

Since the four-lens zoom discussed in Section 3.5.4 can be constructed with two
equal positive lenses moving together between three negative lenses, it is obviously
possible to remove the two outer negative lenses, leaving a three-lens zoom printer
or enlarger system that has a quartic error curve. Equations (3-27) are now

fA4f22H -3)(H+X —3)—H(H - 1)(H-2)(H-3)=0
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Figure 3.29 Image motion with a four-lens optically compensated zoom system.

2 2
2 a fa
=(x+2e) Lo+ (x - 2

and 1 ( +H>{H73+( 3)] (3-28)
These can be used to set up a system, taking the positive root for f, = f. and
the negative root f,. The H is the initial distance from the fixed object to the ante-
rior focus of the front lens, the initial object distance being therefore (H —f,,). The
initial lens separations are respectively (f, + f, + X) and (f, + f» + X - 3).

Example

As an example, we will design such a zoom system with H = -8 and X = 2.
The preceding formulas give f, = f. = 6.157183 and f;, = -2.667455. The
separations are, respectively, 4.667455 and 1.667455 at the start; they will,
of course, be increased or decreased as the zoom elements are moved to
change the magnification. The overall distance from object to image is equal
to 2(14.157183 + 4.667455) = 37.6493. Tracing rays by the (y — u) method
gives the data shown in Table 3.10 on the next page.

The image shift is shown graphically in Figure 3.30. It will be noticed that
as we are now moving a pair of positive components, the quadratic curve is
in the opposite direction to that for the previous example, in which we moved
a pair of negative lenses.
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Table 3.10

Performance of Example Optically-Compensated Enlarger or Printer Zoom Lens

Image Desired image Image

Shift of zoom components distance distance shift Magnification
(Initial position) -0.5 17.762025 17.657184 +0.104841

0 17.157184 17.157184 0 -1.7520

0.5 16.646875 16.657184 -0.010309
D= 1.0 16.157184 16.157184 0 -1.2071

1.5 15.661436 15.657184 +0.004252

2.0 15.157184 15.157184 0 -0.8285

2.5 14.652316 14.657184 -0.004868

3.0 14.157184 14.157184 0 -0.5708

3.5 13.680794 13.657184 +0.023610
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Figure 3.30 Image motion for a zoom enlarger system.

If it is desired to cover a wider range of magnifications, the value of H
should be reduced, and if the lenses come too close together, then X can be
somewhat increased. Obviously there is no magic about the size, and if a dif-
ferent object-to-image distance is required, the entire system can be scaled up
or down as needed. The fixed negative component is very strong and in prac-
tice it is often divided into a close pair of negative achromats, but we leave
this up to the designer.
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Chapter 4

Aberration Theory

4.1 INTRODUCTION

In the preceding chapter, imaging was considered to be ideal or stigmatic. This
means that rays from a point source P that pass through an optical system will
converge to a point located at its Gaussian image P’. In a like manner, the portion
of wavefronts from P passing through the optical system will converge as portions
of spherical wavefronts toward P’. In other words, the point sources are mapped
onto the image surface as point images according to the laws of Gaussian
image formation presented in the prior chapter. Deviations from ideal image
formation are the result of defects or aberrations inherent in the optical system.

As will be discussed in this chapter, it is possible that the actual image P’ is
formed at a location other than at P’ which can be caused by field curvature
and distortion while still forming a stigmatic image. When an optical system
fails to form a point image of a point source in the Gaussian image plane, the
rays do not pass through the same location and the converging wavefront is
no longer spherical as a consequence of the optical system suffering aberrations.
In this chapter, a mathematical description of the aberrations for symmetrical
optical systems will be presented primarily from the viewpoint of ray deviation
errors rather than wavefront errors. In the following chapters, each of the aber-
rations will be treated in significant detail in addition to their control during the
optical design process.

4.2 SYMMETRICAL OPTICAL SYSTEMS

Figure 4.1 illustrates the basic elements of a symmetric optical system. This
system is invariant under an arbitrary rotation about its optical axis (OA) and
under reflection in any plane containing OA4. Both of these symmetry character-
istics are necessary properties of a symmetrical optical system." A right-hand
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Point object Rotationgy,
Metrjc SyStem

Figure 4.1 Basic elements of a symmetrical optical system.

Cartesian coordinate system is used where the optical axis is always taken to lie
along the z-axis.” The ideal state of correction for a symmetrical optical system
is when a system forms in the image plane (/P) normal to the optical axis a
sharp and undistorted image of an object in the object plane (OP) orthogonal
to the optical axis. These planes are designated as the image and object planes,
respectively, and are conjugate since the optical system forms an image of one in
the other. Unless otherwise specified, these planes should be considered to be
orthogonal to the optical axis.

Consider for the moment an arbitrary point P in the object space of a symmetric
system. In general the family of rays from P traversing the optical system will fail to
pass through a unique point in the image space and the image of P formed by the
system is said to be astigmatic, that is, to suffer from aberrations. If, on the other
hand, all rays from P do pass through a unique point P’ in the image space, the
image of point P is said to be stigmatic.> From the definition of a symmetric system,
it should be evident that if P’ is the stigmatic image of some point P then the two
points P and P’ lie in a plane containing the optical axis. Now imagine that object
points are constrained to lie in the object plane OP and that the images of all such
points are stigmatic and that the object plane is stigmatically imaged by the system
onto an image surface (in contrast to an image plane).

Again relying on the definition of a symmetric system, it is obvious that the
stigmatic image of a plane object surface OP, which is normal to the optical axis
of a symmetric system, is a surface of revolution about the optical axis. When
this image surface of revolution is not planar, the imagery is considered to suffer
an aberration or image defect known as curvature of field although there is no
blurring of the image. Since the optical system is considered to be rotationally
symmetric, we can arbitrarily select a reference plane that contains the optical
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axis. Referring to Figure 4.1, this plane is the Y-Z plane and is generally called
the tangential or meridional plane.

Assume now that a stigmatic image of the object plane is formed in the image
plane where the object has some geometrical shape. If the optical system forms an
image having the same geometrical shape as the object to some scaling factor, the
image is considered to be undistorted or be an accurate geometric representation
of the object. Should the optical system form an image which is not geometrically
similar to the object’s shape, then the image is said to suffer distortion. When the sys-
tem is free of distortion (undistorted), the ratio of image size to the corresponding
object size is the magnification m, with the image for a positive lens being inverted
and reverted with respect to the object. Let the object be a line extending from the
origin of the object plane to the location denoted as point object in Figure 4.1 which
has coordinates expressed as (H v H, 1) The image size can be computed by

H' =mH, and H, = mH,

since the line can be projected onto each axis and propagated independently
without loss of generality since a paraxial skew ray is linearly separable into
its orthogonal components.

It is evident from the preceding discussion that an ideal image of the object
plane requires three conditions to be satisfied, namely, stigmatic image forma-
tion, no curvature of field, and no distortion. In contrast, an optical system hav-
ing stigmatic image formation can still suffer the image defects of distortion and
curvature of field.

As explained, an ideal optical system forms a perfect or stigmatic image
which essentially means that rays emanating from a point source will be con-
verged by the optical system to a point image, although curvature of field and
distortion may be present. At this juncture, image quality will be discussed in
strictly geometric terms. In later chapters, the impact of diffraction on image
quality will be discussed.

The majority of this book addresses rotationally symmetric optical systems,
their aberrations, and configurations. Figure 4.1 shows the generic geometry for
such systems, which comprise five principal elements: the object plane, entrance
pupil, lenses (including stop), exit pupil, and image plane.* A ray propagating
through this system is specified by its object coordinates (H,, H,) and entrance
pupil coordinates (p,,p,) = g, or in polar coordinates (p,0), as illustrated in
Figure 4.2. This means that point P in the entrance pupil can be expressed by X =
pcos(0) and Y = psin(0) where 0 is zero when g lies along the Y-axis.

This ray is incident on the image plane at (H',, H',) and displaced or aberrant
from the ideal image location by (ey, ¢,). Since the optical system is rotationally
symmetric, the (point) object is assumed to always be located on the y-axis in the
object plane, that is, H = (0, H,). This means the ideal image is located along the
y-axis in the image plane, that is, /' = mH where m is the magnification. The actual
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Figure 4.2 Entrance pupil coordinates of a ray.

image plane may be displaced a distance & from the ideal image plane. The ideal
image plane is also called the Gaussian or paraxial image plane. The term image
plane, as used in this book, means the planar surface where the image is formed
which may be displaced from the ideal image plane by the defocus distance &.

A ray exiting the exit pupil, as shown in Figure 4.3, intersects the image
plane at (X', Y’) which in general does not pass through the ideal image

Optical
axis

AN .  Actual

N Y image
\

Ideal image
~ Z \

w@ p\a{\e

Figure 4.3 Image plane coordinates of ray suffering aberrations.
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point shown in the figure as a consequence of aberrations. The object point is
located at H = H, E’—Q—H}j (see Figure 4.1) with the ideal image point being
located at (h’,,h’) and the actual image being located at (X', Y).

Xy
X'(p,0,H,&) = ex(p, 0, H, &) + I,
Y/(p,H,FI, é) = gy(pveaﬁ7 é) +h;

Using vector notation and ignoring the defocus parameter for the moment, the
ray aberration can be written as

&(p, H) = &(p, H) + &(p, H)
where & and &. are defined by
(. 1) = (705, 1) — (7. 1))
(p, 1) = (25, H) + 55, 1))

and & and &, are called the symmetric and asymmetric aberrations as well as the
astigmatic and the comatic aberrations, respectively, of the ray (g, ) The
importance of decomposing the ray aberration in this manner for our study of
lens design will become evident. Consider first the symmetric term & which
means that the ray error will be symmetric about the ideal image location
assuming no distortion. Specifically this can be interpreted as (sy,s,) for
(3, H)and (—ey, —gy) for (—p, H). If a spot diagram of a point source is made
for an optical system suffering only astigmatic aberration, the pattern formed
will be symmetric.

In contrast, the comatic or asymmetric aberration &, is invariant when the
sign of § is changed. This means that rays (7, H) and (—p, H) will suffer the
identical image error (ey,&,), that is, they each intercept the image plane at
the same location. Consequently, the comatic aberration creates an asymmetry
in the spot diagram. Further, it should be recognized that the astigmatic and
comatic aberration components are decoupled and can not be used to balance
one another. The importance of this knowledge in lens design will be explained
in more detail in the following chapters.

Since the optical system is rotationally symmetric, the object can be placed in
the meridional plane, or y-axis of the object plane, without the loss of generality
and the advantage of simplifying the computation and interpretation of the
resulting aberrations. Consequently, since the x-component is zero the object
is denoted by H and the ideal image by 4’. The actual image coordinates now
become

X/(p107H7é) Esx(p707H76)
Yl(p707Hvé) = g}r’(p707H7 é) +h/
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for the specific ray coordinates p,0, and H, and the image plane defocus ¢&.
It has been found useful to decompose the aberration into two elements with
respect to how the aberrations transform under a change in the sign of p. These
elements are called symmetric and asymmetric components and are orthogonal
to one another. Since the object and image are located in the meridional plane,
all rays emanating from the object point having entrance pupil coordinates
7 = (p,0°) necessarily lie in the meridional plane.® Consequently, &, = 0. It is
common to plot the ray aberration for the meridional fan of rays with p being
normalized (—1 to +1). The ordinate of the plot is the ray error measured from
intercept of the principal ray.

Figure 4.4 provides an example of such a plot. In this case, H # 0 to allow
illustration of the symmetric and asymmetric components of the ray aberration.
As explained above, & and €. represent these components. In this figure, the
comatic and the stigmatic contributions for the total aberration are shown.
Notice that the comatic aberration is symmetric about the p = 0 axis. In other
words, any ray pair having entrance pupil coordinates of (p,0°) and (—p,0°)
will have the same ray error, that is, &,(p,0, H) = ¢,(—p,0, H). In contrast,
the astigmatic aberration is asymmetric about the same axis. This means that
any ray pair having entrance pupil coordinates of (p,0°) and (—p, 0°) will suffer
ray errors of equal and opposite sign, that is, &,(p,0,H) = —¢&,(—p,0, H).
Examination of the total aberration curve illustrates that it can be neither sym-
metric nor asymmetric. In this particular case, both the comatic and astigmatic
aberrations comprise third- and fifth-order terms of opposite signs. The total
aberration curve is simply the sum of the comatic and astigmatic values.
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~ : \
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Figure 4.4 Ray aberration for a meridional fan of rays.
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The interpretation of such plots for use in lens design will become evident in the
following material.

Plots, such as that shown in Figure 4.4, are very useful during a lens design
process; however, the meridional plots provide only a portion of the insight into
the complete aberrations suffered by a particular lens design. Additional plots
can be generated using non-meridional rays, which are generally called skew
rays. The most common skew rays utilized have entrance pupil coordinates of
(£p,90°) and are commonly called sagittal rays. The name sagittal is generally
given to the 90° and 270° skew rays that lie in a plane perpendicular to the
meridional plane, containing the principal ray.

The sagittal plane is not one single plane throughout a lens, but it changes its
tilt after each surface refraction/reflection. The point of intersection of a sagittal
ray with the paraxial image plane may have both a vertical error and a horizon-
tal error relative to the point of intersection of the principal ray, and both these
errors can be plotted separately against some suitable ray parameter. This
parameter is often the horizontal distance from the meridional plane to the
point where the entering ray pierces the entrance pupil. The meridional plot,
of course, has no symmetry, but the two sagittal ray plots do have symmetry.
As a consequence, sagittal ray plots are often shown for only positive values
of p since it is realized that

gx(pagooaHv é) = 78.X‘(7,0:9007H7 é) and 8y(p>9007Ha5) = 8y(7p’9007H:£)-

It has been shown that the ray aberration can be decomposed into astigmatic
and comatic components, which are orthogonal. These two components can be
further decomposed. For the astigmatic component, it comprises spherical aber-
ration, astigmatism, and defocus. In a like manner, the comatic component
comprises coma and distortion. The following two equations for the ray errors
¢ and ¢, show this decomposition. The abbreviations for the various compo-
nents will be utilized extensively in the following material.

ex(p,0,H,&) = SPH.(p,0,0) + AST(p, 0, H) + DFx(p, 0, )

ASTIGMATIC COMPONENTS

+  CMA(p,0,H)
—_

COMATIC COMPONENTS (4 1)
‘Sy(p: 07 Ha é) - SPH}(,D, 97 0) + AST’(pv Ga H) + DFy(p: 07 é)

ASTIGMATIC COMPONENTS

+ CMA,(p,0,H) + DIST(H)

COMATIC COMPONENTS
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where SPH = spherical aberration, AST = astigmatism, CMA = coma, DIST =
distortion, and DF = defocus. It should be recognized that the comatic compo-
nent of ¢, does not contain a distortion term since it is assumed that the object
lies in the meridional plane.

Being that the ray intercept error can be described as the linear combination
of the astigmatic and comatic contributions, these contributions can be written
as a power series in terms of A and p. Several conventions exist for expansion
nomenclature; however, most follow that given by Buchdahl. Specifically, an
aberration depending on p and H in the combination p"*H* is said to be of
the type

o '™ order, s™ degree coma if (n-s) is even, or
o '™ order, (n-5)'" degree astigmatism if (-s) is odd.

For simplicity, the arguments of &, and &, are not explicitly shown unless
needed for clarity, defocus is assumed zero, and recalling that the expansions
are a function of 0 for the general skew ray, the expansion of the ray errors
are given by

&x = (019" +pp’ +11p’ +...)sin(0)
SPHERICAL

+ (020 + p3p® + 13p% + .. ) sin(20)H
LINEAR or CIRCULAR COMA

+ (o sin(20)p* + (19 sin(20) + 719 sin(40))p* + .. ) H>

CUBIC COMA

+ (‘517 Sin(29)p2 + .. .)HS
QUINTIC COMA (4_2)

+ ((03 + 04) H? 4+ H* + 119H® + .. ) sin(0)p

LINEAR ASTIGMATISM

+ ((us + ptg cos*(0))H? + (113 + 114 cos?(0)) H* + .. ) sin(0) p?

CUBIC ASTIGMATISM

+ ((15 + 16 cos?(0))H? + .. .) sin(0)p°

QUINTIC ASTIGMATISM

=+ ... HIGHER ORDER ABERRATIONS IN TERMS OF p AND H.
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and

&y =(01p’ +pp° +11p" +...)cos(0)
SPHERICAL

+ (62(24c08(20))p? + (s + 113 c05(20)) p* + (12 +13¢08(20))p® + ... ) H
LINEAR or CIRCULAR COMA

+ (17 + pg c0s(20))p? + (17 4 13c0s(20) + T19c08(40))p* + ... ) H>
CUBIC COMA

+ ((t15 4+ 116) cOS(20)p* + ... H®
QUINTIC COMA

+ ((303+04)H> + g H* +113H® + .. ) cos(0)p

LINEAR ASTIGMATISM

+ (g + g cos® (0)) H? + (11 +112c08%(0)) H* + ...) cos(0) p*
CUBIC ASTIGMATISM

+ ((t4+16c0s>(0))H? +...) cos(0) p°
QUINTIC ASTIGMATISM

+osH> 4+ HY +190H + ...
DISTORTION

=+ ... HIGHER ORDER ABERRATIONS IN TERMS OF p AND H.
(4-3)

The five o, twelve u, and twenty t coefficients represent the third-, fifth-, and
seventh-order terms, respectively. Even-order terms do not appear as a conse-
quence of the rotational symmetry of the optical system. Further, there are
actually five, nine, and 14 independent coefficients for the third-, fifth-, and
seventh-order terms, respectively.’

There exist three identities between the u coefficients, and six identities
between the t coefficients. These identities take the form of a linear combination
of the n'™-order coefficients being equal to combinations of products of the lower-
order coefficients. If, for example, all of the third-order coefficients have been
corrected to zero, then the following identities for the fifth-order coefficients exist:
ty —3 puy =054 — pis — pg = 0; and py — pg — pig = 0. Calculation of these coef-
ficients is straightforward, although tedious, using the iterative process developed
by Hans Buchdahl.! The third-order terms were first popularized by the publication
of Seidel and are often referred to as the Seidel aberrations.® The fifth-order terms
were first computed in the early twentieth century.’
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In the late 1940s, Buchdahl published his work on how to calculate the coef-
ficients to any arbitrary order. However, recent investigation into the historical
work of Joseph Petzval, a Hungarian professor of mathematics at Vienna, has
lead to the belief that he had developed in the late 1830s a computational
scheme through fifth-order and perhaps to seventh-order for spherical aberra-
tion.!” Conrady was well aware of the Petzval sum in addition to Petzval’s
greater contributions to optics as evidenced when he wrote:

[ Petzval] who investigated the aberrations of oblique pencils about 1840, and
apparently arrived at a complete theory not only of the primary, but also of the
secondary oblique aberrations,; but he never published his methods in any complete
form, he lost the priority which undoubtedly would have been his. It is, however,
perfectly clear from his occasional brief publications that he had a more accurate
knowledge of the profound significance of the Petzval theorem than any of his
successors in the investigation of the oblique aberrations for some eighty years
after his original discovery."!

Regrettably, the preponderance of his work was lost to posterity. The design
and development for today’s optical systems were made possible by theoretical
understanding of optical aberrations through the contributions of numerous
individuals. Although the subject is still evolving, serious research spans over
four centuries.'

As an example, consider a meridional ray intersecting the paraxial image
plane, and having entrance pupil coordinates of (p,90° H,0). The &, and ¢,
are given by

ex = (010 +p’ +1ip’ +..)
SPHERICAL
+ (03 4 0a)H? + py H* + 19 H + .. )p
+ (,u5H2—|—1:13H4—|—...)p3
+ (tsH*>+...)p°

ASTIGMATISM

+ ... HIGHER ORDER ABERRATIONS IN TERMS OF p AND H.
and
&y = (0207 + (12 — w3)p* + (2 —w3)p° + .. ) H

+ (w7 — )P + (7 — s +110)p* + .. ) H?
+ ((Tls — )P+ .. -)H5

COMA
+ osH? + pup H> +10H + ...

DISTORTION

+ ... HIGHER ORDER ABERRATIONS IN TERMS OF p AND H.
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Observe that the sagittal term &, comprises only astigmatic contributions,
while the meridional term ¢, contains only comatic contributions. The ability
to isolate specific contributions of the ray error by proper selection of one or
more rays will be exploited in the remainder of this chapter.

As previously explained, the actual ray height in the paraxial image plane
can be considered to comprise two principal elements: the Gaussian ray height
and the ray aberration, as illustrated in the aberration map shown in Figure 4.5
on the next page. The total aberration for a rotationally symmetric optical
system comprises two orthogonal components, astigmatic and comatic. The
astigmatic aberration is segmented into field independent and dependent com-
ponents while the comatic aberration is divided into aperture independent and
dependent components.

The field-independent astigmatic aberration has two contributions, which are
defocus and spherical aberration. The defocus ¢ is linearly dependent on the
entrance pupil radius p while the spherical aberration is dependent on the
odd orders of third and above of the entrance pupil radius, namely, p*, p°, ...
The field-independent astigmatic aberration introduces a uniform aberration or
blur over the optical system’s field-of-view.

Field-dependent astigmatic aberrations comprise two contributions which
are linear astigmatism and oblique spherical aberration. Both of these aberra-
tions are dependent on even orders of H, namely, H?, H*,.... Linear astigma-
tism is linearly dependent on the entrance pupil radius p while the oblique
spherical aberration is dependent on the odd orders of third and above of the
entrance pupil radius. It should be noted that the defocus and linear astigma-
tism comprise the linearly-dependent entrance-pupil-radius components of the
astigmatic aberration (p; H°, H>,H*, ..). In a like manner, spherical and
oblique spherical aberrations comprise the higher-order terms in entrance-
pupil-radius (p3, p°,...; H*, H* H*,..)).

Aperture-independent comatic aberration has two contributions, which are
the Gaussian image height and distortion. Although the Gaussian image height
is not considered an actual aberration, it is shown in the aberration map in a
dashed box since the Gaussian image height is linearly proportional to H and
aperture independent. Distortion is also aperture independent, but is dependent
on the odd orders of third and above of H, namely, H>, H>, . ...

Aperture-dependent comatic aberration also has two contributions, which
are linear coma and nonlinear coma. Linear coma is linearly dependent on the
field angle and on even orders of the entrance pupil radius (p2, p*, . ..; H). Non-
linear coma has the same entrance pupil radius dependence as does linear coma,
but is dependent on the odd orders of third and above of H in the same manner
as distortion. Perhaps the most common element of nonlinear coma is referred
to as elliptical coma; however, there are many other contributions to the nonlin-
ear comatic aberration.
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Figure 4.5 Ray aberration map showing the astigmatic and comatic elements comprising the total ray aberration.
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The aperture-dependent comatic aberration can be viewed as a variation
of magnification from one zone to another zone of the entrance pupil. It is
also noted that because the astigmatic and comatic contributions are orthog-
onal, changing the location of the image plane from the paraxial location
can impact the resultant astigmatic aberration while having no effect on the
comatic contribution of the total aberration. In other words, the defocus can
change the astigmatic contribution to the total aberration while having no effect
on the comatic contribution. This will be discussed in more detail later in this
chapter.

An interesting aspect of the Buchdahl aberration expansion is that the contri-
bution for each coefficient is computed surface by surface and then summed to
determine the value of the coefficient at the image plane. For example, o is the
third-order spherical aberration coefficient. Its value for an optical system com-
prising n surfaces is computed as

n

o] = E i01

i=1

Although there will be no attempt to compute the general set of Buchdahl
aberration coefficients in this study, it is important to understand certain
aspects of their relationship to the design process. It can be shown that these
aberration coefficients have intrinsic and extrinsic contributions. The third-
order aberration coefficients have only intrinsic contributions, which mean that
the value of the aberration coefficients computed for any arbitrary surface are
not dependent on the aberration coefficient values for any other surface. For
the higher-order aberration coefficients, extrinsic contributions exist in addition
to the intrinsic contributions. This means that aberration coefficients for the k™
surface are to some extent dependent on the preceding surfaces while not at all
dependent on the subsequent surfaces.

Two other characteristics of aberration coefficients are valuable for the lens
designer to understand. The first is that lower-order aberration coefficients
affect similar high-order aberration coefficients. An alternative way to express
this behavior is that higher-order aberration coefficients do not affect the
value of lower-order aberration coefficients; that is, adjustment of say 7; does
not change the third- and fifth-order contributions. The second characteristic
is that higher-order aberration coefficients move or change their values slowly
with changes in constructional parameters (radii, thickness, etc.) compared to
the movement of lower-order aberration coefficients. In short, this means that
higher-order aberrations, be they astigmatic or comatic, are far more stable
than lower-order aberrations.
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4.3 ABERRATION DETERMINATION
USING RAY TRACE DATA

The elements comprising the total ray aberration can be computed directly
from specific ray trace data. How this is done and the relationship to the aber-
ration coefficients are presented in this section. It should be noted that the
method discussed decouples the defocus element from the astigmatic elements
thereby enhancing the utility of these elements in the optical design process.
Each of the following aberrations is briefly introduced and will be discussed
in detail in subsequent chapters.

4.3.1 Defocus

Defocus can be used as a first-order aberration that is measured from the para-
xial image plane. It depends only on entrance pupil coordinates, not on the object
height or field angle. Defocus impacts imagery uniformly over the entire field of
view. Often defocus can be used to balance or improve symmetric (astigmatic)
aberrations, while having no effect on asymmetric (comatic) aberrations. Figure 4.6
shows the upper and lower marginal rays exiting the optical system, focusing at the
paraxial image plane, and forming a blur at the image plane located a longitudinal
distance ¢ from the paraxial image plane. Defocus can be expressed as

DF(p,¢) = —&tanv),
0
=-2¢
f
where v/, is the angle of the marginal paraxial ray in image space and f'is the
focal length.

(4-4)

Image plane

Upper marginal ray

Lower marginal ray
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e

Paraxial image plane

Figure 4.6 Defocus.
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For finite conjugate systems, f should be replaced by the paraxial image dis-
tance. The intersection height of the marginal ray with the image plane is the
transverse defocus aberration, and the defocus blur is

2%p
/

The ray fan plot of ¢, or &, versus p is simply a straight line. A plot of & versus 0
for a fixed value of p shows a circle because of the radial symmetry about the
optical axis. As will be discussed in subsequent chapters defocus can be used
as a means to improve the image quality when astigmatic errors are present;
however, defocus has no effect on comatic aberrations.

PROBLEM: Show that DF(p, &) is independent of the image height and is therefore a
field-independent aberration.

4.3.2 Spherical Aberration

Spherical aberration can be defined as a variation with aperture of the image
distance or focal length in the case of infinite conjugates. Figure 4.7 shows a posi-
tive lens that suffers undercorrected or negative spherical aberration, which is typ-
ical of such lenses."? A close-up view of the image region of Figure 4.7a is shown in
Figure 4.7b. The paraxial rays come to a focus at the paraxial focal plane while, in
this case, meridional rays farther from the optical axis progressively intersect this
axis farther from the paraxial image plane and closer to the lens. This is referred to
as longitudinal spherical aberration and is referenced to the marginal ray intercept
as shown in the figure. In a similar manner, these rays intercept the paraxial image
plane below the optical axis and are referred to as transverse spherical aberration.

Figure 4.8a presents the meridional ray fan plot, which more clearly presents
the transverse ray error ¢, as a function of entrance pupil radius p. Figure 4.8b
shows the longitudinal spherical aberration as a plot of the axial intercept loca-
tion as a function of the entrance pupil radius p. An alternative presentation of
the ray error is the spherical aberration contribution to the wavefront error as a
function of the entrance pupil radius p as illustrated in Figure 4.8c. As will be
explained, the longitudinal, transverse, and wave presentations of spherical
aberration are related to each by simple multiplicative factors. Each form of
spherical aberration has utility and none has general superiority.

The transverse spherical aberration at the paraxial image plane is given by
the displacement of a ray having coordinates (p,0°0,0) from the optical axis,
which can be expressed as

SPH(p,0",0)

Y(p,0°,0,0)

3 5 7 (4-5)
=01p" + P +Tp ..
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Figure 4.7 (a) Positive lens that suffers undercorrected or negative spherical aberration.
(b) Close-up view of the image region.

where Y(p,0°,0,0) is the real ray value in the polynomial expansion as also
shown.

Figure 4.9 illustrates the general behavior of the third-, fifth- and seventh-
order spherical aberration terms. In this particular case, o1, u;, and 7; are all
given a value of unity. It should be noted that the higher the order of the terms,
the flatter the plots are until progressively larger values of p are reached, at
which point the curves increase rapidly. The distance from the paraxial image
plane to the intersection point of the ray with the optical axis is called longitu-
dinal spherical aberration. Assuming that the ray slope is negative, then the
longitudinal spherical aberration is considered positive, or overcorrected, if
the intersection point is beyond the paraxial image plane; and is considered neg-
ative, or undercorrected, if the intersection point precedes the paraxial image
plane.
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(b)

(c)

Figure 4.8 (a) Transverse spherical aberration. (b) Longitudinal spherical aberration.
(c) Spherical aberration contribution to the wavefront error.

4.3.3 Tangential and Sagittal Astigmatism

Field-dependent astigmatism and curvature of field are inherently related to
displace the image from the paraxial image plane. As is illustrated in Figure 4.10,
the meridional rays come to a focus some distance from the paraxial image
plane, forming a line lying in the sagittal plane whose length is determined by
the width of the sagittal fan of rays at that point. In a like manner, the sagittal
focus is determined by where the sagittal fan focuses in the tangential plane and
has a length determined by the width of the tangential fan at that point. The
tangential astigmatism for a given value of p and H can be determined exactly
by tracing three rays, namely the corresponding upper and lower off-axis rays,
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Figure 4.10 Tangential and sagittal astigmatism.
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and the marginal ray. Consequently, the tangential astigmatism is computed
using the ray data in the following equation.

TAST (p, H) = Y (p,0°, H,&) — Y(p, 180°, H,&) —2Y (p,0°,0, &)
=24ST,(p,0°, H)
=2[(303 4 64)H* + uyoH* + 1igsH® + .. ]p (4-6)
+ 2[(us + 1) H> + (i + 1) H* + .. ]p°

+ 2[(ta + 1) H> + .. ]p° + ...

In addition, the resulting aberration coefficients are also shown. Notice
that the polynomial expansion is expanded in odd orders of p. The importance
of this will be explained presently. The purpose of including the marginal ray
in the above calculation is to remove the field-independent components
from the upper and lower rays, that is, defocus and spherical aberration. The
portion of the expansion that is linear with p is known as linear tangential
astigmatism and has a ray fan plot similar to the plot for defocus. Figure 4.11
illustrates the behavior of tangential astigmatism for p,p*,and p° for a par-
ticular value of H. Notice that these plots have the same form as defocus,
and third- and fifth-order spherical aberration; however, TAST (p, H) varies
with H.

1 | | | 7
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i
S
05~ ,,,»"‘/// —
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//
-05+ /7 Field angle=H -
/'.'
p
1 E | | |
-1 0.5 0 0.5 1
p

Figure 4.11 Tangential ray fan plot.
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In a similar manner, sagittal astigmatism is computed using the ray data in
the following equation.

SAST(p, H) = 2[X (p,90°, H,&) — Y(p,0°,0,¢)]
=24ST(p,90°, H)
=2[(03 + 04)H? + py H* + 1ioH® + .. ]p 4-7)
+ 2lusH? + 113 H* + .. ]p°
+2[esH? +...]p° + ...

Subtraction of the meridional ray from the x-component of the sagittal ray,
having coordinates (p,90°, H, £), removes the field-independent astigmatic con-
tributions since the axial meridional and sagittal rays (H = 0) contain the same
values. The y-component of this sagittal ray is used to compute sagittal coma.
The o3 coefficient represents third-order astigmatism, while o4 represents
Petzval. Assuming all other aberration coefficients are zero with the exception
of a4, it is easily shown that the image formed on the resulting Petzval surface
is stigmatic.

PROBLEM: Determine an equation that expresses the longitudinal image displace-
ment from the paraxial image plane when all aberration coefficients are zero
except g4.

4.3.4 Tangential and Sagittal Coma

Coma can be viewed as a variation in magnification from one zone to another
zone in the entrance pupil. Figure 4.12 shows the basic geometry for computing
tangential coma. The upper and lower rim rays are shown and intersect some
distance behind the paraxial image plane. The principal ray also intersects the

Exit pupil Paraxial image plane

Figure 4.12 Tangential coma.
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paraxial image plane as illustrated. Tangential coma is determined by subtract-
ing the principal-ray height from the average value of the upper and lower rim
ray intercept heights. Figure 4.12 depicts the computation in the paraxial image
plane. It is also common to compute the value of tangential coma in the plane
where the upper and lower rim rays intersect and subtract from that height
the height of the principal ray in this plane. The value computed will be the
same because comatic aberrations are unaffected by defocus. The defining equa-
tion for tangential coma and its polynomial expansion are as follows:

Y(p,0°, H,&) + Y(p, 180°, H, &)

TCMA(p,H) = 5

—Y(0,0° H,¢)

= CMA,(p,0°, H)

4-8
— Boap + (s + ) + (2 )" + L JH (8)
+ (17 + 1g)p* + (7 + 18 +110)p* + . JH?

+ [(t15 +‘516)p2+...]H5 +...

Figure 4.13 shows plots of second-, fourth-, and sixth-order tangential coma
as a function of p for a specific field angle. These correspond to the third-, fifth-,
and seventh-order aberration coefficients for linear coma. Figure 4.14 illustrates
the general functional relationship between the various orders of tangential
coma (H + H® + H> +...) versus field angle/image height H. Examination of
these two figures clearly illustrates that linear coma is dominant for small field
angles as are the p> aberration coefficients at a specific value of H.

B i
0.5 |\, / p* A=

Figure 4.13 Tangential coma as a function of p for constant field angle.
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Figure 4.14 Tangential coma as a function of H.

The exact sagittal coma is computed using the y-component of the sagittal
ray having coordinates (p,90°, H,¢) and the principal ray. Notice that this is
measured in the meridional plane as is the tangential coma. The defining equa-
tion for sagittal coma and its polynomial expansion are as follows:

SCMA(p,H) = Y(p,90°, H,&) — Y(0,0°, H, &)
= CMA,(p,90°, H)
=[020” + (s — 3)p* + (2 —w3)p® + .. JH (4-9)
+ (17 = 1)p” + (v7 — 5 +10)p* + .. JH
+ [(t15 — T16)p> + .. JH> + ...

A point-source image formed by an optical system suffering coma spreads
out the light into a comet-shaped flare. Coma is a rather annoying aberration
since its flare is non-symmetrical and makes it quite difficult to make accurate
determination of image position in contrast to a symmetric or circular blur
made, for example, by spherical aberration. Since approximately half of the
energy in the coma patch is located in the region near the head of the coma
patch, sagittal coma provides a more reasonable estimate of the image blur than
does tangential coma. When the coma tail lies between the optical axis and the
Gaussian image, it is referred to as negative or undercorrected coma. If the
coma tail is farther from the optical axis than the Gaussian image, it is referred
to as positive or overcorrected coma.
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Also, the offense against a sine condition or OSC is given by

SCMA(p,H)
Y(0,0°, H,0)

which is the sagittal coma divided by the principal-ray height for regions
near the optical axis. The OSC for the doublet objective lens described in
Sections 2.5 and 5.2 is —0.000173 for a marginal ray of height 2.0 at the vertex
of the first surface. This should be compared to the OSC for this lens com-
puted by two alternative methods in Section 9.3.2. For field angles up to a bit
over 1°, the agreement is essentially exact for the above method. It can also
be shown that, to the third order, the OSC o>, and for small obliquities,
TCMA =3 -SCMA.

The flare for an image suffering third-order linear coma is confined between
a pair of lines intersecting at the Gaussian image height and having a 60°
included angle. The image patch or flare for higher-order linear coma is flatter
and results in a wider comet tail appearance. The included angle between the
bounding lines increases to 84° for fifth-order linear coma and 97° for sev-
enth-order linear coma. Consequently, the presence of the higher-order linear
coma should be visually evident by inspection of the spot diagram.

PROBLEM: Show that, to the third order, the OSC o5, and for small obliquities,
TCMA =3-SCMA.

PROBLEM: Assuming that all aberration coefficients are zero except for third-order
linear coma, show that coma appears as a family of circles as p and varies where
the circles have radii of ‘ozsz } Where is the center of each circle located with
respect to the Gaussian image height? Show that these circles are confined between
a pair of lines intersecting at the Gaussian image height and having a 60° included
angle.

4.3.5 Distortion

As previously discussed, one of the requirements for an optical system
to produce ideal imagery is that the image it forms must be geometrically sim-
ilar to the object, that is, the image dimensions are a linear factor of the
object dimensions. Consider now that the image formation is also stigmatic.
The image height is determined by the intersection of the principal ray with
the paraxial image plane. In general, the geometrical similarity of the image
to the object is not a linear relationship with the object height and is referred
to as distortion of the image. Just as the Gaussian image height is aperture
independent, so is the distortion, which is the aperture-independent comatic
aberration.
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In Figure 4.5, the Gaussian image height is shown in a dashed box as the lin-
ear portion of the aperture independent comatic aberration. This should make
sense in that comatic aberrations are considered associated with variation in
magnification with respect to object height and entrance pupil. It also fills out
the H expansion sequence in the aperture independent comatic aberrations.
Hence, distortion of the image can be considered as the aberration of the prin-
cipal ray and is defined by the following equation.

DIST(H) = Y(0,0°, H,¢) — GIH(H, §)

= 0sH® + p, H® + 10 H' (10
where the Gaussian image height is GIH (H, &) = GIH(H) + DF,(p,0°, ¢).
Distortion is considered negative when the actual image is closer to the axis
than the ideal image, and positive distortion is the converse. This physically
means that the image of a square suffering negative distortion will take on a
barrel-like appearance and is referred to as barrel distortion. In the case of pos-
itive distortion, the image takes on a pincushion-like appearance and is referred
to as pincushion distortion. To reiterate, distortion is an aperture independent
comatic aberration. For most lenses, distortion beyond the third-order term is
minimal.

4.3.6 Selection of Rays for Aberration Computation

Table 4.1 presents the five rays necessary to compute the astigmatic and
comatic aberrations for a particular set of (p, H). It should be noticed that
the first three rays all contained in the meridional plane. The remaining two
rays are skew rays. The sagittal astigmatism is the only aberration to utilize
x-coordinate ray data.

Table 4.1
Table of Rays Required to Compute the Astigmatic and Comatic Aberrations

p 0 p p p
0 0 0 90" 180°
Ray Coordinates 0 H H H H
SPH Y
TAST Y Y Y
SAST Y X
TCMA Y Y Y
SCMA Y Y
DIST Y
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4.3.7 Zonal Aberrations

Due to the great labor and tedious nature of tracing rays, early lens designers
carefully chose the rays to trace, which were primarily meridional rays and
lesser sagittal rays. Even if the meridional rays and sagittal rays came to perfect
focus, these designers understood the importance of tracing a few general skew
rays and the significant increase in computational labor required to do so. Why
was this important? At the time, the designers had little in-depth theoretical
knowledge to reach this conclusion; however, their experience was that such a
ray trace was necessary to assure the quality of the design.

Looking at the 37 optical aberration coefficients through the seventh order, it
can be shown that not all of the aberration coefficients are accounted for by the
determination of spherical aberration, coma, astigmatism, and distortion. The
“missing” aberration coefficients are pq, 19,714, and 7;7. To account for these
coefficients, several additional defect definitions are added to those already dis-
cussed.'* These are denoted as tangential and sagittal zonal astigmatism, and
tangential and sagittal zonal coma, which use evaluation-plane ray intercept
data from the two rays having coordinates of (p,45°, H,¢&) and (p,135°, H, &)
in addition to intercept data from the marginal ray.

4.3.8 Tangential and Sagittal Zonal Astigmatism

The defining equations for tangential zonal astigmatism and sagittal zonal
astigmatism and their polynomial expansion are as follows:

TZAST(p,H) = Y(p,45° H, &) — Y(p,135°, H,&) —V2Y (p,0°,0, &)
= 24ST,(p,45°, H)
(303 + 0a) H? + o H* + 1isH® + .. ]p (@-11)
= V2] [ (s ) 2+ (e R HE R
+(a+ L) H> + .. ]p° + ...
SZAST(p,H) = X(p,45°, H,&) + X (p,135°, H, &) — V2Y (p,0°,0,¢)
=24ST(p,45°, H)
(03 + 0a) H? + py H* +1i0H® + .. ]p (4-12)
-2 +[(u5 +%)H2 + (13 +%4)H4+...}p3
+[(r5+%6)H2+...]p5 +...

As explained previously, astigmatic aberrations computed using these
equations inherently have the defocus contribution subtracted thereby yielding
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aberrations terms not dependent on the image plane location. Notice that only
one of the four missing aberration coefficients, 714, appears in the sagittal zonal
astigmatism, and none in the tangential zonal astigmatism. This particular
aberration is formally known as seventh order, third-degree astigmatism.

4.3.9 Tangential and Sagittal Zonal Coma

The defining equations for tangential zonal coma and sagittal zonal coma
and their polynomial expansion are as follows:

o o
TZCMA(p7H): Y(p745 7H75)—ZY(p7135 7Haé) _ Y(O,OO,H,é)

= CMA,(p,45° H)

4-13
= [2020° + wp* + 12p° + .. JH (+13)
+ [P + (r7 —o)p* + . JH
+[tsp> +. . JH 4+ ...
X(p,45°, H X(p,135° H
SZCMA(p, H) = (p, 457, ,£)+2 (p,135%,H,¢)
= CMA,(p,45°, H)
11 (4-14)

= [o2p” + wap* + 13p® + .. |H
+ [top* +top* + .. |H?
+ [rip® + . H + .

As explained previously, comatic aberrations computed using these equa-
tions are not dependent on the image plane location. Notice that three of the
four missing aberration coefficients—yuq, 79, and tj;—appear in the sagittal
zonal coma, and that none are in the tangential zonal coma. These aberrations
are formally called fifth-order, third-degree coma; seventh-order, third-degree
coma; and seventh-order, fifth-degree coma. It should be observed that these
astigmatic and comatic terms are of a reasonably high order and degree, and
consequently are difficult in general to control during the design process.

4.3.10 Higher-Order Contributions

It should be evident at this point that the computation of aberrations using
real ray data is not an approximation of the aberrations, but is accurate. The
reason for this is that all of the aberration coefficients are incorporated within



4.3 Aberration Determination Using Ray Trace Data 127

the preceding aberration definitions. Just as in any design process, the designer
needs to appropriately select object heights and entrance pupil coordinates for
the design task at hand. In addition, the astigmatic aberrations were formulated
to remove dependence on defocusing of the image plane, with respect to the
Gaussian image plane. The comatic aberrations are inherently independent of
image plane location. It is also helpful to have an estimation of the higher-order
contributions to the aberration coefficients. Conrady was perhaps the first
to derive equations expressing the higher-order astigmatic and comatic
aberrations.

Referring to Figure 4.5, the field-dependent astigmatic aberrations are
divided into linear and nonlinear terms with respect to entrance pupil radius.
The tangential astigmatism previously defined contains both linear and nonlin-
ear terms. The nonlinear term is typically referred to as oblique spherical aber-
ration and is a particularly onerous aberration. It is actually rather simple to
compute oblique spherical aberration by subtracting the linear term of tangen-
tial astigmatism from the total tangential astigmatism term. The linear term is
determined by computing the tangential astigmatism for an entrance pupil
radius p, much smaller than the radius p being used to calculate the tangential
astigmatism itself. The linear term is appropriately scaled and subtracted from
the tangential astigmatism to obtain the tangential oblique spherical aberration.
This is expressed by the following equation.

TOSPH(p, H) = TAST(p, H) — - TAST(p,, H)
Po (4-15)

where p, < p.

In a like manner, the sagittal oblique spherical aberration is computed using the
following equation.

SOSPH(p, H) = SAST (p, H) — £ SAST(p,, H)
Po (4-16)
where p, < p.

Obviously the linear terms

L TAST(py, H) and pﬁSAST(pO, H)
0

Po
for the tangential and sagittal astigmatism, respectively, can be utilized in the
design process.
Similarly, the comatic aberration has an aperture dependent set of aberra-
tions, namely, linear coma and nonlinear coma. The nonlinear tangential coma
is found by subtracting the appropriately scaled linear tangential coma from the
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tangential coma. The linear tangential coma is determined by computing the
tangential coma for a comparatively small object height, that is, Hy < H. The
equation for the nonlinear tangential coma is given by

NLTCMA(p, H) = TCMA(p, H) — % TCMA(p, Hy) (4-17)
where Hy < H. In a like manner, the nonlinear sagittal coma is given by
NLSCMA(p, H) = SCMA(p, H) — Hﬂo SCMA(p, Hy) (4-18)
where Hy < H. The linear terms
Hﬁo TCMA(py, H) and HEOSCMA(,OO, H)

for the tangential and sagittal coma, respectively, can be utilized in the design
process.

4.4 CALCULATION OF SEIDEL ABERRATION
COEFFICIENTS

In 1856, Philip Ludwig von Seidel published his work on a systematic
method for computing third-order aberrations and provided explicit formulas.
These aberrations are commonly referred to as the Seidel aberrations and are
denoted in order of spherical, coma, astigmatism, Petzval (field curvature),
and distortion by a variety of symbols in different books and papers such as
(a) a1 though os; (b) SC, CC, AC, PC, and DC; (¢) Sy, Sy, ...,and Sy; (d) B,
F, C, P, and E; (e) oaao, 1431, 2a22, 2a20, and 3ay;; and others. When using any
computation scheme to determine the Seidel aberrations, care should be taken
to understand if the values are coefficients only, transverse aberrations, longitu-
dinal aberrations, or wave aberrations. In the following, a method will be pre-
sented for computing o; though o5 aberration coefficients from simply
marginal and principal paraxial ray data. By multiplying these coefficients by
the appropriate factor, transverse, longitudinal, and wave aberrations can be
obtained although it is often common that the symbols o; though o5 be used
after the transformation to transverse, longitudinal, or wave aberrations.

There are a variety of approaches to derive equations to compute the Seidel
aberration coefficients. The method followed here is after Buchdahl, but only
the general approach is presented as the details can be easily worked out.
By tracing a marginal paraxial ray and a principal paraxial ray, using Eq. (3-2),



4.4 Calculation of Seidel Aberration Coefficients 129

at a surface, it can be shown that
ynu — ynu = yn'a’ — yn'u’

where y and u represent the principal-ray values. This implies that ynu — ynu is
a constant across any surface. Using Eq. (3-3), it can be shown that (ynu — ynu),
at the /™ surface is equal to (ynii — ynu) i+1 at the (i+1)™ surface, which means
that the term is also constant within the space between the surfaces. This term

is called the optical invariant.

PROBLEM: Using Egs. (3-2) and (3-3), show that ynu — ynu is invariant across sur-
faces and in the space between surfaces.

Consider now an object located in the meridional plane having height H, =/
and H, = 0 since the object is aberration free. For a stigmatic optical system,
the paraxial and real ray image heights must be identical and related to the
object height by the magnification, that is, 4’ = mh = mH,. As stated previ-
ously, an imperfect system will suffer some ray aberration and the transverse
ray aberration is given by ¢, = H)f, — i’ and ¢, = H.. Now trace two rays from
the object with one starting at the base of the object and the other at the object’s
head. Using a subscript o to designate the object, it is evident that A = —/hn,u,
and is called the Lagrange invariant. So it follows that for the i'" surface,

, o
Ai = yinitly — Yinju; = hngu,

If the image is located at the k™ surface, then Vi =0 and A = —M'nguy. As
shown in the prior chapter, the lateral system magnification is given by
h o nyu,
m=—=—-.
h ni Uy,
Using the Lagrange invariant, the image height can be expressed in terms of the
axial ray final slope angle and the Lagrange invariant. This is simply

It is evident that the Lagrange invariant can be used to form intermediate
images by each surface comprising the system. In other words, the image formed
by the first surface of the object becomes the object for the second surface to
form an image, and so on until the final image is reached.

Buchdahl recognized that imaging could be achieved by propagating the
image surface by a surface utilizing the Lagrange invariant for an astigmatic
optical system.3 He then defined the Buchdahl quasi-invariant defined as

A = Hnu
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where H is the image height of a real ray in contrast to a paraxial ray. In the
paraxial limit, A reduces to A. Since A is based on the real ray height at each
intermediate image, the aberration at each surface causes the real-ray intermedi-
ate image heights to differ from the corresponding paraxial image heights,
which is why Buchdahl called A the quasi-invariant. Now, because image height
for the /" surface is the same as the object height for the (i+1)™ surface,

H ,/ =H
and it is apparent that
A; = A

Consequently, it follows that at the final system image located at the k'" surface
(image plane),

k
Ap =AM+ AA;

i=1

where A represents the difference between A before and after refraction/
reflection at a surface.
So AA; = A; — A;. Using the above definition for A, we obtain

k
Z AA; = H'mwy — Hnyu,.
i=1

Recalling that H}’, =h'+¢, and the lateral system magnification definition, it
follows that

k
AA; = eynuy.
—

1

For ¢,, the Lagrange invariant is zero. The ray aberration can now be defined as
follows,

k k
ST AA, Y AA,
i=1 ' i=1 '
gy=———and g, =———.
N U niUj
The total ray aberration is the sum of the individual surface contributions. It is
important to understand that the surface contributions are related to the final
image rather than the intermediate images. Although it is possible to compute
the transverse aberration of the intermediate images by using the local marginal
ray slope angle n;u; rather than nyuy, these aberrations are not additive, that is, they
may not be added together to get the final image aberration. Computing the trans-
verse aberration at the intermediate images has no practical utility or meaning.
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A general skew ray can be specified at the /" surface by its spatial coordi-
nates (X;, Y;, Z;) and direction cosines (K;, L;, M;). The paraxial ray coordinates
(y,nu) can be generalized in the following manner. In the prior chapter, it was
shown that the paraxial ray height at a surface is actually the height at the sur-
face tangent plane. In addition, nu is properly interpreted as ntanu. For a
meridional ray, the real ray coordinates can be written in a form similar to
the paraxial ray coordinates as (Y, U,) where

L
UyEM:tanU

Buchdahl referred to the (Y, U,) coordinates as canonical coordinates and
they can be used for ray tracing as well; however, the prime object is to deter-
mine AA for each surface. Although the derivation of AA is tedious, it is
straightforward to show that

AA:yn(U+cY)(%—l) +niZAU (4-19)

where AU = Uy — U;. The change in the Buchdahl quasi-invariant across a
surface boundary is given exactly by Eq. (4-19).

The canonical coordinates (Y;, U;) are nonlinear functions of the object ray
coordinates (Y7, U;). Consequently, the coordinate values needed to solve
Eq. (4-19) are unknown. The solution is to perform a series expansion of AA
in terms of the canonical coordinates. It can be shown that AA can be expanded
as an odd-order polynomial, namely

1 3 5
AAN=AA+AAN+AAN+. ..

7
where A represents the y"-order of the polynomial expansion of AA. Since
1 1 3 5

A=/, then AA=AL=0 and AA=AA+AA+.... This is consistent with
the premise that first-order or paraxial optics is aberration free. Now, because

the ray aberrations are linearly related to AA, we can write

35 7
e=¢+e+ée+. ...

which is a statement that the ray aberrations can be expressed as a summation
of third, fifth, seventh, and higher orders. Once the expansion is completed, it is
observed that the third-order term of AA depends only on the /inear part of the
approximations of Y and U while the nonlinear parts of these approximations
give rise to fifth- and higher-order aberrations. Seidel and others realized that
the third-order aberrations can be computed using data from only two paraxial
rays (marginal and principal).
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An orderly iterative process for computing the higher-order aberration terms
was achieved by Buchdahl somewhat less than a hundred years after Seidel pub-
lished his work. As mentioned previously, from Buchdahl’s work and that of
others, it became understood that aberration coefficients comprise intrinsic
and extrinsic contributions.'®> Extrinsic contributions of, say, the i surface
affect the aberration coefficient values of subsequent surfaces while the intrinsic
contributions remain local to that surface. Third-order aberration coefficients
do not have extrinsic contributions which means these coefficients are
decoupled from one another unlike the higher-order aberration coefficients.
The nonlinear parts of the approximations of Y and U, and the existence of
the extrinsic contributions are reasons the general lens design problem is quite
nonlinear and often difficult to optimize.

In actual practice, the lens designer observes that the higher the order of the
aberration, the more stable the aberration is with respect to changes in construc-
tional parameters such as curvature and thickness. For example, the values of
the third-order aberrations will change much more rapidly, in general, than
the fifth-order aberrations if a curvature is changed. It is generally understood
by lens designers that if a lens suffers from higher-order aberrations, some
significant change to the current optical configuration will be necessary.

With further algebraic effort, AA is transformed into the third-order form of
¢, and ¢, which can be written in terms of paraxial entering ray coordinates,
(p,0, H), namely,

ex = a1p° sin(0) + a2p” H sin(20) + (03 + 64)pH? sin(0)
——

SPHERICAL LINEAR COMA LINEAR ASTIGMATISM

&y = 01p° cos(0) + a2p> H(2 + c0s(20)) + (303 + 04)pH* cos(0) +  osH’

SPHERICAL LINEAR COMA LINEAR ASTIGMATISM DISTORTION

The third-order aberration coefficients, g; through s, for a given optical sys-
tem can be calculated using the ray data obtained by tracing the marginal and
principal paraxial rays using the following equations. The coefficient form with
the presubscript is used to denote the aberration contribution of the /™ surface.
It is important to understand that these coefficients can be used to compute
transverse, longitudinal, and wave aberrations, which are related by scaling
factors.

T=cy+ ni—1Ui—1
nj—1
i = ¢y + ol

i—1
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niu;

i,-—}—u,-:i,-—l—
i

iyt (nio — ) (i + w;)

ig1
n;
i02 = (;i01
2
i03 = (;i01
— - 2

Ci(ni—l - ni)(yn—lu—l - yn—lu—l)

i04 =
ni_1n;

i0s = qi(q7i01 + 104)

The transverse third-order aberration coefficients are determined by summa-
tion of the surface contributions and then multiplying by the factor

-1
2nkuk

Notice that the Petzval term a4 is also multiplied by the square of the Lagrange
invariant, yn_ju_y — yn_ju_j.

k
= ;01 Spherical Aberration
gl 2nkuk;lm pheri 1
1 &

0y = D l:Zl ;02 Coma
. o
Z ;03 Astigmatism (4-20)

i=1

3 =
Zn/(uk

_ - 2 k
—\yn_1u_1 —yn_1u_
04 = b b4 ) ;04 Petzval
2nkuk -

i=

-1 & .
5 = Z ;05 Distortion
2nkuk =1

To convert these values into longitudinal aberrations, the ﬁ factor is

U
replaced by anuz. Transverse and longitudinal aberrations are in lens units.
ke
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1

Conversion to wave aberrations requires that the S factor be replaced as
follows:

'k

| Kk

o] = ﬁ; ;01 Spherical aberration
| &

0y = ﬂ;ifh Coma

k

1 . .
03 = ﬁz ;03 Astigmatism (4-21)
" =1
- - 2k
g4 = (yniluil 4Ayn71u71) Z,‘O’4 Petzval
‘ i=1
1 &
05 = 272 ;05 Distortion

i=1

where / is the wavelength and the wave aberrations are measured at the edge of
the exit pupil in units of wavelength.

ENDNOTES
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H. A. Buchdahl, Optical Aberration Coefficients, Dover Publications, New York (1968).
Historically, lens designers used a left-hand Cartesian coordinate system with positive slopes
of rays bending downwards. This was done for computational convenience and error mitiga-
tion when doing manual computations. Most current optical design and analysis software
packages use the right-hand Cartesian coordinate system.

It should be understood that astigmatic means not stigmatic. This should not be confused
with astigmatism or more specific astigmatic aberrations, which will be discussed later. In
a like manner, the term anastigmatic lens means a highly corrected lens having sensibly per-
fect imagery in contrast to meaning a stigmatic lens (not not stigmatic).

The entrance pupil is the image of the aperture stop formed by all of the optical elements
preceding the aperture stop. The exit pupil is the image of the aperture stop formed by all
of the optical elements following the aperture stop.

Note that changing the sign of p is the same as changing the signs of both X and Y, or the
angle 6 by m.

The value of p can have values of either sign. Consequently, a ray having entrance pupil
coordinates of (—p,0°) is equivalent to having entrance pupil coordinates of (p,180°).

The number of independent aberration coefficients for the n''-order is given by

(n+3)(n+5)
8

For n = 1, or the first-order, there are two independent coefficients, namely magnification
and defocus.

-1
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8 G. C. Steward, The Symmetrical Optical System, Cambridge University Press (1928).

° A. E. Conrady, Applied Optics and Optical Design, Dover Publications, New York; Part I
(1957), Part 11 (1960).

10" Andrew Rakich and Raymond Wilson, “Evidence supporting the primacy of Joseph Petzval
in the discovery of aberration coefficients and their application to lens design,” SPIE Proc.
6668:66680B (2007).

' A. E. Conrady, p. 289-290.

12 R. Barry Johnson, “A Historical perspective on the understanding optical aberrations,”
SPIE Proc., CR41:18-29 (1992).

13 A negative singlet lens has overcorrected or positive spherical aberration.

14 If the primary coefficients negligible, then the identity uo = p7 — g is reasonably valid if the
system is well corrected. See previous Buchdahl Eq. (31.8).

1S Extrinsic contributions are also referred to as transfer contributions.
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Chapter 5

Chromatic Aberration

5.1 INTRODUCTION

In 1661, Huygens created the two-lens compound negative eyepiece which
generally corrected lateral color, that is, yielding an image of a white object
which subtends the same angle for all colors (see Chapter 16). This was a
remarkable achievement and won him acclaim at the scientific conferences,
since other eyepieces of the day yielded poor performance and contained often
5, 8, and even 19 lenses. An interesting point is that Huygens had no concept
of achromatizing his eyepieces or any other kind of optical system for that mat-
ter; nevertheless, it worked better than other eyepieces of the day. The reason
for Huygens’ lack of understanding was that no one understood the dispersive
properties of glass.

About two years later, Newton began to study the dispersion of glass, in
part, to understand why, the Huygens compound eyepiece was corrected for lat-
eral color. Newton was the first, it should be noted, to develop the concept of
the dispersion of glass. Remarkably, Newton failed to recognize one important
property of glass—different glasses have different dispersions. In contrast, he
put forth the concept that all glasses have the same dispersion; consequently,
he asserted that one could not achieve an achromatic system. Newton was also
the first to differentiate between the aberrations of spherical and color by
assigning the spherical aberration to the surface and the color to the materials.
He was the first to explain that spherical aberration varied with the cube of the
aperture, and published the results in his book OPTICKS.! Also, Newton pre-
sented a detailed description of chromatic aberrations.

After the work by Newton, there was a lull in the development of optical
aberrations of about 60 years. Then in 1729, Chester Hall discovered, rather
accidentally it is noted, that achromatic lenses could be constructed by cement-
ing positive and negative lenses together when the lenses were made of different
glasses. By achromatic, it was meant only in the context that the chromatic

Copyright © 2010, Elsevier Inc. All rights reserved. 137
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aberrations of the lenses were not corrected, but notably reduced. Hall’s discov-
ery gave rise to renewed research into understanding optical materials and
recognizing that the dispersion of glasses can vary from type to type. John
Dolland, a London optician, in 1757 began to design and fabricate a variety
of achromatic lenses after he empirically determined by experimenting with a
variety of positive and negative lens combinations that longitudinal chromatic
aberration could be mitigated by combining a convex crown-glass lens with a
weaker concave flint-glass lens. According to Conrady, John Dolland produced
the first achromatic telescope objective and was the first person to patent the
achromatic doublet.’

The Swedish mathematician Klingenstierna, in 1760, was the first to develop
a mathematical theory of achromatic lenses and, what was called at that time,
the aplanatic lens. Part of Klingenstierna’s work was based on John Dolland’s
initial understanding of achromatic lenses. The next year, Clairaut was the first
to explain the concept of secondary spectrum (see Section 5.5) and he also
observed that certain crown and flint glasses had different partial dispersions.
He further deduced theorems for pairing glasses, not unlike those found in mod-
ern books. Also that same year, John Dolland made an effort to correct second-
ary spectrum by the use of a third glass. In 1764, D’Alembert described a triple
glass objective in which he also distinguished between longitudinal and trans-
verse features of spherical aberration and chromatic aberration.?

A discussion was presented in Chapter 2 about the refractive index of glass and
other optical materials changing with wavelength. From this behavior of optical
materials, it follows that every property of a lens depending on its refractive index
will also change with wavelength. This includes the focal length, the back focus,
the spherical aberration, field curvature, and all of the other aberrations. In this
chapter, we explore field-independent chromatic aberrations* while field-dependent
chromatic aberrations (including lateral color) are discussed in Chapter 11.

Figure 5.1 depicts the chromatic aberration of a single positive lens having
“white” light incident upon the lens. As will be mentioned in Section 5.9.1, it
is common to select F (blue), d (yellow), and C (red) spectral lines for design
and analysis of visual systems.’ As seen in the figure, the focus for F light is

«— d focus
C (red) F focus C focus
F (blue)

Transverse
axial

_f chromatic
aberration

Longitudinal axial
chromatic aberration

Figure 5.1 Undercorrected chromatic aberration of a simple lens.
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inside the paraxial focus for d light while the C light focus lies to the outside.
This should be evident since the refractive index is progressively greater for C,
d, and F light thereby increasing the optical power of the lens
(¢, = (ny — 1)(c1 — ¢2)). The longitudinal axial chromatic aberration is given
by L., = Ly — L. (see 5.2.3) and transverse axial chromatic aberration® is given

by L, tanu’. A simple converging lens that is uncorrected for aberrations, as

shown in Figure 5.1, is said to have undercorrected aberrations. If the sign of
an aberration of the optical system is opposite to that of a simple converging
lens, the lens system is said to be overcorrected. When a specific aberration is
made zero or less than some desired tolerance, the lens system is said to be
corrected.

5.2 SPHEROCHROMATISM OF A CEMENTED
DOUBLET

Consider a cemented doublet objective lens, as illustrated in Figure 5.2. The
prescription of this lens, repeated from Section 2.5, is as follows:

r; = 7.3895 c; = 0.135327
dy =1.05 n = 1.517
= —5.1784 ¢, = —0.19311
d, =0.40 ny = 1.649
r3 = —16.2225 c3 = —0.06164
If we now trace through it a marginal, zonal, and paraxial ray in each of five

wavelengths, we obtain Table 5.1, which shows image distances expressed rela-
tive to the paraxial focus in D light.

Figure 5.2 A cemented doublet objective.
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Table 5.1

Image Distance versus Wavelength Relative to the Paraxial Focus

Wavelength A (0.7665)  C(0.6563) D (0.5893)  F(0.4861) g (0.4358)
Crown index 1.51179 1.51461 1.517 1.52262 1.52690
Flint index 1.63754 1.64355 1.649 1.66275 1.67408
Marginal ¥ = 2 0.0203 0.0100 0.0081 0.0265 0.0588
Zonal Y = 1.4 0.0059 ~0.0101 ~0.0176 -0.0153 0.0025
Paraxial 0.0327 0.0121 0 -0.0101 -0.0033

These data may be plotted in two ways. First we can plot the longitudinal
spherical aberration against aperture, separately in each wavelength
(Figure 5.3a); and second, we can plot aberration against wavelength for each
zone (Figure 5.3b). The first set of curves represents the chromatic variation
of spherical aberration, or “spherochromatism,” and the second set represents
the chromatic aberration curves for the three zones. On these curves we notice
several specific aberrations.

5.2.1 Spherical Aberration (LA’)

This is given by L! — laraxiar 10 brightest (D) light. It has the value

‘marginal
0.0081 in this example, and is slightly overcorrected.

5.2.2 Zonal Aberration (LZA’)

This is given by L) .1 = lraxia 10 D light. It has the value ~0.0175, and is
undercorrected. The best compromise between marginal and zonal aberration
for photographic objectives is generally to secure that LA’ + LZA' = 0, but

for visual systems it is better to have LA’ = 0.

5.2.3 Chromatic Aberration (L)

This is given by Lp — L, and its magnitude varies from zone to zone
(Figure 5.4) as shown in Table 5.2.
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Figure 5.3 Spherochromatism (f = 12). (a) Chromatic variation of spherical aberration;
(b) chromatic aberration for three zones.

If no zone is specified, we generally refer to the 0.7 zonal chromatic aberra-
tion because zero zonal chromatic aberration is the best compromise for a visual
system. Photographic lenses, on the other hand, are generally stopped down
somewhat in use, and it is often better to unite the extreme colored foci for
about the 0.4 zone instead of the 0.7 zone suggested here.
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002 0 002 ch

Figure 5.4 Variation of chromatic aberration with aperture.

Table 5.2

Chromatic Aberration for Three Zones in the Aperture

Zone L, =L, —L¢
Marginal +0.0165
0.7 Zonal -0.0052
Paraxial -0.0222

Chromatic aberration can be represented as a power series of the ray height Y:
chromatic aberration = L, =a+bY* +c¥* +...

The constant term « is the paraxial or “primary” chromatic aberration. The
secondary term »Y¥? and the tertiary term ¢ Y* represent the variation of chro-
matic aberration with aperture as shown in Figure 5.4.

5.2.4 Secondary Spectrum

Secondary spectrum is generally expressed as the distance of D focus from the
combined C — F focus, taken at the height Y at which the C and F curves inter-
sect. In the example shown later in this section, the C and F curves intersect at
about Y = 1.6, and at that height the other wavelengths depart from the
combined C and F focus by

Spectrum line A C D F g
Departure of focus 0.005 0 -0.016 0 0.012
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In the absence of secondary spectrum the curves in Figure 5.3b would all be
straight lines. The fact that achromatizing a lens for two colors fails to unite the
other colors is known as secondary spectrum; it should not be confused with the
secondary chromatic aberration mentioned in Section 5.2.3.

5.2.5 Spherochromatism

This is the chromatic variation of spherical aberration and is expressed as the
difference between the marginal spherical aberration in F and C light:

spherochromatism = (L' — ") ,.— (L' — I')
— (Lp— LU~ 11)
= marginal chromatic aberration
— paraxial chromatic aberration
=0.0165+ 0.0222 = 0.0386

5.3 CONTRIBUTION OF A SINGLE SURFACE TO
THE PRIMARY CHROMATIC ABERRATION

To determine the contribution of a single spherical surface to the paraxial
chromatic aberration of a lens, we recall from Section 3.1.5 that

n n n-—n

ol

and write it in F and C light as

np  np  Np—np ng  ne  ng—ne
== and —-—--—= .
IF IF r lC lC r

Subtracting F from C gives

ne np np  np_ (ng —np) = (nc —nr)

[T P r

We now write (np— n¢) = An; hence ngp = nc + An and np = n; + An’. Since
for all optical glasses the difference between ny and ne is a small fraction of ny
and the d line is not very far from being midway between the F and C lines, only
a small inaccuracy is introduced by replacing both nr and n¢ with ny; = n, and
similarly for the primed terms. If in the denominator, we also replace /. and /-
with [/, = I’, and similarly for the unprimed terms, we have that

n n

I 1 1 1
lé(l;:_llC) lz(lF—lc)ZAn(;—7)—An’(;_f).
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We next multiply through by y?, noting that (1/r — 1/I) = i/y. Then
UL, — Lo, = yiln — yi' An' = yni(An/n — An' /n’)

We write this expression for every surface and add. Much cancellation occurs
because of the identities 7| = ny,u} = up, and Ll = Len>. Hence, if there are
k surfaces, we get

('L, — (nu*Lep), = Zyni(An/n — An'/n")
and dividing through by (n'u?), gives
2 : li
. nuj yni (An An
Lo = L (—2) D (7 - 7) (>-12)

K%k k

The quantity within the summation sign is a surface contribution to the longitu-
dinal paraxial chromatic aberration and the first term is a chromatic aberration
of the object. Thus we can write that the resultant longitudinal paraxial chro-

matic aberration is
yni (An  An’
wC = (7 ) (5-1b)

The chromatic aberration of the object, if any, is transferred to the image by
the ordinary longitudinal magnification rule (see Section 3.2.2) and added
to the aberration arising at the surfaces of the lens.

In Table 5.3 we have used these formulas to calculate the paraxial chromatic
aberration contributions of the three surfaces of the cemented doublet already
used several times. The sum of the contributions is —0.022255. For comparison,
we note from the data in Table 5.1 that [/, —/; = —0.022178 (shown with
more significant digits than in Table 5.1). The agreement between this contribu-
tion formula and actual paraxial ray tracing is extremely close (about 0.35%) in
spite of the various small approximations that we made in deriving the formula.

Table 5.3

Primary Chromatic Aberration Contributions

y 2 1.903148 1.880973
n 1 1.517 1.649

i 0.270654 ~0.459757 ~0.171386

1up? 36 36 36

np—nc=An 0 0.00801 0.01920 0
An/n 0 0.005280 0.011643 0
(An/n — An'/n") -0.005280 -0.006363 0.011643

L C —0.105746 0.312485 —-0.228994 >~ =-0.022255
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5.4 CONTRIBUTION OF A THIN ELEMENT
IN A SYSTEM TO THE PARAXIAL
CHROMATIC ABERRATION

The classical relation between object and image distances for a thin lens is

1 1

—=—+(n—1)c

p= =1
where ¢ = ¢; — ¢ = Ac and is known as the total curvature or element curvature.
We write this imaging equation in F and C light and subtract F from C. This
gives

e =1y le—1
== e e =

1
- 5-2
s (5-2)

Multiplying by (-y°) gives

2 2 2 )
y y Y y
L (1_2) ~ Len (,—2) A Liyu'? = Lontt® = — 7

We write this expression for each thin element in the system and add up. After
much cancellation, and assuming that there are k elements in the system, we get

2
2 2 J
Ly — Lenuy = — ZW

Finally, dividing through by «? gives an expression for the chromatic aberration
of the image as

w)> 1 2
()

In these expressions, f refers to the focal length of each individual thin ele-
ment, and V refers to its Abbe number or reciprocal dispersive power,

V= ng — 1

ngp —Nnc

The magnitude of V' varies from 25 for a very dense flint to about 75 for an
extra light crown. Every type of optical glass can thus be represented by a point
on a chart connecting the mean refractive index n; with the ¥ number
(Figure 5.5). The vertical line at ¥ = 50 divides the so-called crown (kron in
German) and flint types, although these names have long lost any significance.
However, we still use the terms loosely to represent glasses having relatively low
and high dispersive powers. This diagram was also shown in the first edition
of Lens Design Fundamentals using Schott’s 1973 catalog and is similar today
although some specific glasses have been deleted and others added.
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Figure 5.5 Glass chart.

The narrow band of crowns, light flints, flints, and dense flints in Figure 5.5
contains all the older soda-lime-silica glasses having a progressively increasing
lead content. Above this band comes, first, the barium glasses and then (since
1938) a wide range of lanthanum or rare-earth glasses. In the early 1970s, some
titanium flints were introduced, which fall below the old crown-flint line. At
the far left are found some fluor and phosphate crowns, some of which have
extreme properties, introduced about the same time. Because optical glasses
vary enormously in price, from a few dollars to over $500 a pound, the lens
designer must watch the price catalog very carefully when selecting glasses to
be used in any particular lens.

In the ensuing years, a number of changes have been made to the formulation
and availability of glasses by the various glass manufacturers to achieve more eco-
logically acceptable glasses by, for example, removing lead, arsenic, and/or radio-
active materials from many of them. In the early 1990s, the interesting deep crown
TiK (alkali alumoborosilicate), titanium flint TiF, and titanium short-flint TiSF
(titanium alkali alumoborosilicate) were deleted by Schott. However, Ohara
S-FTM16 and Hoya FF5 are presently offered as a substitute for Schott TiFNS.
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The reason for using lead, arsenic, and other materials in glasses considered non-
ecologically acceptable is that the optical properties achievable could often be most
helpful in realizing higher performance optical designs with fewer glasses. Starting
in the 1970s with the growth of pollution reduction, glass manufacturers began
exploring ways to remove toxic materials such as cadmium and later arsenic, lead,
and so on. The challenge these glass companies had, and still have, was to develop
new glass compositions that are ecologically acceptable while still providing ade-
quate richness of properties for lens designers to utilize in their designs.

Significant success has been realized by the manufacturers, but development
of new compositions of glass continues to meet optical performance, manufac-
turability, and cost objectives. Nikon is an excellent example of an integrated
corporation that makes its own glasses, manufactures its optical components,
and produces a wide variety of optical products. In about 1990, approximately
100 types of its optical glasses contained arsenic or lead. By 1999, the company
was using new ecologically acceptable glasses throughout its optical design
department. In 2000, new optical designs of Nikon consumer products (cam-
eras, binoculars, etc.) utilized essentially none of the new glasses while in
2008, the use of the new glasses had risen to 100%.

Returning to Eq. (5-3) we see that the paraxial chromatic aberration of an
isolated single thin lens in air is given by

[T A
AN

and if the object is very distant, this becomes merely
Lc/:h: _f/V

The chromatic aberration of a single thin lens with a distant object is therefore
equal to the focal length of the lens divided by the ¥ number of the glass. It thus
falls between 1/25 and 1/75 of the focal length, depending on the type of glass
used in its construction.

For a thin system of lenses in close contact (see Section 3.4.6), we can write
Eq. (5-2) for each element and then add. This gives

L, L
35 Tean--17

The quantity on the left-hand side we call the chromatic residual R, which is zero
for an achromatic lens with a real object. If the total power of the thin-lens sys-
tem is @, then

D= Zqﬁ = Z(VcAn) and R = —Z(cAn)
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For the very common case of a thin doublet, these equations become

1/F'=® = V,(cAn), + Vy(cAn),
—R = (cAn),+ (cAn),

Solving for ¢, and ¢, gives the important relationships

1 n RV,
Cqg =
F'(Vy—Vy)An,  (Vy— Vi)An, 5.4)
1 RV, (-
cp

S F0s—Vadn | (Ve = Va)An,

These are the so-called (c,, ¢;) equations which are used to start the design of
any thin achromatic doublet.

In most practical cases the chromatic residual R is zero and then only the
first terms need be considered. The condition for achromatism is then indepen-
dent of the object distance, and we say that achromatism of a thin system is
“stable” with regard to object distance. Notice also that ¢, and ¢, do not
depend explicitly upon the refractive index of each material.

Since for a thin lens f” = 1/¢(n — 1), we can convert the (¢,, ¢;) formulas into
the corresponding focal-length formulas for R = 0:

y Va - Vb V[) - Va
f‘; = F/ (T) and f}; = Fl <T> (5-5)

For an ordinary crown glass with ¥, = 60 and an ordinary flint with
Vi, = 36, we have V, — V;, = 24, and the power of the crown element is seen
to be 2.5 times the power of the combination, while the power of the flint is
—1.5 times as strong as the doublet. Hence, to achromatize a thin lens requires
the use of a crown element 2.5 times as strong as the element itself (Figure 5.6).

Consequently, although a single lens of aperture f/1 is not excessively strong,
it is virtually impossible to make an achromat of aperture much over f/1.5.

It is important to note that chromatic aberration depends only on lens powers
and not at all on bendings or surface configuration. Attempts to modify the chro-
matic correction of a lens by hand rubbing on one of the surfaces are generally
quite unsuccessful, because it requires a very large change in the lens to produce
a noticeable change in the chromatic aberration.

L
i\

Figure 5.6 An f/3.5 single lens and an achromat of the same focal length.
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5.5 PARAXIAL SECONDARY SPECTRUM

We have so far regarded an achromatic lens as one in which the C and F foci
are coincident. However, as we have seen, in such a case the d (yellow) focus
falls short and the g (blue) focus of the same zone falls long. To determine the
magnitude of the paraxial secondary spectrum of a lens in which the paraxial
C and F foci coincide, we write the chromatic aberration contribution of a single
thin element, for two wavelengths 1 and F, as

2
yoc n, —nr
L, C(for 4 to F) = _u_’?(m —np) = L/chc<n; _ nC>

K
The quantity in parentheses is another intrinsic property of the glass, known as
the partial dispersion ratio from 1 to F. It is generally written P,z Hence for any
succession of thin elements

1 Py?
G=lp =2 PrLaO) = =5 &) (5-6)
k

For the case of a thin achromatic doublet, y is the same for both elements,
and Eq. (5-5) shows that [V, = —f},V;, = F'(V,— V}); hence

[ T 7 P, — Py
erfF(n_n (5-7)

For any particular pair of wavelengths, say F and g, we can plot the available
types of glass on a graph connecting P,r with V, as in Figure 5.7. All the com-
mon types of glass lie on a straight line that rises slightly for the very dense
flints. Below this line come the “short” glasses, which exhibit an unusually short
blue end to the spectrum; these are mostly lanthanum crowns and so-called
short flints (KzF and KzFS types). Above the line are a few “long” crowns with
an unusually stretched blue spectrum (this region also contains some plastics
and crystals such as fluorite). The titanium flints also fall above the line, as
can be seen.

If we join the points belonging to the two glasses used to make an achromatic
doublet, the slope of the line is given by

Pa_Pb
Vie—TVs

tany =

and clearly the secondary spectrum is given by F’ tan . The fact that most of
the ordinary glasses lie on a straight line indicates that the secondary spectrum
will be about the same for any reasonable selection of glass types. For example,
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Figure 5.7 Partial dispersion ratio versus dispersive power of optical glasses.

if we choose Schott’s N-K5 and N-F2, we find that the secondary spectrum for
a number of wavelengths, assuming a focal length of 10, is

r—F d-F g-F h-F

N-K5 V,=59.48 P,=-1.17372 -0.69558 0.54417 0.99499

N-F2 Vy = 36.43 P, =-1.16275 -0.70682 0.58813 1.10340
I - I = 0.00476 -0.00488 0.01907 0.047033

We can reduce the secondary spectrum by choosing a long crown, such as
fluorite,” with a matching dense barium crown glass as the flint element®:

r—F d-F g-F h-F
Fluorite’ V,=9523 P, =-1.17428 -0.69579 0.53775 0.98112
N-SK5 V, =61.27 P, =-1.17512 -0.69468 0.53973 0.98690

I} — I = —0.00025 0.00033 0.00058 0.00170
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This amount of secondary spectrum is obviously vastly smaller than we found
using ordinary glasses. On the other hand, we shall increase the secondary spec-
trum if we use a normal crown with a dense flint such as N-SF15 glass:

d-F g-F
N-K5 V,=59.48 P, = -0.69558 0.54417
N-SF15 Vi, = 30.20 P, = -0.71040 0.60366

I, — I = -0.00506  —0.02032

These residuals are about 1.5 times as large as for the normal glasses listed here.

In view of the apparent inevitability of secondary spectrum, we may wonder
why it is necessary to achromatize a lens at all. This question will be immediately
answered by a glance at Figure 5.8, where we have plotted to the same scale
the paraxial secondary spectrum curve of the example in Figure 5.3b and the
corresponding curve for a simple lens of crown glass, N-K5, both with /7 = 10.

If a lens has a small residual of primary chromatic aberration, the secondary
spectrum curve will become tilted. The three curves sketched in Figure 5.9 show
what happens in this case. It will be noticed that when the chromatic aberration
is undercorrected the wavelength of the minimum focus moves toward the blue;
for a C — F achromat it falls in the yellow-green; and for an overcorrected lens

10.15 t t t t t t t

10.10 +

10.05 +

10.00 Achromat

9.95 +

9.90 +

Thin-lens focal length

Single lens
9.85 Tt

9.80 t t t t t - -
040 045 050 055 060 065 070 0.75 0.80

Wavelength

Figure 5.8 Comparison of an achromat with a single lens.
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Figure 5.9 Effect of chromatic residual in a cemented doublet (/’ = 10): (a) Undercorrected
by —0.03, (b) achromat, and (c) overcorrected by +0.03.

it rises up toward the red. Lenses for use in the near infrared are often decidedly
overcorrected, whereas lenses intended for use with color-blind film or bromide
paper should be chromatically undercorrected.

In any achromat of high aperture, the spherochromatism and other residual
aberrations are likely to be so much greater than the secondary spectrum that
the latter can often be completely ignored. However, in a low-aperture lens of
long focal length, such as an astronomical telescope objective in which the other
aberration residuals are either corrected in the design or removed by hand figur-
ing, the secondary spectrum may well be the only outstanding residual, and it is
then important to consider the possibility of removing it by a suitable choice of
special types of glass. For example, fluorite is commonly used in microscope
objectives for this purpose.

5.6 PREDESIGN OF A THIN THREE-LENS
APOCHROMAT

As there are many practical objections to the use of fluorite as a means for
reducing secondary spectrum, it is often preferred to unite three wavelengths
at a common focus by the use of three different types of glass.
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For a thin system with a very distant object, which is achromatized and also
corrected for secondary spectrum, we have the three relationships

Z(Vc An) =® (power)
Z(c An) =0 (achromatism)
Z(Pc An) =0 (secondary spectrum)
For a thin three-lens apochromat, these equations can be extended to

Va(ca, Ana) + Vi (cp Anp) + Ve(ce Ane) = @
(caAny) + (ch Anp) + (cc An.) =0
P,(cqAng) + Py(ch Anp) + Po(ccAn.) =0

These can be solved for the three curvatures as follows:

_ 1 P, — P,
“CTFEV,— VI \ An,
1 P.—P,
Cp =
FEWV,— Vo \ An

1 Pa - Pb
Ce =
FEWV,—VJ\ An,

Note the cyclic order of the terms, and that the coefficient in front of the par-
entheses is the same in each case.

The meaning of E is as follows: If we plot the three chosen glasses on the
P — V graph shown in Figure 5.10 and then join the three points to form a tri-
angle, E is the vertical distance of the middle glass from the line joining the two
outer glasses, E being considered negative if the middle glass falls below the line.
Algebraically E is computed by

E:Va(Pb_Pc)+Vb(Pc_Pa)+Vc(Pa_Pb)

Va_Vc
V=V,
=(P.— P, —(P.— P
o= (=) - (P )

Since E appears in the denominator of all three ¢ expressions, it is clear that the
lenses will become infinitely strong if all three glasses fall on a straight line, and
conversely, all the elements will become as weak as possible if we select glass
types having a large E value. The most usual choice is some kind of crown for
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Figure 5.10 P — V graph of the glasses used in a three-lens apochromat.

lens a, a very dense flint for lens ¢, and a short flint or lanthanum crown for the
intermediate lens . Once the three curvatures have been calculated, the actual
lenses can be assembled in any order.

As an example in the use of these formulas, we will select three glasses form-
ing a wide triangle on the graph of Figure 5.10, namely, Schott’s N-PK51,
N-KZFS4, and N-SF15. Since the calculated curvatures depend on the differ-
ences between the P numbers, it is necessary to know these to many decimal
places, requiring a knowledge of the individual refractive indices to about seven
decimals, which is beyond the capability of any measurement procedure. We
therefore use the interpolation formula given in the current Schott catalog to
calculate refractive indices to the required precision. Failure to do this will result
in such scattered points that it is impossible to plot a smooth chromatic spec-
trum focus curve for the completed design.

To unite the C, e, and g lines at a common focus, we use Table 5.4. In this

case, Voo = ﬁ, analogous to the commonly used Abbe number formula for
g o
C, d, and F lines, and P, = ;’*f:c Using these somewhat artificially accurate

numbers, we calculate the value of E as —0.009744, and assume that the
focal length is F/ = 10 mm, which gives ¢, = 0.5461855, ¢, = —0.3830219, and
¢. = 0.0661602. As illustrated in Figure 5.10, a negative value of E means that
the glass having the intermediate dispersion lies below the line connecting the
other two glasses.
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Table 5.4

Depression and Partial Depression for Glasses Used in a Three-Lens Apochromatic

Lens Glass n, An =ny, —nc ng — N, P, Vec

a N-PKS51 1.5301922 0.0105790 0.0068488 0.6473933 50.117231
b N-KZFS4 1.6166360 0.0214990 0.0140786 0.6544848 28.682091
¢ N-SF15 1.7043784 0.0371291 0.0249650 0.6723844 18.971081

Using other refractive indices, also calculated by the interpolation formula, we
can plot the chromatic spectrum focus curve that duly passes through the points
for C, e, and g as required (Figure 5.11). It can be seen that there is a very small
residual of tertiary spectrum, the foci for the d and F lines being slightly back
and forward, respectively, while the two ends of the curve move rapidly inward
toward the lens. In this particular configuration, a fourth crossing at 0.39 um
occurs. The peak residual tertiary chromatic aberration for this apochromat is

0.00015
10
which is insignificant. By comparison, the peak residual tertiary chromatic aber-

ration for an ordinary doublet such as shown in Figure 5.8 is about 0.2% or
more than a 100 times greater than for this apochromat.

x 100% = 0.0015%

0.7000 T T T T T T T T

0.6680 1
0.6360 1
0.6040 T
0.5720 B
0.5400 - N
0.5080 1

0.4760 F T

Wavelength (um)

0.4440 ]

0.3900 um 5
0.4120 - \ > h ]

0.3800 L L T | L L L L
-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5

Focal shift (um)

Figure 5.11 Tertiary spectrum of a 10mm focal-length thin three-lens apochromat with the
C, e, and g lines brought to a common focus. Focal shift is with respect to the paraxial focus
of the e line.
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Depending on the choice of glasses, the chromatic aberration curve for an
apochromat can take on other shapes such as shown in Figure 5.11. In this case,
both the foci for the d and / lines are slightly back from the e line focus. Note
that if the image plane is shifted slightly away from the lens, a common focus
for four wavelengths is again obtained and the residual chromatic aberration
is reduced.

This system should be called a “superachromat,” since the three glasses sat-
isfy Herzberger’s condition'® for the union of four wavelengths at a common
focus. Failure to meet this condition generally ends up with three united wave-
lengths in the visible spectrum with the fourth wavelength falling far out into the
infrared. In Section 7.4, the design of the apochromat will be completed after
inserting suitable thicknesses and choosing such a shape that the spherical aber-
ration is also corrected.

DESIGNER NOTE

As has been explained, longitudinal or axial chromatic aberration is a first-order aber-
ration. When using a computer program to aid in the design of a lens, the designer can
effectively use the axial color operand to define an optimization defect term that is the
axial image distance between two selected wavelengths. For an achromat, the designer
might select C and F lines to unite their foci. In the case of an apochromat, defect terms
might be formed that measure the axial image distance between, say, g and e, g, and C,
and e and C to unite foci for the g, e, and C lines. Always remember the great impor-
tance of proper selection of the glasses as the bendings of the lenses have essentially no
impact upon the first-order chromatic aberration.

5.7 THE SEPARATED THIN-LENS
ACHROMAT (DIALYTE)

In the early 1800s, the fabrication of a large achromatic doublet for astro-
nomical objectives was problematic due to the difficulty of obtaining large disks
of flint glass. An elegantly simple solution was introduced at that time to miti-
gate this difficulty, which no longer exists today. This solution was known as
“dialyte objectives,” which comprises a positive crown lens with a smaller nega-
tive flint lens separated by some modest distance. This is in effect a telephoto
lens, since the track length!' of the lens is significantly smaller than the effective
focal length. When used as a telescope objective, the dialyte lens has the advan-
tage that both sides of the objective lens are exposed to the atmosphere, thereby
allowing quicker and more uniform thermal tracking to maintain sharp imagery
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Figure 5.12 The dialyte lens with positive lens (a) and negative lens (b).

and spatial stability of the image. Gauss recognized that by choosing the proper
separation between the two lenses, it is possible to correct the spherical aberra-
tion for two different colors.'?

In Figure 5.12 we show the dialyte lens having the two components of a thin
achromatic doublet separated by a finite distance d, where we find that the
flint element particularly must be considerably strengthened. It is convenient
to express d as a fraction k of the focal length of the crown lens, that is,
k = d/f,. Since the chromatic aberration contributions of the two elements in
an achromat must add up to zero, we see that

Yo . Vb _
faVa fbe

but by Figure 5.12 it is clear that y, = y,(f/, — d)/f}, or y, = y.(1 — k). Combin-
ing these gives

JoVo= ~faVa(1=k)?
Since the system must have a specified focal length F’, we have
111 d 11k
Frfo fy Ll Jo K

Combining the last two relationships gives the focal lengths of the two compo-
nents as

Vs V.(l —k)
"= F |l - ——— y=F'(1—-k)|l —-——— -
i { i k)}, Ji=F k)[ 7 (5-8)
Since it is evident that % = )%, then the back focal length /’ is given by [/’ = j}/—bF'.
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As an example, let us assume that ¥, = 60 and V;, = 36. The two focal
lengths are then related to the value of k as follows:

k 0 0.1 0.2 0.3
fa 0.4F 0.333F’ 0.25F' 0.143F’
fh -0.667F' —-0.45F' -0.267F' -0.117F'
d 0 0.033F’ 0.05F' 0.043F’

As k is increased the powers of both lenses become greater, but the power of the
negative lens increases more rapidly than that of the positive lens. For this
example, the two powers become identical at k = 0.225, at which point both
the focal lengths are 0.225F’. This property of an achromatic dialyte is
employed with great effect in the predesign of a dialyte-type four-element
photographic objective (see Section 13.2). The limiting value of k occurs when
V.1 — k) = V,, that is, when both elements become infinitely strong. In the
present example this is when & = 0.4.

A more general solution to the dialyte problem has been provided by Con-
rady.'® In this case, he developed the equations for the object being at a finite
distance rather than at infinity. It is observed that when the distance between
the two lenses is adjusted to produce achromatism for a particular object dis-
tance, the dialyte lens will display chromatic aberration when the object is
located at any other distance.

5.7.1 Secondary Spectrum of a Dialyte
In Eq. (5-6) we saw that for a succession of thin elements
1 Py?
Z), 711/“ = 7;;(22 Vf’

Substituting in this the values of /], f7, and y, for a dialyte gives

F'(1—k)
Vu(l - k) - Vb

I —1lp=— (P, — Pp) (5-9)
When k& = 0 for a cemented lens this, of course, degenerates to the equation for
a thin achromatic doublet (see Eq. (5-7)).

Actually, neither the achromatism relation, Eq. (5-8), nor the secondary spec-
trum expression, Eq. (5-9), is strictly correct because in their derivation we
assumed that y, = y,(1 — k) for all wavelengths. Because of the dispersion of
the front element and the finite separation between the elements, it turns out
that y, is a little smaller in blue than in red light. Thus, a dialyte made in
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Table 5.5
Glasses for Thin-Lens Dialyte

Glass ne e np An = np—nc Ve = ”'jf_‘:’i
Crown 1.51554 1.52031 1.52433 0.00879 59.193
Flint 1.61164 1.62058 1.62848 0.01684 36.852

V,— V= 22341

accordance with Eq. (5-8) turns out to be slightly overcorrected chromatically,
requiring a slight decrease in the power of the flint element to achromatize.
For the same reason the secondary spectrum turns out to be slightly less than
the amount given by Eq. (5-9).

To illustrate, suppose we design a thin-lens dialyte using the glasses shown in
Table 5.5. Using formulas in Eq. (5-8) we find that, for ' = 10 and & = 0.2

fo=2.21783, where ¢, = 0.866581 [because ¢ = 1/f"(n—1)]
fi=-2.27991, where ¢, = —0.706781
d = 0.443566

Tracing paraxial rays in C, ¢, and F through this system using the ordinary thin-
lens (y — ) method gives

I/ =8.008133, I'=80, I} =8.008431

There is thus a small residual of paraxial chromatic aberration of magnitude
0.000298 in the overcorrected sense. To remove this, we must weaken the flint
element slightly, to ¢, = —0.706449, which gives

Il =7.994955, ! =7.986857, [} =7.994962

The F — C aberration is now corrected, and the e image lies closer to the lens
by an amount of secondary spectrum equal to —0.008103. A thin cemented ach-
romat of the same focal length made of the same glasses has a D — F secondary
spectrum of —0.004820, only about half that of the dialyte (see Figure 5.13).

5.7.2 A One-Glass Achromat

It has been known for a long time that it is actually possible to design an air-
spaced achromat using only one kind of glass.'* If we write V, = ¥}, in Eq. (5-8)
we obtain the focal lengths of the two elements of a one-glass achromat as follows:

kF'
T
fﬂ_k-l’

fi=—kF'(k—-1), d=kfl, I'==F(k—-1)  (5-10)

a
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Figure 5.13 Three secondary spectrum curves.

once again assuming a very distant object and thin lenses. Since the air-space d
must always be positive, we see that k must have the same sign as f, and k£ — 1
must have the same sign as F’.

For a positive lens, kK must be greater than 1.0, which makes for a very long
system (see Figure 5.14). This is known as a Schupmann lens, but it is seldom used
because the image is inside (between the lenses); however, it can be used for an
eyepiece or as part of a more complex optical system (see Chapters 15 and 16).

For a negative system, k — 1 must be negative, so that kK must be less than 1.0.
If the front element is positive, kK must be positive and thus must lie between
0 and 1. This gives a compact system (see Figure 5.15a). If the front element
is negative, kK must be negative but may have any value. If k is small the system
is compact, but if k is large the system becomes very long (Figures 5.15b and
5.15¢). A negative one-glass achromat could, for instance, be used in the rear
member of a telephoto lens.

When designing a Schupmann dialyte, the colored rays become separated at
the rear component because of the long air space, and so the simple formulas

f,=30

.

Figure 5.14 A Schupmann lens (f = 10).
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Figure 5.15 Negative one-glass achromatic dialytes (/' = —10). (a) k = 0.2, f, =2.5, f, = —1.6,
d=05;(b)k=-02, f,=—1.66, f,=2.4,d=0.33;(c) k =-5.0, f,=—8.33, f,=300,d=41.7.

fail to give a perfect achromat and we must readjust the rear lens power for
achromatism. Similarly, since both elements have the same dispersion, we might
expect the secondary spectrum to be zero, but it is actually slightly undercorrected.
As an example, we will design a Schupmann dialyte of focal length 10.0 using the
same crown glass for both elements. We take k£ = 1.5, and Eq. (5-10) tells us that

fr=30, fi=-175 d=45 1'=-5
The refractive indices of this crown glass are
ne = 1.51981, np =1.52240, n, = 1.52857

Therefore ¢, = 0.063808 and ¢, = —0.255232. Tracing paraxial rays in these
wavelengths through the thin-lens solution gives

I, =—4.998653 and [, = —4.999746

leaving a residual of chromatic aberration of +0.001093. To remove this we
weaken the flint component to ¢, = —0.250217, which gives the back foci shown
in Table 5.6 for a number of wavelengths.

These data are plotted in Figure 5.13 in comparison with the corresponding
secondary spectrum curves for a cemented achromat and a dialyte made with
ordinary glasses.
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Table 5.6

Residual Chromatic Aberration for the Example Schupmann Dialyte

Wavelength Back focus Departure from D

A 0.7682 -5.06442 +0.00194
C 0.6563 -5.06577 —+0.00059
D 0.5893 —5.06636 0

e 0.5461 -5.06647 -0.00011
F 0.4861 -5.06578 +0.00058
g 0.4359 -5.06353 +0.00283
h 0.4047 -5.06058 +0.00578

Another form of a single-glass achromat is a thick singlet lens where the lens
thickness and glass type are used to correct the paraxial chromatic aberration.'?
The first surface is convex, having a curvature c¢;, and the second surface is flat.
The thickness is given by

nrnc
C](I’lF — 1)(}1C — 1) ’

When collimated light enters the lens, it forms a real focus suffering from chro-
matic aberration as explained in Section 5.1. The light then diverges and forms
a virtual focus within the glass that is free of axial color, and interestingly, the
secondary spectrum is quite small. Since both foci are located inside the lens,
this lens could perhaps be used as the secondary element of a beam expander
or telescope with a concave mirror serving as the primary element. The virtual
focus of the lens and the focus of the primary element should be coincident.
See Section 15.4.8 for a related discussion.

=

5.8 CHROMATIC ABERRATION TOLERANCES
5.8.1 A Single Lens

In the seventeenth century astronomers used simple lenses of very long focal
length as telescope objectives. In this way they managed to make the chromatic
aberration insignificant. The logic behind this procedure is that the chromatic
aberration of a simple lens is equal to f/V, while the focal range based on diffrac-
tion theory is equal to A/sin® U’ = 4Af%/D?, where D is the diameter of the lens.
Assuming that because of the drop in sensitivity of the eye at the deep red and
blue we may let the chromatic aberration reach twice the focal range, we have

f1v=281*/D?
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When A = 0.58 um approximately, and if V= 60, we then find our formula
tells us that the shortest possible focal length to meet this relation is roughly
equal to 40 times the square of the lens diameter in centimeters (or 100 times
the square of the lens diameter in inches). Thus an objective of 10-cm aperture
will have an insignificant amount of chromatic aberration if its focal length is
greater than about 40 m.

5.8.2 An Achromat

By a similar logic, we can determine the minimum focal length of an achro-
matic telescope objective for the secondary spectrum to be invisible to the
observer. Now we equate the secondary spectrum in d light to the whole focal
range, or

/2200 = 42/ D?

where = 2D? if in centimeters or f = 5D? if in inches approximately. Conse-
quently a 10-cm aperture achromatic objective will have an insignificant amount
of secondary spectrum if its focal length is greater than about 2 m (or 80 inches).
The enormous gain resulting from the process of achromatizing is clearly
evident.

5.9 CHROMATIC ABERRATION
AT FINITE APERTURE

It is clear from the graphs in Figure 5.3 that the chromatic aberration of a
lens, expressed as L — L, varies across the aperture, and a graph of chromatic
aberration against incidence height Y appears in Figure 5.4. Thus a normal ach-
romat has some degree of chromatic undercorrection for the paraxial rays and a
corresponding degree of chromatic overcorrection for the marginal rays, it being
well-corrected for the 0.7 zonal rays. To achromatize a finite-aperture lens
therefore requires the tracing of zonal rays in the two wavelengths that are to
be united at a common focus, and experimentally varying one of the radii until
these two foci become coincident.

5.9.1 Conrady’s D — d Method of Achromatization

Although this method is not frequently used today because of the availability
of powerful lens design programs that can operate on desktop computers, the
student of lens design will obtain additional valuable knowledge of optical design
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by understanding this very useful and simple procedure for achromatizing a lens
which Conrady'® introduced in 1904. The method he suggested depends on the
fact that in an achromat

> (D—d) An=0

where D is the distance measured along the traced marginal ray in brightest light
from one surface to the next, and d is the axial separation of those surfaces. An
is the index difference between the two wavelengths that are to be united at a
common focus for the material occupying the space between the two lens sur-
faces under consideration. Since An for air is zero, we need consider only glass
lenses in making this calculation. The argument used in deriving this relation is
as follows.

Suppose we have a series of rays in one wavelength originating at an axial
object point and passing through a lens. Each point in the wavefront will travel
along the ray and will eventually emerge from the rear of the lens, the moving
wavefront being always orthogonal to the rays (Malus’ theorem).

Since the emerging wavefront has the property that light takes the same time
to go from the source to every point on the wavefront, we see (Figure 5.16) that
time = Y (D/v), where v is the velocity of light in each section of the ray path
of length D. Hence time = ) (D/c)(¢/v) where ¢ is the velocity of light in air.
Thus time = (1/¢) > (Dn) since the refractive index n is equal to the ratio of
the velocity of light in air to its velocity in the glass. The > (Dn) is the length
of the optical path along the traced ray, from the original object point to the
emerging wavefront, and all points on a given wavefront have the same value
of >~ (Dn).

Conrady then proceeded to assume that in a lens having some residual of
spherical aberration and spherochromatism, as most lenses do, the best possible
state of achromatism occurs when the emerging wavefronts in C and F light (red
and blue) cross each other on the axis and at the margin of the lens aperture, as
indicated in Figure 5.17. Since the C and F wavefronts will then be parallel to
each other at about the 0.7 zone, the C and F rays through that zone will lie

Figure 5.16 The emerging wavefronts from a lens.
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Figure 5.17 The emerging wavefronts from an achromat.

together and cross the axis at the same point. Under these circumstances

Z(Dn)c = Z(D”)F

along the marginal ray. However, since all points on a wavefront have the same
value of > (Dn), it is clear that in an achromat

> (D—d)nc =Y (D—d)np or Y (D—d)(np—nc)=0 (5-11)

This is Conrady’s condition for the best possible state of achromatism in a lens
that suffers from other residuals of aberration. The presence of spherochroma-
tism, for example, causes the two emerging wavefronts in C and F light to
separate between the axis and margin of the aperture, while the presence of
spherical aberration causes the wavefronts to assume a noncircular shape.

In stating this condition, we are tacitly assuming that the values of D within
all the lens elements are equal for C and F light. This is certainly not true, but
we shall make only a very small error if we trace the marginal ray in brightest
light, which is usually d or e for C — F achromatism, and calculate the distances
D along that ray. The argument breaks down if there is a long air space between
unachromatized or only partially achromatized separated components, but in
most cases it is surprisingly accurate.

The D — d relation would be impossibly difficult to use if we had to calculate
every D value from the original object right up to the emerging wavefront, but
the method is saved by the fact that the dispersion An = ng — nc of air is zero.
For this reason we must calculate D — d only for those sections of the marginal
ray that lie in glass. The length D is found by the usual relation

D = (d+ Z,—Xy)/cosUj

where Z = r[1 — cos(I — U)] as explained in Section 2.3. The choice of dispersion
values depends on the region of the spectrum in which achromatism is desired.
For ordinary visual achromatism, we trace the ray in d or e light and use
An = ng — n¢; for photographic achromatism, we may prefer to trace the mar-
ginal ray in F light and use An = n, — np for the dispersion. The process for
interpolating dispersions suggested in Chapter 1 is of value here; however, all
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modern lens design programs include data tables for optical materials and the
appropriate interpolating dispersion equation for each.

5.9.2 Achromatization by Adjusting the Last
Radius of the Lens

To achromatize a lens then, we must make the sum ) (D — d) An equal to
zero by some means or other. Commonly we calculate that value of the last
radius of the lens that will accomplish this. Alternatively we may design the lens
using any suitable refractive indices, and then at the end search the glass catalog
for glass types with dispersion values that will make the (D — d) An sum zero. To
use the first method, suppose that the value of the D — d sum for all the lens ele-
ments prior to the last element is Y o; then for the last element we must have

> (D-d)An=->",

We now calculate the Z and Y at the next-to-last surface, and knowing the
desired value of D in the last element to achieve achromatism, we calculate

Zy=DcosU|+Z—d and Y,=Y;—DsinU

(Here the indices 1 and 2 refer to the first and second surfaces of the last ele-
ment.) The radius of curvature of the last surface is given by
(Z*+Y?)

27

and the problem is solved. As a check on our work, we may wish to trace zonal
rays in F and C light through the whole lens; if everything is correct, these rays
should cross the axis at the same point in the image space.

5.9.3 Tolerance for the D — d Sum

Conrady'” suggests that in a visual system the tolerance for the D — d sum is
about half a wavelength. However, there is no point in achieving perfect achro-
matism for the 0.7 zonal rays, which the D — d method does, if there is consid-
erable spherochromatism in the lens since this will swamp the excellent color
correction. Therefore we have found that a more reasonable tolerance is about
1% of the contribution of either the crown or the flint element in the lens.
If these contributions are small, it indicates that the spherochromatism will be
small and a tight tolerance for the D — d sum is sensible.
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Example

As an example in the use of the D — d method, we return to the cemented
doublet lens used as a ray-tracing example in Section 2.5, and compute the
(D — d) An sum along the traced marginal ray (Table 5.7). It will be seen that
there is a small residual of the sum, amounting to —0.0000578, which is about
1% of the separate contributions of the crown and flint elements. We must
therefore regard this lens as noticeably undercorrected for chromatic aberra-
tion. That is the reason why the C and F curves in Figure 5.3a (see page 141)
cross somewhat above the 0.7 zone of the aperture.

If we wish to achromatize this lens perfectly, we can solve for the last radius by
the method described in Section 5.9.1. This tells us that a last radius of —16.6527
would make the D — d sum exactly zero. As this radius is decidedly different from
the given radius of —16.2225, we see once again that it is necessary to change a lens
drastically if we wish to affect the chromatic correction.

As an alternative method for achromatizing, we could calculate what value of
An for either the crown or the flint glass would be required to eliminate the D — d
sum. The numbers shown in Table 5.6 (see page 162) tell us that we could achro-
matize with the given crown if we had a flint with An = 0.01941; this represents
a V' number of 33.43 instead of the given 33.80. Or we could retain the given flint
and seek a crown with An = 0.00792; this represents a V' number of 65.26 instead of
the given 64.54. In both cases the required change in V" number is only slightly
larger than the normal factory variation in successive glass melts, indicating that
the small residual of chromatic aberration in this lens is really almost insignificant.

Table 5.7
Calculation of the (D — d) An Sum

C 0.1353271 —0.1931098 —-0.0616427
V4 0.2758011 —0.3865582 —0.1149137
D 1.05 0.4

cos U 0.9955195 0.9985902

D 0.3893853 0.6725927

D-d —0.6606147 0.2725927

An 0.00801 0.01920

Prod. —0.0052916 0.0052338 >~ = -0.0000578
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5.9.4 Relation between the D — d Sum and the
Ordinary Chromatic Aberration

D. P. Feder'® has shown that, for any zone of a lens, the vertical displace-
ment in the paraxial focal plane between marginal rays in F and C light is given
closely by

ox
H.-H,=——
F €7 9(sin U)
where 3 is the sum > (D — d) An calculated along the zonal ray in question,
and sin U’ is the emerging slope of the same ray. Thus if we can express > as
a polynomial of the form

> =asin® U’ + bsin* U’ + csin® U’ (5-12)
then
(H'.—H'.) = 2asin U'+4bsin® U'+6¢sin’ U’

By calculating Y for three zones of a lens, we can solve for the three coefficients
a, b, and ¢, and we shall see this is in excellent agreement with Eq. (5-13).

A more convenient but only approximate relation between (Hj — H) and
> can be found by neglecting the sin® U’ term in Eq. (5-12). When this is done,
we can relate the 0.7 zonal chromatic aberration with the marginal > in the
following way:

Writing

S = asin® U’ + bsin* U’
for the D — d sum along any zonal ray, we see that if the angle between the C

and F rays at any zone is «, then (Figure 5.18) computing the derivative of
S with respect to sin(U’) we find that

ds . .,
L, = Zsin(07) =2asin U’ + 4bsin’ (U').
Marging ~S(D-d)An

~

oo~ F

L Ly

chy

Figure 5.18 Relation between the D — d sum and the zonal chromatic aberration.
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The longitudinal chromatic aberration for this zone is given approximately by
L, = L, /sinU'= 2a+4bsin’> U’
and hence the 0.7 zonal chromatic aberration will be given by

(L), = 2(a+2bsin* U")

ch

Butsin U’ = sin U’,/v/2 approximately, and the calculated marginal 3 (D - d)
An sum is

20y 4y
E =S, =asin” U, + bsin" U,,
Hence

(Lip).=2> /sin’ U, (5-13)

As a check on this result, we recall that the residual of > in our cemented
telescope doublet was —0.0000578 and sin U’ was 0.16659. Therefore, we should
expect the zonal chromatic aberration to be —0.00417. By actual ray tracing we
find

zonal Lp=11.27022
zonal Ly = 11.27523
S F—C = -0.00501

The small discrepancy is due to our having neglected the sin® U’ term in the
expression for S.

5.9.5 Paraxial D — d for a Thin Element

We can readily reduce the D — d expression to its paraxial form for a single
thin lens element. In this case the length D in the paraxial region becomes

Yz y?
D=d+272,—Zi=d+-———
27’2 21"1
Hence
Y2/1 1 Y2
(D_d)‘7<6‘2>‘ n—1)
Y2/ An Y2
(D —d)n = ?(n—l)‘ 7V
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Now, by Eq. (5-13),

. . . z Y?
paraxial chromatic aberration = AT W

which is in exact agreement with Eq. (5-3).

DESIGNER NOTE

Current optical design programs allow the lens designer to specify an operand that
measures the optical path difference (OPD) with respect to the principal ray in a
user-specified wavelength. In determining the chromatic aberration at a finite aperture,
the lens designer can select OPD operands for F and C for the axial object and (rela-
tive) pupil coordinates of p = 1 and 0 = 0, then subtract OPD from OPDp. By chang-
ing p = 0.707, the zonal chromatic aberration can be computed. When using the
Conrady D — d method for achromatizing, the goal is to make > (D —d)An =0
which, it should be recalled, is computed in d light."® As mentioned previously, this
can lead to some error, but the calculation is typically adequate. The aforementioned
OPD method is of course accurate and the tolerances explained in Section 5.9.3 are
applicable.
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Chapter 6

Spherical Aberration

It was discussed in Chapter 4 and illustrated in Figure 4.5 that the field-
independent astigmatic aberration comprises defocus and spherical aberration.
This means that they are not functions of field angle and are constant aberra-
tions over the entire field of view, and that collectively they are a function of
the odd powers of the entrance pupil radius p for the transverse aberration
form; that is,

p AP+ e+
~ @ Y—
Defocus Spherical Aberration
In this chapter, we will consider both defocus and spherical aberration. In

Section 4.3.1, the transverse defocus in an image plane located ¢ from the para-
xial image plane was shown to be expressed as

DF(p,&) = —¢tanv),

_ pDentApupil 6
2f

- r

~ 2 f-number

(when the object is located at infinity) (6-1)

where v/, is the angle of the marginal paraxial ray in image space, p is the nor-
malized entrance pupil radius, and f'is the focal length. Figure 6.1 shows a typi-
cal ray plot of a fan of axial meridional rays. The ray intercepts with the
defocused image plane and forms a line that is rotated from the abscises.
Now, the marginal ray intercept ¢, = (DF(1,¢)) times 2 f-number equals the
defocus ¢&.

The direct calculation of spherical aberration is a simple matter. A meridio-
nal ray is traced from object to image, passing through the desired zone of a
lens, and the image distance L' is found. This is compared directly with the /’
of a corresponding paraxial ray from the same object point. Then

longitudinal spherical aberration = LA = L' — /' (6-2)

Copyright © 2010, Elsevier Inc. All rights reserved. 173
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-1.0 -0.5 0.0 0.5 1.0

Figure 6.1 Transverse defocus error in the paraxial image plane.

Historically, longitudinal spherical aberration was used for several reasons.
First, the intersection of the meridional ray with the optical axis directly
provided the length L'. Second, the calculation was reasonably easy using hand
computing methods. And finally, the longitudinal spherical aberration is inher-
ently independent of defocus.’

Figure 5.3a illustrated a typical presentation of longitudinal spherical aberra-
tion for various colors of light, which was mentioned already, spherochroma-
tism. In the following discussions, consider only the D line. The transverse
spherical aberration for a desired zone of a lens is measured as the intersection
height of a meridional ray with the paraxial image plane (¢, = —LA'tan U’);
however, the actual image plane may be displaced from the paraxial image
plane by ¢ so that the ray intersection height comprises both spherical and defo-
cus components. Figure 6.2 shows a ray plot when the image plane is inside the
paraxial focus and for positive primary spherical aberration. Notice that the
composite aberration (sum of defocus and spherical aberration) ray plot is
rotated because of the presence of defocus.

As was explained in Chapter 4, defocus can influence the blur caused by
the other astigmatic aberrations, but does nothing to the comatic aberrations.
Consider now the problem of locating the position of the defocused image plane
to achieve the minimum blur diameter in the presence of primary spherical aber-
ration. Figure 6.3 shows the ray plot for third-order spherical aberration in the
paraxial image plane. The aberration is expressed by ¢,(p,0,0,0) = 0.6p> where
o1 = 0.6. It is evident that the blur diameter is 1.2 (lens units). The central
dashed line in Figure 6.3 represents the defocus aberration. If one then views
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Figure 6.2 Transverse ray plot when image plane is inside the paraxial focus and for positive
primary spherical aberration.

this line as the x-axis in the image plane, the primary spherical aberration curve
is positioned to give the minimum blur diameter. The parallel lines bound the
primary spherical aberration curve and it is easily shown that the minimum
defocused blur diameter is 41‘1 the amount in the paraxial image plane, that is,
%01. Using Eq. (6-1), the amount of defocus needed is %LA;nargmal. In the case
shown in Figure 6.3, the best focus image plane lies outside of the paraxial
image plane.

0.6 | | : | : | —
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spherical aberration P =
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Figure 6.3 Ray plot for third-order spherical aberration in the paraxial image plane.
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6.1 SURFACE CONTRIBUTION FORMULAS

The simple relationship given by Eq. (6-2) is often inadequate, both because
it gives the aberration as a small difference between two large numbers, and also
because it gives no clue as to where the aberration arises. It is therefore much
more useful to compute the aberration as the sum of a series of surface contri-
butions. A convenient formula has been given by Delano?; the derivation fol-
lows from Figure 6.4. Note that these surface contributions are for all orders
of spherical aberration, not just for the primary term. In this diagram, entering
marginal and paraxial rays are shown at a spherical surface. The length S is the
perpendicular drawn from the paraxial object point P onto the marginal ray.
The marginal ray is defined by its Q and U, the paraxial ray by its y and u. Then

S=Q—IsinU, hence, Su=Qu-—ysinU

We now replace u on the right by i — yc and sin U by sin I — Qc, where c is the
surface curvature as usual. Multiplying through by n gives

Snu = Qni — ynsin [
Doing the same thing for the refracted ray and subtracting plain from prime gives
S'n'v’ — Snu = (Q' — Q)ni

We write this for every surface and add. After extensive cancellation because
(S’n'u’); = (Snu),, we get for k surfaces

(') —(Sme), = > (Q' — Q)i (6-3)
Inspection of Figure 6.4 shows that
LA=-S/sinU and LA'=-S'/sinU’

Marg,-n al

Paraxial

Figure 6.4 Spherical aberration contribution.
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Hence,

LA/:LA<111141 sin U]) 7Z(Q/7Q)m. o

VA s ! VA B !
m . sin Uy m . sin Uy

The quantity under the summation sign is the contribution of each surface to
the spherical aberration of this particular ray (see Section 4.4), and the first term
is the transfer of the object aberration across the lens to the image space. It may
be thought of as the contribution of the object to the final aberration.

As an example of the use of this formula, we will take the lens used in
Section 2.5. A marginal ray and a corresponding paraxial ray entering this lens
from infinity at height 2.0 has been traced; additional data required for use of
Delano’s formulas are given in Table 6.1. It will be noted that the sum of the
aberration contributions agrees closely with the L' — [’ aberration obtained
directly from ray tracing:

L' =11.29390
' =11.28586
LA =L -1 =0.00804

However, the L' and [’ values are good only to about 1 in the fifth decimal place,
when using tables for manual ray tracing whereas the contributions are good to 1
in the seventh place. The contribution method is clearly the more precise of the pair.

Note, too, that the first and third surfaces of this lens contribute undercor-
rected aberration, the third giving twice as much as the first in spite of its flat

Table 6.1

Surface Contributions to Spherical Aberration

¢ 0.1353271 -0.1931098 -0.0616427
d 1.05 0.40
n 1.517 1.649
Paraxial ray data
u 0 -0.0922401 -0.0554372 —0.1666664
ye+u=i 0.2706542 —0.4597566 -0.1713855
Marginal ray data
0 2.0 1.9178334 1.9186619
o 2.0171179 1.9398944 1.8814033
o -0 0.0171179 0.0220610 —-0.0372586
ni 0.2706542 -0.6974508 —-0.2826147
— nyuy sin Uj, -0.0277643 -0.0277643 —-0.0277643
Spherical -0.1668701 0.5541815 -0.3792578 3~ = 0.0080536

contribution
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Figure 6.5 Diagram showing that Q = PA4 cos § (—-U —1).

curvature; the second surface contributes more overcorrection than the total
undercorrection of the two outer surfaces in spite of the small index difference

between the media on each side of it.

An alternative representation of the contribution formula is sometimes use-
ful. Its derivation depends on the relation between Q and the chord PA

(Figure 6.5). In triangle 4PB we have
PA L
sin U sin(o+ 1)

Therefore,

_ —LsinU -0

~sin(e+ 1) sin(o+ 1)
However,

x=90°-1(1-0)
Therefore,
2+1=90°~%(I - U) and Q= PAcos}(I—U)

Hence,

(Q— Q') =PAlcosi(I — U) —cosi(I' = U'")]
= PA[-2sin(}sum)sin(31diff)]
=2PAsiny(I' + U')siny(I' = I)
The spherical aberration contribution formula can therefore be written

nyuy sin U Z2PA sind(1' — I) sin(I' + U)ni
nyuj, sin U]

LA =
!, M !
nyuy sin U

where

I'-I=U~-U,andI'+U=1+U'

(6-5)
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6.1.1 The Three Cases of Zero Aberration at a Surface

In Eq. (6-5), the quantity under the summation sign becomes zero in the
following special cases:

(a) if PA =0,
(b) if I' = 1,
(c) ifi =0,
) ifl'=-U

In case (a) the object and image are both at the vertex of the surface. In case (b)
the marginal ray suffers no refraction at the surface; this could occur because
the object is at the center of curvature of the surface, as also in case (c), but it
could occur trivially if the refractive index were the same on both sides of the
surface. Case (d) arises if I’ = ~U or if I = ~U’. This very important case must
be considered further.

By Eq. (2-1) we see that in this case

. . . LsinU L\ .
51nI:Qc+31nU:s1nU—< s ): <l——>smU
r r

But sin / = (n'/n) sin I, and since, in this special case, I’ = —U, we find that
(L/r) = 1 = n'/n, where
L=r(n+n")/n
and similarly
L' =r(n+n")/n
It can also be shown that, for this particular pair of conjugates,
0=0, nL=nL', 1/L+1/L'=1/r

We can understand case (b) better with a numerical example. Consider the apla-
natic hemispherical magnifier shown in Figure 6.6, which has a convex surface
with air on the right and glass of index 1.5 on the left. We find that

L =25rand L' =1.6667r

The image is free of all orders of spherical aberration, third-order coma, and
axial color.

The aplanatic points B and B’ are shown in Figure 6.7. All rays in the object
space directed toward B will pass through B’ after refraction, no matter at what
angle they enter the surface. This pair of conjugates is known as the aplanatic
points of the surface. Note that the distances of these points from the center
of curvature of the surface are respectively equal to B=r(n'/n) and
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Image —

Object

Figure 6.6 Aplanatic hemispherical magnifier with the object and image located at the center
of curvature of the spherical surface. This type of magnifier has a magnification of n’/n and can
be used as a contact magnifier or as an immersion lens.

Figure 6.7 The aplanatic points of a surface.

B’ = r(n/n’). Aplanatic surfaces of this type are used in many types of lens, par-
ticularly high-power microscope objectives and immersion lenses which make
detectors appear larger.

A similar magnifier can be constructed by using a hyperhemispherical surface
and a plano surface as depicted in Figure 6.8. The lateral magnification is
(n'/n)*. This lens, called an Amici lens, is based on the fourth aplanatic case.
The image is free from all orders of spherical aberration, third-order coma,
and third-order astigmatism. These magnifiers are often used as desktop magni-
fiers, having a magnification of about 2.5.
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Figure 6.8 Aplanatic hyperhemispherical magnifier or Amici lens has the object located at an
aplanatic point.

DESIGNER NOTE

It must be borne in mind that an aplanatic surface is capable only of increasing the
convergence of converging light or increasing the divergence of diverging light. The
greater the convergence or divergence, the greater will be the effect of an aplanatic sur-
face. For parallel entering light, the aplanatic surface is a plane and produces no
change in convergence.

6.1.2 An Aplanatic Single Element

It is possible to make an aplanatic single-element lens for use in a converging light
beam by making the front face aplanatic and the rear face perpendicular to the mar-
ginal ray. Such a lens increases the convergence of a converging beam, which is useful
in certain situations. In parallel light an aplanatic lens is merely a parallel plate. In a
diverging beam an aplanatic lens element is a negative meniscus that increases the
divergence of the beam without, of course, introducing any spherical aberration.

6.1.3 Effect of Object Distance on the Spherical
Aberration Arising at a Surface

We have seen that the contribution of a single surface to the spherical aber-
ration is zero if the (virtual) object is at 4, C, or B, as in Figure 6.7. We may
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Figure 6.9 Effect of object distance on spherical aberration.

now inquire what will happen if the object lies in any of the regions between
these points, the light entering from the left in all cases. As an example, consider
the case of a surface of radius 10 with air on the left and glass of index 1.5 to the
right. We will let a ray enter this surface at a fixed slope angle of 11.5°, and we
calculate the spherical aberration in the image as the object moves along the
axis. This is shown in Figure 6.9.

If the object lies between the surface 4 and the aplanatic point B, a collective
surface such as we are considering here contributes overcorrected spherical aber-
ration, which is decidedly unexpected and can be quite useful. The peak value of
this overcorrection occurs, in our case, when the object distance is about twice
the surface radius. As can be seen in Figure 6.9 the peak of overcorrection is
close to the aplanatic point, and to achieve it we must use a surface somewhat
flatter than the aplanatic radius. There is also a second but much less useful
peak close to the surface itself, the value of L in this case being about 0.2 times
the surface radius. As a general rule, using ordinary glasses, the maximum over-
correction will be obtained if r is set at a value about 1.2 times the aplanatic
radius of L(1 + n’), assuming that there is air to the left of the surface as shown
in Figure 6.9.

6.1.4 Effect of Lens Bending

One of the best methods for changing the spherical aberration of a lens is to
bend it (see Section 3.4.5). If the lens is thin, changing all the surface curvatures
by the same amount has the effect of changing the lens shape while leaving the
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focal length and the chromatic aberration unchanged. Generally spherical aber-
ration varies with bending in a parabolic fashion when plotted against some rea-
sonable shape parameter such as c¢;. At extreme bendings either to the left or
right, a thin positive lens is decidedly undercorrected, and the aberration
reaches a mathematical maximum at some intermediate bending. The aberra-
tion of a single thin lens with a distant object is never zero, but in a positive ach-
romat the aberration exhibits a region of overcorrection at and close to the
maximum. To bend a thick lens, it is customary to change all the surface curva-
tures except the last by a chosen value of Ac, the last radius being then solved by
the ordinary angle solve procedure (Section 3.1.4) to maintain the paraxial focal
length.

DESIGNER NOTE

This procedure, of course, slightly affects the chromatic aberration but it alters the
spherical aberration far more. It should be noted, however, that if the aberration is
at the maximum, then quite a significant bending will have little or no effect on the
spherical aberration. When this condition exists, bending can be used as an effective
design tool to vary other aberrations such as coma or field curvature while minimally
impacting the spherical aberration.

6.1.5. A Single Lens Having Minimum
Spherical Aberration

A single positive lens can be made to have minimum spherical aberration
at one wavelength by taking a series of bendings, in each case solving for the
last radius to hold focal length. When this is done, it is found that in the
minimum-aberration lens each surface contributes about the same amount of
aberration, with the front surface (in parallel light) contributing slightly more
than the rear surface.

As an example, suppose we wish to design such a lens of focal length 10 and
aperture f74, using glass of index 1.523. A suitable thickness is 0.25. The two sur-
face contributions become equal at ¢; = 0.1648, for which bending the total
aberration is found to be —0.15893. A careful plot shows that the true minimum
occurs at ¢; = 0.1670 with an aberration of —0.15883, but of course the differ-
ence between these two values of the aberration is utterly insignificant. We shall
therefore make no noticeable error by aiming at equal contributions for the
minimum bending. The error may become much greater, however, in lenses
made from high-index materials for the infrared.
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The results of ray tracing with ¥; = 1.25 are as shown in the following:

21 0.15 0.16 0.17 0.18
Solved ¢, —0.041742 -0.031639 -0.021519 —-0.011380
Spherical aberration contribution (1) -0.05977 -0.07267 -0.08730 -0.10376
Spherical aberration contribution (2) -0.10434 -0.08705 -0.07174 -0.05828
Total -0.16411 -0.15972 -0.15904 -0.16205

6.1.6 A Two-Lens Minimum Aberration System

A considerable reduction in spherical aberration can be achieved by taking
two identical lenses of twice the desired focal length and mounting them close
together. In our case this procedure, after scaling to a focal length of 10, gave
a spherical aberration of —0.0788, about half that of the original single element.
However, a much greater improvement can be made by bending the second lens
so that each of the four refracting surfaces contributes an identical amount of
aberration. The required condition is that each surface should have the same
value of (Q’ — Q)ni, since it is this product that determines the aberration con-
tribution of the surface. When computed manually, the curvature of each sur-
face is determined by a few trials, and then, if the resulting focal length is not
correct, the whole lens is scaled up or down until it is.

As an example, suppose we add another element to the single minimum-
aberration lens of Section 6.1.5. Finding c¢3 and ¢4 by trial to make all four
contributions equal gives the lens shown in Figure 6.10 that has the following
prescription and spherical aberration contributions:

Spherical aberration

c d n contribution for Y, = 1.25

0.1648 -0.01703
0.25 1.523

-0.02678 -0.01702
0.05 (air)

0.3434 -0.01703
0.25 1.523

0.1216 -0.01700

The focal length is now 4.6155 and the aperture is f71.85. Scaling the lens to a focal
length of 10.0 and tracing a ray at Y7 = 1.25 (f74) gives the total spherical aberration
as —0.0310, about one-fifth that of the single element. It is worth noting that the focal
lengths of the two elements are now not equal, being respectively 21.7 and 18.4.
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Figure 6.10 A two-lens minimum aberration system.

There is a common misconception regarding this type of two-element lens—
namely, that to secure minimum spherical aberration, the marginal ray must be
deviated equally at each of the four surfaces. To see how far this is from the
truth, these are the surface ray deviations for the last example:

Angle U Angle U’ Deviation U’ — U
Surface (deg) (deg) (deg)
1 0 1.877 1.877
2 1.877 3.318 1.441
3 3.318 6.019 2.701
4 6.019 7.195 1.176

The reason the third surface does so much refracting “work” without the
introduction of excessive aberration is its close proximity to the aplanatic
condition.

It should be noted that when designing a two-element infrared lens with a
material having a refractive index higher than about 2.5, such as silicon or
germanium, it will be found that if r; is chosen to give the maximum possible
overcorrection, it may actually overcompensate the undercorrection of the
front minimum-aberrations lens, making it possible to correct the spherical
aberration completely. The last radius is then chosen to have its center of cur-
vature at the final image to eliminate any aberration there.

As an example, we will design an f/1 lens made of silicon having a refractive
index of 3.4. Following the suggested procedure, we come up with the prescrip-
tion that follows Figure 6.11. This figure shows a longitudinal section of this
lens. The strong rear element is highly meniscus, as can be seen. High-index
materials such as silicon and germanium appear to behave quite oddly to any-
one only familiar with the properties of ordinary glass lenses.
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Figure 6.11 An f/1 silicon lens.

Spherical aberration

c d n contribution

0.02790 -0.006017 f'=10.283
0.25 34

0.01572 —0.006004 " =9.717
0.05 (air)

0.12632 +0.012009 aperture = 10 (f/1)
0.50 34

0.10291 0

Focal length of front component, 33.99; of rear component, 14.88

6.1.7 A Four-Lens Monochromat Objective

As was stated in Section 6.1.2, a single aplanatic lens element for use in
parallel light is nothing but a planoparallel plate and not a lens at all. However,
by making use of the small overcorrection that can be obtained from a convex
surface slightly weaker than a true aplanat, it is possible to construct an apla-
natic system for use with a distant object by placing a minimum-aberration lens
first, and following this by a series of overcorrected menisci in the converging
beam produced by the first lens.

As an example we may take the single minimum-aberration f/4 lens in
Section 6.1.5, and follow it with three menisci, the front face of each being
chosen to give the maximum of overcorrection, while the rear faces are perpen-
dicular to the marginal ray. Nothing is gained by departing from the strict per-
pendicular condition for the rear surfaces of the menisci because, being
dispersive surfaces, any departure from perpendicularity in either direction
would yield spherical undercorrection, which is just what we are trying to avoid.

After several trials to obtain the greatest possible amount of overcorrection,
and finally scaling to f” = 10.0 with an aperture of f/2, we obtain the following
system:
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Spherical aberration

c d n contribution at f/2
0.066014¢ -0.020622
0.3 1.523 -0.041232
-0.0103636 —0.020610
0.05 (air)
0.082192 +0.002463
0.3 1.523
0.055672 0
0.05 (air)
0.113932 +0.005962
0.3 1.523
0.077543 0
0.05 (air)
0.158867 +0.014476
0.3 1.523
0.109134 0
Total -0.018331

“Crossed lens in parallel light (see Section 6.3.2).
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The focal length of the first lens alone is now 24.969. It is clear that even with three
menisci it is not possible to compensate for the undercorrection of the first lens.
However, we can do much better by starting with the two-lens minimum
aberration form given in Section 6.1.6, and following this with only two menisci.
By this procedure we can design a four-lens spherically corrected system for use
in parallel light with an aperture as high as f/2. Scaled to /' = 10 this becomes

Spherical aberration

c d n contribution at f/2
0.041520 -0.005090
0.3 1.523
-0.006726 -0.005098
0.05
0.084883 -0.005106
0.3 1.523
0.029164 —-0.005098
0.05
0.113764 +0.005966
0.3 1.523
0.077891 0
0.05
0.159353 +0.014387
0.3 1.523
0.109941 —-0.000016
Total -0.000068
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Figure 6.12 A four-lens f/2 aplanatic objective.

This lens is shown in Figure 6.12. The focal length of the first two lenses is
now 18.380. This system has been used in monochromat microscope objectives
made of quartz for use at a single wavelength in the ultraviolet. The design has
been discussed by Fulcher.?

6.1.8 An Aspheric Planoconvex Lens Free
from Spherical Aberration

Two cases arise, the first when the curved aspheric surface faces the distant
object, and the other when the plane surface faces the object. In 1637, Descartes
described and explained the general properties of utilizing concave and convex
lenses, both singularly and in combination. He was the first to create a mathe-
matical formulation to explain spherical aberration. Descartes also made a
detailed study of elliptical and hyperbolic surfaces, particularly the plano-
hyperbolic lens. Descartes and his colleagues spent substantial money and effort
trying to fabricate such a lens since it would be free of spherical aberration.

For all their efforts, not one lens could be fabricated with the tools and meth-
ods then available. Fortunately, technology has advanced to allow fabrication
of both elliptical and hyperbolic surfaces of high quality. The topic of perfect
imaging from one point to another point was first addressed by utilizing
Fermat’s principle, which states that perfect conjugate imaging occurs when
all the rays passing through the conjugate points have the same optical path
length. Using Fermat’s principle, Luneburg® showed in 1944 that the surface
can be represented by a fourth-order curve, which is also known as the
Cartesian Oval after René Descartes.

Convex to the Front

The left side of the ellipse shown in Figure 6.13a is the portion of the ellipse
used as the surface contour for the ellipsoid-plano lens with the image being
formed at the rear surface of the lens, which is planar. This lens has no spherical
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Figure 6.13 Aspheric single lenses corrected for spherical aberration.

aberration at the design wavelength for collimated light input and does suffer
from spherochromatism. The coordinate system used for ray tracing has the
coordinate system origin located at the left surface vertex of the ellipsoid. The
z-axis is the major axis of ellipsoid and the x-axis and y-axis define the vertex
tangent plane. The sag or z-coordinate displacement from the tangent plane at
the vertex of the surface can be determined from a commonly used mathemati-
cal representation of conical surfaces given by

yie

(o)

where y is the coordinate of the ray intercept on the surface, ¢ is the radius of
curvature (reciprocal of the radius) at the surface vertex, and « is the conic con-
stant (see Eq. (2-7)). This equation form is typically used in optical design pro-
grams with ¢ (or r) and x as an input description of the surface.

Figure 6.14 presents the basic parameters describing an ellipse.” These
include the lengths of its major and minor axes, and foci. The distance d can

(0,6)

(_a70)

(-¢.0) . (c.0)

(Os_b)

Figure 6.14 Geometrical parameters of an ellipse.
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be considered the focal length of the elliptical lens and is the sum of the major
axis semi-length a and the foci distance ¢ from the ellipse center.
A conic section can also be represented by

2
n
<x_dn Jrln) z?
otm/ _

2 n ? dZ—n1 — o
d o+ m no + ny

and is an ellipse if n; > ny and a hyperbola if ny > n;. This surface is called a
rotationally symmetric surface. Examination of this equation indicates that
the major a and minor b axes’ semi-lengths can be computed from

and

= 42 ny —no
no + np '
By basic geometry, the foci distances are computed by

E—d

and by substituting in the terms for 4*> and b?, we obtain

From geometry, the eccentricity ¢ = £ which is determined by using the pre-
ceding equations to be ¢ = Z_? The conic constant « is defined as

It should be evident that the same relationship between r, ¢, no, and n; can be
determined using paraxial optics and a purely spherical surface. This result
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should be expected when the aperture is very small. The inclusion of the conic
constant to transform the surface into an ellipsoid does not change the first-
order properties of this lens, but does mitigate the inherent spherical aberration
of a spherical surface.

Consider an example where nyp = 1 and n; = 1.5, and d = 20 mm. It follows
that

-~ _
157

r= (™M) Z20(%2) Z 6.66666
n 1.5

A surface of this kind has long been used on highway reflector “buttons.”® The
same surface profile can be used to form a cylindrical lens, which has various
applications. An array of such lenses can be created to form a lenticular array
commonly used in the printing industry to make prints providing 3D photo-
graphic projections or the display of different images as the print is tilted.”

Consider a situation when an ellipsoid-plano lens is bonded to one or more
materials. An example would be a detector array affixed to the plano side of
the lens using an optical glue which can have different refractive index from
the lens. The lens thickness would need to be reduced to account for the thick-
ness of the glue. From basic aberration theory, the different refractive indices of
the lens and substrate materials can introduce additional spherical aberration
since the light beam is converging (see Section 6.4).

To compensate for the different refractive indices, the equation relating r, n,
and d can be modified as presented in the following equation to determine the
radius r of the lens when the composite optical element comprises two or more
different materials.

—0.44444

r=(n — 1)((171/,1l + by 4. ..dn/nn)

This equation is readily derived using paraxial ray tracing. Note that the sub-
strates are each assumed to be planar. The summation shown in the parentheses
is the effective optical thickness of the assemblage. If the substrate thicknesses
are small compared to the lens thickness d, then the conic constant can be esti-
mated to be given by —n>.

In the event that the substrate thicknesses are a significant fraction of the lens
thickness, the conic constant estimation is somewhat more complex in that an
estimate of the effective refractive index is required. Consider that a paraxial
ray having nguy = 0 is incident on the refracting surface at a height y; where
up is the angle the ray makes with the optical axis. As this ray propagates
through the assemblage, it intercepts the substrates at heights y,, y3,..., V.
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The effective refractive index n.rr can then be expressed, following the mean
value theorem of integral calculus, as

n
Zyifi”i
Teff = %
> Vil
i=
and the corresponding conic constant is —n 7.

Figure 6.15 illustrates a lens system comprising a spherical refracting surface
and two substrates while Figure 6.16 shows the same lens system with the effec-
tive conic constant. The prescriptions of these lens systems are provided in
Table 6.2 where the only difference between them is the conic constant. As it
is evident by examining Figure 6.15, the lens system with spherical refracting
surface suffers from significant spherical aberration. The inclusion of the effec-
tive conic constant effectively mitigates the spherical aberration illustrated in
Figure 6.16.

§§

Figure 6.15 Lens system with multiple substrates and spherical refractive surface.

W

Figure 6.16 Lens system with multiple substrates and elliptical refractive surface.
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Table 6.2
Prescription of Lens System Depicted in Figures 6.15 and 6.16

Marginal ray

Surface Radius Thickness Refractive index height Conic constant
Object 9] ) 1

1 10 10 1.8 6 -0.34542

2 00 5 1.4 3.33333

3 00 5.396825 1.6 1.61905

Image 00 0

A solid-optics (containing no air gaps) lens system for making an afocal tele-
scope can be designed by using the foregoing information. Two ellipsoid-plano
lenses would be placed with their plano sides facing one another and some opti-
cal bonding material of finite thickness placed between them after having
accounted for the several thicknesses so that the focal point of the two lenses
coincide. The lenses can be of different materials and radii, and the angular
magnification is simply the ratio of their effective focal lengths.

Plane Surface in Front
Equating optical paths in the air behind the lens shown in Figure 6.13b gives
B+nZ=[Y>+ (B+2Z)"'"?
where

{Z+[B/(n+1)]) y?

Bn/(n+ 1)) B(n—1)/(n+1)

There is a clear resemblance between these two cases. The plane-in-front lens
has a hyperbolic surface with semimajor axis equal to B/(n 4 1), and semiminor
axis equal to B[(n — 1)/(n + 1)]"? as before (Figure 6.13b), the eccentricity now
being equal to the refractive index # and the conic constant being k = —n?.

Using a y-nu ray trace, it is trivial to show that the focal length of a plano-
hyperboloid lens is .= which is shown as B in Figure 6.13b. To create a solid
optical element for use at finite magnification, a hyperbolic surface can be
applied on both faces of a biconvex lens with the ratio of focal lengths being
the ratio of the radii. The light is of course collimated between the faces so there
is no fundamental restriction of the lens thickness. The axial image is free of
spherical aberration for up to as high an aperture as required; however, the field
of this lens is restricted by coma.
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6.2 ZONAL SPHERICAL ABERRATION

As we have seen, it is possible by the use of opposing positive and negative
elements to design a lens such that the focus of the marginal ray coincides with
the paraxial image point. We say that this lens has zero spherical aberration.
However, it generally happens that the foci of rays passing through the interme-
diate zones of the lens fall closer to the lens than the paraxial image-point, and
occasionally but rarely fall further from it. Thus we can plot a graph connecting
entrance height Y with the spherical aberration, as shown in Figure 6.17. This
zonal residual is generally known as zonal aberration. It can be expressed as a
power series containing only even powers of Y, as

LA =aY?*+bY* +cYO + ...

The successive terms of this series have been called primary, secondary,
tertiary ... aberration, but of course they have no separate existence, and the
actual aberration of the lens is the sum of all these terms. However, we can plot
them separately to see how they vary (Figure 6.17). If Y is small, the secondary
and higher terms are very small or negligible, and the primary term represents
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Figure 6.17 Interaction of various orders of spherical aberration: (a) Primary and secondary
only; (b) primary, secondary, and tertiary.
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the whole aberration. Then, at increasing values of Y, first the secondary and
then the tertiary terms begin to increase and finally dominate the situation.

In the example shown in Figure 6.17a, the primary term is negative and the
secondary term is positive, and they have equal and opposite values for the mar-
ginal ray. Consider now when only the first two terms are present and the mar-
ginal spherical aberration is zero, that is, LA’ = ap? + bp* = 0 when p = 1. This
implies that a = —b. Now the peak residual can be found by solving
"5;" = 2ap + 4bp3 = 0. Now dividing by p and substituting @ = —b, it follows
that 2a + 4bp*> = —2b + 4bp* which yields that p = 1/v2 = 0.707. In an actual
lens system, the peak zonal residual occurs when p is equal to the marginal p,,
multiplied by 0.7071. The magnitude of the zonal residual, in the case of
suffering only third- and fifth-order spherical aberration, equals one-quarter
of the primary term at the marginal zone of the lens, that is, LA .y, = a/4.

Because tertiary aberration is not greatly different from secondary, it may be
positive and add to the secondary; in this case the maximum zonal residual falls
higher than the 0.7 zone, and the marginal aberration increases very rapidly.
On the other hand, if the tertiary aberration is negative, it tends to oppose the sec-
ondary, and it is then possible to eliminate both the marginal and the zonal aber-
rations, as indicated in Figure 6.17b. It will be noticed that the secondary and
tertiary aberrations are now much larger than in the simple case of
Figure 6.17a, but the resulting aberration curve is nearly flat, having small equal
and opposite residuals above and below the 0.7 zone. An analysis of the situation
reveals that the maximum and minimum residuals fall at values of p given by

P # — 0.8881 and 0.4597
P

The locations of the maximum residuals are indicated by short horizontal
lines on these diagrams.

DESIGNER NOTE

As a consequence of the nature of the expansion of spherical aberration being in even
orders (for longitudinal form), it is virtually always true that the signs of the coeffi-
cients a, b, and ¢ must alternate to achieve correction for the marginal ray. This is seen
in Figure 6.17a for primary and secondary aberration only and Figure 6.17b when the
tertiary aberration is present. Examination of the ray plot for a lens can tell the lens
designer what orders of spherical aberration are present and if they have the correct
signs to achieve correction.

The effect of refocusing when only primary spherical aberration is present
was shown in Figure 6.3. Consider now the effect of refocusing when both
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primary and secondary spherical aberration are present, which will be seen to be
more complicated. When only primary spherical aberration is present, it is fairly
evident what the optimum refocus should be. With the presence of both primary
and secondary aberration, the optimum refocus is not so simple.

Consider Figure 6.18 that shows the transverse ray errors versus the normal-
ized entrance pupil radius for the case where the marginal spherical aberration is
zero when p = 1 (curve A) and the case where the marginal spherical aberration
is zero when p = 1.12 (curve B). The first case represents what lens designers
often attempt to achieve, that is, having the marginal-ray error equal zero in
the paraxial image plane (& = o1p® + p;p° =0 when p =1). The refocus
boundaries are shown and represent the blur diameter that contains 100% of
the energy. If a different refocus is used (slope of the boundary lines indicates
the amount of refocus) in this case, a brighter core can be obtained. This is illu-
strated in Figure 6.18. Since these boundary lines intersect curve A at about
p = 0.9, this bright core region contains about 80% of the energy and would
provide an improvement in resolution.

The remaining 20% of the energy would be spread around this bright core to
form a dim flare having a diameter about five times larger than the core. Now con-
sider the second case which is illustrated as curve B in Figure 6.18. It can be shown
thatife, = o1p> + p;p° = 0 when p = 1.12, then the smallest 100% blur diameter
is obtained when refocused and it is about 50% larger than the bright core for

0.20
0.15
0.10
0.05

& 0.00

-0.05
-0.10
-0.15

-0.20

Figure 6.18 Geometric blur for third- and fifth-order spherical aberration for zero marginal

- Bright core diameter
— for LAy, =0

I ! I !
Refocused blur diameter
for LAy, =0 when p=1 /;/

Spot minimum diameter
for LAy, =0 when p=1.12

spherical aberration when (curve A) p = 1 and (curve B) p = 1.12.
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curve A. Which of the preceding cases and amount of refocus are best for a given
application must be determined by the lens designer. It is important to note that
achieving a marginal-ray error equal to zero in the paraxial image plane is not
always appropriate.

6.3 PRIMARY SPHERICAL ABERRATION
6.3.1 At a Single Surface

To isolate the primary term, we would have to make Y of infinitesimal
magnitude, and then we cannot use the formula in Eq. (6-4) to compute the aber-
ration for the same reason that we cannot trace a paraxial ray by the ordinary ray-
tracing formulas. However, the primary term can be determined as a limit:

LA;)rimary = }E%(LAQ)
To find this limit, we use paraxial ray data to fill in the numbers in the accurate ver-
sion of Eq. (6-5). Making this substitution gives the primary aberration equation:

2 2 Lt iy L ,
LA;:LAp(%>+Z y (" = d) 5 4 u)ni

1,02 /12
mUy g

Here LA, is the primary aberration of the object, if any; it is transferred to the
final image by the ordinary longitudinal magnification rule. The quantity under
the summation sign is the primary aberration arising at each surface.

These surface contributions (SC) can be written

SC = yni(u' —u)(i +u')/2n, u? (6-6)

Only paraxial ray data are required to evaluate this formula. To interpret it, we
note that for pure primary aberration,

o 2
LA, =aY

and that the radius of curvature of the spherical-aberration graphs in
Figure 6.17, at the point where the graph crosses the axis, has the value

p=7Y?)2LA, =1/2a

Therefore, the coefficient of primary aberration « is an inverse measure of
twice the radius of curvature of the spherical-aberration graph at the point
where it crosses the lens axis. Hence, by tracing one paraxial ray, we not only
discover the location of the image point, but we also ascertain the shape of
the aberration curve as it crosses the axis at that point. It is remarkable how
much information can be obtained from so very little ray-tracing effort.
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Table 6.3

Calculation of Primary Spherical Aberration

y 2 1.9031479 1.8809730
n 1 1.517 1.649

ye+u=i 0.2706542 ~0.4597566 —0.1713855

u 0 -0.0922401 ~0.0554372 ~0.1666664
y 2 1.9031479 1.8809730

ni 0.2706542 ~0.6974508 ~0.2826147

W —u —0.0922401 0.0368029 —0.1112292

i+u 0.1784141 -0.5151938 ~0.3380519

1/2uf? 18 18 18

Product=SC —0.160349 0.453014 -0.359792 X = -0.067127

As an example of the use of this formula, we will calculate the primary
spherical aberration contributions of the three surfaces of the cemented dou-
blet shown in Section 2.5 that we have already used several times (see
Table 6.3). It is interesting to compare these primary aberration contributions
with the exact contributions given in Section 6.1. The contributions are as
follows:

Surface 1 2 3 Sum
Exact contribution -0.16687  +0.55418  —0.37926 0.00805
Primary contribution -0.16035 +0.45301 -0.35979  -0.06713

Difference (contribution of higher orders)  -0.00652  +0.10117  —0.01947

At each surface the true and primary contributions are similar in magnitude
and have the same sign, but the cemented interface shows the greatest differ-
ence. This is due to the presence of a significant amount of secondary and
higher-order aberrations there, while the outer surfaces show very little sign
of higher-order aberrations. It is the presence of the considerable amount of
higher-order aberrations at the cemented interface that is the cause of the large
zonal aberration of this lens. Examination of curve D in Figure 5.3a indicates
that the spherical aberration is comprised of almost totally primary and second-
ary contributions.

6.3.2 Primary Spherical Aberration of a Thin Lens

By combining the SC values for the two surfaces of a thin lens element, we
find that a thin lens, or a thin group of lenses in close contact, within a system
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contributes the following amount to the primary spherical aberration at the
final image:

4
SC= — ﬁz (G1E® — Gac*ey + GscPvy + G4cc% — Gsceyvy + G(,CV%) (6-7)

where the terms with suffix 0 refer to the final image, the other terms applying to
each single element. Here ¢ and ¢; have their usual meanings, namely, ¢; = 1/,
and ¢ = 1/f"(n — 1). The symbol v, is the reciprocal of the object distance of the
element, and the Gs are functions of the refractive index, namely,

G =in*(n—1), Gy =52n+1)(n—1),
G;=103Bn+1)(n—-1), Gy=n+2)(n—1)/n,
Gs =2(n* —1)/n, Ge=1(3n+2)(n—1)/n

The details of the derivation of this formula have been given by Conrady.®
The summation sign in Eq. (6-7) is used only if the thin lens contains more than
one element, for example, if it is a thin doublet or triplet; otherwise it may be
omitted. If there is more than one element we must assume a very thin layer
of air to exist between the elements in place of cement, ¢; being the curvature
of the first surface of each element and v; being the reciprocal of the object dis-
tance in air. Thus for the second lens of a cemented doublet we take

(), =(c1),—¢a and  (vi), = (v1), + ca(tta — 1)

In the case of an isolated thin element or thin system in air, not forming part
of a more complex system, ny = 1 and ujy = yp/I'. Also the aberration of the
object (if any) must be transferred to the image and added to the new aberration
arising at the lens. Thus in such a case we have

! 2
LA, =LA, <[7> —* 1" (G sum)

the (G sum) referring to the six-term expression in parentheses in Eq. (6-7).

By use of the G-sum formula we can plot a graph showing how the primary
spherical aberration of a thin lens varies with the bending (Figure 6.19). For a
single thin positive element, this graph is a vertical parabola, the vertex of which
nearly but not quite reaches the zero aberration line.

The thin single lens having the minimum primary spherical aberration is
called a crossed lens. Its shape can be found by differentiating the G-sum expres-
sion with respect to ¢ yielding

B In(2n+1)ec+2(n+ 1w

c
! n—+2
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Figure 6.19 Effect of bending on spherical aberration.

For the special case of a very-distant object, v; = 0, we find that ¢i/c =
n(2n 4+ 1)/2(n + 2) and ¢o/c; = 2n* — n — 4)/n(2n + 1) = ri/r». For glass having
an index of 1.6861, the crossed lens is exactly planoconvex; however, for other
glass indices, the departure from the planconvex form is slight. The very high-
refractive indices of infrared materials cause the crossed lens to be a deeply
curved thin meniscus.

It is well-known that the spherical aberration of a lens is a function of its
shape factor or bending. Although several definitions for the shape factor have
been suggested (see Section 3.4.5), a useful formulation is

r=— (6-8)

-0

where ¢ and ¢, are the curvatures of the lens, with the first surface facing the
object. By adjusting the lens bending, the spherical aberration can be seen to
have a minimum value.

The power of a thin lens or the reciprocal of its focal length is given by

(n—1)c
b
When the object is located at infinity, the shape factor for minimum spherical

aberration can be represented by

b= (6-9)

~ n(2n+1)
L= 2+ 2) (6-10)
and
o 2t —n—4

c n(2n+1)
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The resultant third-order spherical aberration of the marginal ray in angular
units is

n = (2n+ Dk + (1+2/m)y

SA3 = 6-11
16(n — 1)*(f-number)’ (1D

or after some algebraic manipulations,
3= n(4n —1) (6-12)

64(n +2)(n — 1)*(f-number)*

When the object is located at a finite distance sy, the equations for the shape
factor and residual spherical aberration are more complex. Recalling that the
magnification m is the ratio of the object distance to the image distance and that
the object distance is negative if the object lies to the left of the lens, the relation-
ship between the object distance and the magnification is

1 m

where m is negative if the object distance and the lens power have opposite
signs. The term 1/sq¢ represents the reduced or ¢-normalized reciprocal object
distance vy; that is, s¢ is measured in units of focal length, qﬁ’l. The shape factor
for minimum spherical aberration is given by

_n(2n+1) 2m*=1) y m
L= 2m12) T ai2 (l—m) 619

and the resultant third-order spherical aberration of the marginal ray in angular
units is

_ 1 2 5 Eﬂz . m
SA3_16(n—1)2(f-number)3[n @t Dzt= =+ Bnt Dl 1)(l—m)
4> =1) / m Bn+2)(n—1% 7 m \2
B n (lfm)xJr n (lfm)
(6-15)
and
‘ :%n(2n + De+2(mn+ l)vl‘ (6-16)

n—+2

When the object is located at infinity, the magnification becomes zero and the
above equations reduce to those previously given.

Figure 6.20 illustrates the variation in shape factor as a function of reciprocal
object distance for refractive indices of 1.5 to 4 for an f-number = 1.° Notice
that lenses have a shape factor of 0.5 regardless of the refractive index when
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Figure 6.20 The shape factor for a single lens is shown for several refractive indexes as a func-
tion of reciprocal object distance v; where the distance is measured in units of focal length.

the magnification is —1 or v; = — 0.5. For this shape factor, all lenses have bicon-
vex surfaces with equal radii. When the object is at infinity, a lens having a
refractive index of 1.5 has a somewhat biconvex shape with the second surface
having a radius about six times greater than the first surface radius.

Since the minimum-spherical lens shape is selected for a specific magnification,
the spherical aberration will vary as the object-image conjugates are adjusted. For
example, a lens having a refractive index of 1.5 and configured for m =0 (v =0
and image at /) exhibits a substantial increase in spherical aberration when the
lens is used at a magnification of —1. Figure 6.21 illustrates the variation in the
angular spherical aberration as both a function of refractive index and reciprocal
object distance when the lens bending is for minimum spherical aberration with
the object located at infinity. As can be observed from Figure 6.21, the ratio of
the spherical aberration, when m = —0.5 and m = 0, increases as n increases.

Figure 6.22 shows the variation in angular spherical aberration when the lens
bending is for minimum spherical aberration at a magnification of —1. In a like
manner, Figure 6.23 presents the variation in angular spherical aberration for a
convex-plano lens with the plano side facing the image. The figure can also be
used when the lens is reversed by simply replacing the object distance with the
image distance. For these plots, the actual aberration value is determined by
dividing the aberration value shown by (f-number)>.
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Variation of angular spherical aberration as a function of reciprocal object dis-

tance v; for various refractive indices when the lens is shaped for minimum spherical aberration
with the object at infinity. Spherical aberration for a specific f~number is determined by divid-
ing the aberration value shown by ( f-number)*.
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Figure 6.22 Variation of angular spherical aberration as a function of reciprocal object dis-
tance v; for various refractive indices when the lens is shaped for minimum spherical aberration
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the aberration value shown by (f-number)3.
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Figure 6.23 Variation of angular spherical aberration as a function of reciprocal object dis-
tance v; for various refractive indices when the lens has a convex-plano shape with the plano
side facing the object. Spherical aberration for a specific f~number is determined by dividing
the aberration value shown by (fnumber)’.

6.4 THE IMAGE DISPLACEMENT CAUSED
BY A PLANOPARALLEL PLATE

From Figure 6.24 it is clear that the longitudinal image displacement caused
by the insertion of a thick planoparallel plate into the path of a ray having a
convergence angle U is S = BB’, given by

Y
“tan U’ tanU

Y 1 tan U’
~tan U’ tan U

But Y/tan U’ is equal to 1, the thickness of the plate. Therefore,

tan U’ t cosU
S_t(l_ tanU) _N(N_COSU’>
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Figure 6.24 Image displacement caused by the insertion of a parallel plate.

where N is the refractive index of the plate. For a paraxial ray this reduces to

t
s=—(N-1
s N(N )

Since sin U = nsin U’ and cos? U’ + sin® U’ = 1, it follows that

cos U ncos U
r . :
cosU" /2 _sin*U

The exact spherical aberration is

S—s—£ |- ncos U
n Vn? —sin? U

The plate of glass occupies more space than its “air equivalent,” which is
defined as that thickness of air in which a paraxial ray drops or rises by the
same amount as in the glass plate. Thus, the useful relationship,

air equivalent = glass thickness/refractive index

DESIGNER NOTE

The inclusion of a flat glass plate in an optical system can impact the ultimate image qual-
ity. Microscope cover glasses and dewar windows for infrared detectors are examples
where the aberrations induced by a flat glass plate should be accounted for. Consider a flat
glass plate placed between the plano-hyperboloid lens in Section 6.1.8 “Plane Surface in
Front” and the image it forms. In this case, the added spherical aberration can be effec-
tively mitigated by slightly weakening the conic constant of the lens.
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DESIGNER NOTE

To the lens designer a reflecting prism in a system behaves as though it were a very
thick parallel plate. In a converging beam a prism has the effect of overcorrecting the
three astigmatic aberrations (spherical, chromatic, and astigmatism) while it under-
corrects the comatic aberrations (coma and distortion), and lateral color.

6.5 SPHERICAL ABERRATION TOLERANCES
6.5.1 Primary Aberration

Conrady has shown'? that if a lens suffers from a small amount of pure pri-
mary spherical aberration, the best-fitting reference sphere will touch the
emerging wavefront at the center and edge, and the plane of best focus will lie
midway between the marginal and paraxial image points. If the aberration is
large compared with the Rayleigh limit, geometrical considerations dominate,
and the geometrical circle of least confusion becomes the “best” focus. How-
ever, there is also a secondary best focus close to the paraxial focus; this has
been amply verified by experiment.'!

In the case of pure primary aberration, the magnitude of the maximum
residual OPD at this best focus is equal to the Rayleigh quarter-wave limit when

LA' = 42/sin’ U, = 164( f-number)” (6-17)

where f~-number = focal length/diameter of aperture.

This aberration tolerance is surprisingly large, being four times the extent of
the focal range. Some typical values for 2 = 0.0005 mm are given in the follow-
ing tabulation:

f-number 4.5 6 8 11 16 22
Primary aberration tolerance (mm) 0.2 0.3 0.5 1.0 2.0 3.9

6.5.2 Zonal Aberration

Conrady has also shown'? that if a lens is spherically corrected for the marginal
ray, the residual zonal aberration will reach the Rayleigh limit if its magnitude is

LZA = 61/sin’ U’ (6-18)

m

or 1.5 times the tolerance for pure primary spherical aberration.
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DESIGNER NOTE

For telescopes, microscopes, projection lenses, and other visual systems, it is best not to
allow any overcorrection of the marginal spherical aberration, even though this would
reduce the zonal residual. This is because overcorrection leads to an unpleasant hazi-
ness of the image, and the zonal tolerance is so large that it is not likely to be exceeded.
Indeed, many projection lenses are deliberately undercorrected, even for the marginal
ray, to give the cleanest possible image with maximum contrast. Photographic objec-
tives, on the other hand, are generally given an amount of spherical overcorrection
equal to two or three times the zonal undercorrection. The overcorrected haze is often
too faint to be recorded on film, especially if the exposure is on the short side, and in
any case the lens will generally be stopped down somewhat, which cuts off the marginal
overcorrection, leaving a small and often quite insignificant zonal residual.

In this connection, it may well be pointed out that focusing a camera by unscrewing
the front element has the effect of rapidly undercorrecting the spherical aberration.
This leads to a loss of definition and some degree of focus shift at small apertures,
but its convenience to the camera designer outweighs these objections. If the lens is
known to be intended for this type of focusing, then it should be designed with a
large amount of spherical overcorrection. If possible, the aberration should be well-
corrected at a focus distance of about 15 to 20 feet.

6.5.3 Conrady’s OPD), Formula

Probably the best way to ascertain if a lens is adequately corrected for zonal
aberration is to calculate the optical path difference between the emerging
wavefront and a reference sphere centered about the marginal image point.
Conrady'® has given a formula by which the contribution of each lens surface
to this OPD can be found:

YnsinIsin}(U — U')sind(1 — U’)

OPD' = 6-19a
" 2cosi(U+1)cosiUcos $IcosiU cosir ( )

Referring back to Eq. (6-5), we see that by using the Q method of ray tracing,
Conrady’s expression can be greatly simplified to

OPD' — (Q—Q)nsin I

= 6-19b
" 4cosSU cos 1 cos LU’ cos il ( )

This OPD term has the same sign as the spherical aberration contribution at
any surface. If the lens is spherically corrected for the marginal ray, the magni-
tude of this sum is a measure of the zonal aberration, the sum being positive for
a negative zone. The advantage of using the OPD formula is that the tolerance
of the sum is known to be two wavelengths. Hence we have an immediate
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assessment of the significance of the zonal residual; this is much more accurate
than the simple zonal tolerance given in Section 6.5.2, which is valid only for a
mixture of primary and secondary aberrations.

If the spherical aberration is zero at both margin and 0.7 zone, as in the dia-

gram of Figure 6-17b, then we can determine the seriousness of the two remain-
ing small zones by calculating the OPD sum along the marginal ray (which
should be zero) and also along the 0.7 zonal ray.
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Chapter 7

Design of a Spherically
Corrected Achromat

Since the chromatic aberration of a lens depends only on its power, whereas
the spherical aberration varies with bending, it is obviously possible to select
that bending of an achromat that will give us any desired spherical aberration
(within limits). There are two possible approaches to this design. The first is
the four-ray method, requiring no optical knowledge, and the second makes
use of a thin-lens study based on primary aberration theory to guide us directly
to the desired solution. The latter method is by far the most desirable since it
also indicates how many possible solutions there are to any given problem.

7.1 THE FOUR-RAY METHOD

In this procedure we set up a likely first form, which can actually be rather
far from the final solution, and determine the spherical aberration by tracing
a marginal ray and a paraxial ray in D light, and we calculate the chromatic
aberration by tracing 0.7 zonal rays in F and C light. We then make trial
changes in ¢, and c¢3, keeping ¢, fixed, using a double graph to indicate what
changes should be made to reach the desired solution. This simple but effective
procedure is sometimes called the brute force method; it is especially convenient
if a computer is available for ray tracing.'

As an example we will use this procedure to design an achromatic doublet
with a focal length of 10 and an aperture of 2.0 (f75) using the glasses shown
in Table 7.1. The thin-lens (c,, ¢;) formulas in Section 5.4 for an achromat give

¢, =0.5090, ¢, = —0.2695

and if we assume that the crown element is equiconvex, our starting system
will be

¢ = 02545, ¢ = —02545, and ¢ = 0.0150.

Copyright © 2010, Elsevier Inc. All rights reserved. 209
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Table 7.1
Glasses for Achromatic Doublet
ne np nr 4, V
(a) Crown 1.52036 1.523 1.52929 0.00893 58.6
(b) Flint 1.61218 1.617 1.62904 0.01686 36.6
Vi— V=220
Table 7.2
Aberrations for Setup A
Y=1 Y =07
Lp =9.429133 L =9.426103
Ip = 9.429716 L¢ = 9.430645

Spherical aberration = —0.000583 Chromatic aberration = —0.004542

By means of a scale drawing of this lens (Setup A) we assign suitable thick-
nesses of 0.4 for the crown element and 0.16 for the flint. The results of ray
tracing at the margin and zone are shown in Table 7.2.

We next make a trial change in c¢3 by 0.002 (Setup B). This gives spherical
aberration = +0.001304 and chromatic aberration = —0.001533. In addition,
a further trial change in ¢, by 0.002 (Setup C) gives spherical aberration
= —0.002365 and chromatic aberration = —0.003027. The initial setup and these
two changes are plotted on a graph connecting chromatic aberration as ordinate
with spherical aberration as abscissa (Figure 7.1). Next, line AB is drawn to
show the change for Acs and line BC to show the change for Ac;.

Now drawing a line through the aim point (0, 0) parallel to the line 4B, inter-
secting line BC at D, suggests that we should try the following changes from
Setup B. Scale the initial Ac, by BD/BC, which yields that Ac, = 0.00164.
But since ¢, was —0.2545, we therefore try ¢, = —0.25286. Denoting the aim
point as E, the second step is to scale Ac; by DE/AB. We find that Ac; =
0.00181, and since ¢3 was 0.0170, we consequently try c3 = 0.01881. Ray tracing
this system gives the following for the final setup:

c d np vV
0.2545
0.4 1.523 58.6
—0.25286
0.16 1.617 36.6

0.01881
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Figure 7.1 The four-ray method for designing a cemented doublet.

We have then f/ = 10.0916, I’ = 9.6288, LA'(f/5) = -0.00005, and Li;, =
+0.00004. Evidently the aberration changes are highly linear in this particular
type of lens. We shall find many applications of this double-graphing technique
whenever we are trying to correct two aberrations by making two simultaneous
changes in the lens parameters.”

7.2 A THIN-LENS PREDESIGN

For the predesign of an ordinary cemented doublet, we start by determining
the ¢, and ¢, values for thin-lens chromatic correction as described Section 5.4.
We then set up the G-sum expressions for the primary spherical aberration of a
thin system as described in Section 6.3.2. Since we shall be using ¢; as a bending
parameter, we express everything in terms of ¢;. For the crown element, ¢ is ¢,
¢y and remains as ¢y, and v, is the reciprocal of the object distance. For the flint
element, ¢3 = ¢; — ¢,, since the two elements are to be cemented together, ¢ is ¢,
and v3 = v; + (n,— 1)c,. The sum of the two G sums is now a quadratic in ¢;, which
can be solved either mathematically or graphically to give the two values of ¢; that
meet the requirements of the problem. It can be seen that there are actually two
and only two solutions; the four-ray method gave only the solution closest to
the arbitrary starting setup and totally ignored the possibility of a second solution.
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As an example we will use glasses similar to those used for the four-ray
method, giving ¢, = 0.5085 and ¢, = —0.2679. For the G sums, with crown lens
in front, we have f2y*> = 100, v, = 0, v3 = 0.2659, and ¢3 = ¢, — 0.5085. Using
these values, the spherical G sums give

SC, = —30.759¢% 4 27.357¢; — 7.9756
SCy = 18.543¢7 — 23.698¢; + 7.8392 (7-1)
total = —12.216¢] + 3.659¢;—0.1364

Evaluating this expression for a series of values of ¢; enables us to plot a graph of
spherical aberration against ¢; (Figure 7.2) from which our two possible solutions
can be picked off. It should be reiterated that this graph is incorrect for three rea-
sons: [t assumes thin lenses, it considers only paraxial chromatic aberration, and it
considers only primary spherical aberration. Nevertheless, the two solutions come
out to be surprisingly close to the final solutions.

7.2.1 Insertion of Thickness

Since we require zero spherical aberration, we read off the two solutions as

cp = 0.044 or c] = 0.256.

LA,
02— . . . . . .
0.1p ]
0
01} ]
1 1 1 1 1 1 1 . C1
0 0.2 0.3
N~
N > o
3 303 |8
0.414 0.41 N 0.15

Figure 7.2 Thin-lens crown-in-front designs.
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We now make a scale drawing of these systems and insert suitable thicknesses of
0.415 and 0.15, respectively. Next we trace a marginal ray in D light and calculate
the last radius for perfect achromatism by the D — d method, as explained in
Section 5.9.1. We complete the trace of the marginal ray and add a paraxial ray
so that the true spherical aberration can be found. Since this will not be quite
the desired value, although it will generally be very close, we find dLA'/dc, by dif-
ferentiating Eq. (7-1), and apply the coefficient to ascertain how much the ¢; must
be changed to eliminate the spherical aberration residual. The results for the two
solutions are shown in Table 7.3. The two final designs are shown in Table 7.4.
Scale drawings of the two systems are included in Figure 7.2. The decision as
to which is the better design is based on the zonal aberration, which is nearly
five times as large in the left-hand design as in the right-hand form. Further-
more, the surfaces in the right-hand design are weaker than in the left, resulting
in economy in manufacture, and the fact that the crown element is almost equi-
convex suggests that it should be made perfectly equiconvex to simplify the
cementing operation. To do this requires a slight bending to the left, which
would introduce a small spherical overcorrection, but it would probably be

Table 7.3
Spherical Aberration for Left-Hand and Right-Hand Crown-in-Front Configurations

) 0.044 0.256
Accurate LA’ 0.0072 —0.0007
dLA'/dc, 2.584 —2.596
Acy —0.0028 —0.0003
New ¢; 0.0412 0.2557
New LA’ —0.0001 0.0000
LZA —0.0171 —0.0045

Table 7.4

Solutions for Crown-in-Front Configurations

Left-hand solution Right-hand solution
c d n c d n
0.0412 0.255755
0.412 1.523 0.415 1.523
—0.4442 —0.255037
0.15 1.617 0.15 1.617
—0.1953 0.018021
= 9.9943 1= 9.99398
I'= 9.9545 I'= 9.52719

(f15) [LA' = -0.00007 (15 [ LA’ =-0.0000
ZA = -0.01705 LZA' = -0.00450
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Figure 7.3 Spherochromatism of the right-hand f/5 crown-in-front solution.

better to hold the spherical correction by varying the last radius, and accept the
slight chromatic residual would result. To complete the design, we calculate
marginal, zonal, and paraxial rays in three wavelengths and plot the sphero-
chromatism graph in Figure 7.3.

7.2.2 Flint-in-Front Solutions

There is no magic about having the crown element in front, and indeed for
some applications a flint-in-front form is preferred. Repeating the predesign
procedure with the flint glass as @ and the crown glass as b gives

spherical aberration = —12.21626% +5.6493¢; — 0.5399 (7-2)

This is plotted in Figure 7.4, from which we see that the two spherically cor-
rected forms are shown in Table 7.5. The two final flint-in-front designs are
shown in Table 7.6 (see page 216).

DESIGNER NOTE

Consideration of all four solutions indicates clearly that the right-hand crown-in-front
form is in every way the best, although the zonal aberration of the left-hand flint-in-
front form is not significantly greater. However, the weakness of the radii and the pos-
sibility of making the crown element exactly equiconvex are sufficiently important to
render the crown-in-front form generally preferable.

In recent years, significant effort has been given to developing a computer-
based means of finding the lens configuration that yields the “best perfor-
mance.” Although this will be discussed in a later chapter, it is appropriate to
mention a few pertinent points. One of the more difficult tasks of the lens
designer is the construction of the merit function used by the lens design
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Figure 7.4 Flint-in-front solutions.

Table 7.5

Spherical Aberration for Left-Hand and Right-
Hand Flint-in-Front Configurations

c 0.135 0.327
Accurate LA’ 0.0078 0.0242
dLA'/dc, 2.351 —2.340
Acy —0.0033 0.0103
New ¢ 0.1317 0.3373
Accurate LA’ —0.0002 0.0004
Accurate LZA' —0.0052 —0.0194

program. Best performance was put in quotes above to indicate some uncer-
tainty in what constitutes best performance. The same basic optical perfor-
mance, such as f-number, resolution, spectral bandwidth, and field-of-view
may be required by a two-lens system, yet the lens system may actually be rather
different. The reason for this may be differences in operational environments,
size and weight limitations, cost, fabrication tolerances, and so on.

The lens designer often needs to incorporate these other factors into the merit
function and typically requires interaction with the mechanical engineer and
optical and machine-shop personnel. The merit function can be viewed as a
huge sheet in hyperspace that has a bizarre topology consisting of what can
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Table 7.6

Solutions for Flint-in-Front Configurations

Left-hand solution Right-hand solution
c d n c d n
0.1317 0.3373
0.15 1.617 0.15 1.617
0.3917 0.6052
0.414 1.523 0.454 1.523
—0.1079 0.108114
= 9.9963 f' =10.0564
I'= 9.799%4 I' = 9.4056
(f15) LA =-0.00015 (f5) LA = 0.00037
LZA4 = -0.0052 LZA = -0.0194

be thought of as mountains, valleys, plains, and often pits. Possible solutions
are found in the pits as they have the lower merit function values. With conven-
tional optimization routines, the optical design program simply attempts to find
the bottom of the pit local to the current location. However, the bottom of this
pit may well not be the lowest and, consequently, not the optimum solution. (By
optimum, we mean that the optical configuration solution having the smallest
merit function value existing anywhere in the hyperspace; in other words, the
global solution.)

Many of the optical design programs today include some form of what can
generically be called global optimization. The objective of each searching
approach these programs use is to locate the optimum solution or to give the
designer a variety of potential solutions to consider. At times, “new” configura-
tions have been found by allowing the number of elements and materials to
vary. The achromat study just presented showed that there are exactly four per-
fect solutions for the merit function defined. A simple test that can be given to
an optical design program is to find these four solutions. At least one optical
design program is known to be able to automatically find these solutions.

7.3 CORRECTION OF ZONAL SPHERICAL
ABERRATION

If the zonal aberration in a lens system is found to be excessive, it can often
be reduced by splitting the system into two lenses, each having half the lens
power, in a manner analogous to the reduction of the marginal aberration of
a single lens (see Section 6.1.6).

Another method that is frequently employed in a cemented system is to sep-
arate the cemented interface by a narrow parallel airgap. For this procedure to
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be effective, there must be a large amount of spherical aberration in the airgap
so that the marginal ray drops disproportionately rapidly as compared to the
0.7 zonal ray. The airgap therefore undercorrects the marginal aberration more
rapidly than the zonal aberration. As the rear negative element is now not acting
as strongly as before because of the reduction of incidence height, the last radius
must be adjusted to restore the chromatic correction, ordinarily by use of the
D — d method. As the spherical aberration will now be strongly undercorrected,
it must be restored by a bending of the whole lens. Using this procedure, it is
often possible to correct both the marginal and the zonal aberrations
simultaneously.

To determine the proper values of the airgap and the lens bending, we start
with a cemented lens and introduce an arbitrary small parallel airgap, the last
radius being found by the D — d method. The whole lens is then bent by trial
until the marginal aberration is correct and the zonal aberration is found. If it
is still negative, a wider airgap is required. The desired values are quickly found
by plotting suitable graphs.

As an example, we may consider the following three f/3.3 systems. They each
have a focal length of 10.0, and they are made from K-3 and F-4 glasses, the last
radius in each case being found by the usual D — d procedure, as shown in
Table 7.7.

System A is a well-corrected doublet of the ordinary type, but of unusually
high aperture so as to illustrate the principle. The spherical aberration curve is
shown as A in Figure 7.5. After introducing an airgap and suitably strengthen-
ing the last radius by the D — d method, we have System B. The change in aber-
rations as a result of the introduction of this airgap is

ALApyrging = —0.116115

ratio 3.33
ALA,ona = —0.034857

Table 7.7
Configurations of Three f/3.3 Achromatic Doublets

A B C
¢ d n c d n c d n
0.259 0.259 0.236
0.75 1.51814 0.75 1.51814 0.75 1.51814
—0.2518 —0.2518 —0.2748
0.25 1.61644 0.0162 (air) 0.0162 (air)
0.018048 —0.2518 —0.2748
0.25 1.61644 0.25 1.61644
0.022487 —0.005068
LAargina = 0.001252 —0.114863 —0.000211

LAzona = —0.024094 —0.058951 0.000345
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Figure 7.5 Effect of a narrow airgap on spherical aberration: (A) Cemented doublet; (B) effect
of introducing a narrow airgap; (C) final solution.

We now bend the entire system to the left by Ac = -0.023 to restore the aber-
rations. The changes now are

AL Aarging = 0.114652

ratio 1.93
ALA,ona = 0.059296

If everything were ideal and only primary and secondary aberration were
present, the latter ratio would be 2.0, and so we see that the changes due to
bending are fairly linear in this respect. Examination of curve C shows the pres-
ence of tertiary aberration.

Unfortunately, although the marginal and 0.7 zonal aberrations are virtually
zero in System C, there are sizable intermediate zonal residuals remaining. By
tracing a few additional zonal rays at various heights of incidence, we can plot
the spherical aberration graph of this system as curve C in Figure 7.5. However,
it is evident that these unavoidable residuals are much smaller than the 0.7 zonal
aberration of the original cemented System A. The designer should be careful in
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adjusting the airgap to avoid the introduction of yet higher-order aberration
terms. Somewhat improved performance can be achieved by shifting the zero
zonal aberration point to a bit higher value of p. A problem likely to arise is
that at least quintic aberration will now appear and have a rather significant
value. The presence of the higher-order aberration makes the lens less tolerant
to manufacturing and alignment errors.

When System A, after introducing a small airgap, was optimized by a typical
lens design program using the same criteria as used in the preceding procedure,
the resulting design was found to be quite similar, with the airgap being about
one-third of System C. Figure 7.6 illustrates the longitudinal aberration and
should be compared with curve C in Figure 7.5. It should be mentioned that
there are many similar designs that have essentially the same performance as
the airgap is varied and the curvatures are readjusted.

DESIGNER NOTE

An alternative procedure that can be applied to reduce zonal aberration is to thicken a
lens element, provided there is a large amount of undercorrected aberration within the
glass. This is done frequently in photographic objectives, such as in Double-Gauss
lenses of high aperture. Of course, introducing an air space by breaking cemented sur-
faces can be done in concert with element thickening.

~
v

/‘\
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-0.02 -0.016 -0.012 -0.008 -0.004 0 0.004 0.008 0.012 0.016 0.02

Figure 7.6 Longitudinal spherical aberration for an achromatic doublet having a small airgap
designed using a computer optical design program.
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7.4 DESIGN OF AN APOCHROMATIC OBJECTIVE
7.4.1 A Cemented Doublet

A simple cemented doublet can be made apochromatic if suitable glasses
are chosen in which the partial dispersion ratios are equal. The combination of
fluorite and dense barium crown mentioned in Section 5.5 is one possibility.
Another is a doublet made from two Schott glasses such as in Table 7.8. The large
V difference of 27.99 keeps the elements weak and reduces the zonal aberration.

Table 7.8

Glass Properties for Apochromatic Cemented Doublet

v _ n, — 1
Glass 7, An = (np—n.) ¢ \np —ne, Pr,
FK-52 1.48747 0.00594 82.07 0.4562
KzFS-2 1.56028 0.01036 54.08 0.4562

7.4.2 A Triplet Apochromat

Historically the preferred form for an apochromatic telescope objective has been
the apochromatic triplet or “photovisual” objective suggested by Taylor in 1892.
The preliminary thin-lens layout has already been described in Section 5.6, and
we shall now proceed to insert thicknesses and find the bending of the lens that
removes spherical aberration. The net curvatures and glass data of the thin system
are also given in Section 5.6. The glass indices and other data are stated to seven dec-
imal places by use of the interpolation formulas given in the Schott catalog; this
extra precision is necessary if the computed tertiary spectrum figures are to be mean-
ingful. Obviously, in any practical system such precision could never be attained.

A possible first thin-lens setup with a focal length of 10 is the following:

¢ = 0.56 (say) r1 = 1.79 (approx.)
¢ = 1.0090432
¢ =c1 —cqg=—0.4490432 ry = -2.23
cp = —0.7574313
3 =cy—cp =0.3083881 3 =324
¢, =0.1631915
c4 = c3 —c. = 0.1451966 r4 = 6.89

Tracing paraxial rays through this lens with all the thicknesses set at zero gives
the image distances previously plotted in Figure 5.11.
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Figure 7.7 Apochromatic triplet objectives: (a) cemented triplet apochromat, (b) triplet apoc-
hromat with airgap, and (c) doublet achromat.

Since an aperture of f/8 is the absolute maximum for such a triplet apochro-
mat, we draw a diagram of this setup at a diameter of 1.25, by means of which
we assign suitable thicknesses, respectively 0.3, 0.13, and 0.18. This lens is shown
in Figure 7.7a. Our next move is to trace a paraxial ray in e light through this
thick system, and as we go along modify each surface curvature in such a way
as to restore the paraxial chromatic aberration contribution to its thin-lens value.
Since the chromatic contribution was shown (see Eq. (5-1b)) to be given by

L, C = yni(An/n — An' /n’) Ju}?

it is clear that all we have to do is to maintain the value of the product (yi) at
each surface. The equations to be solved, therefore, are

. thin — lens(yi) u+i
f=—————, ¢=—r
actual y '’ %

When this is done, we have the following thick-lens paraxial setup:

c d n,
0.40580124

0.4148 1.4879366
—0.36858873

0.17975 1.6166383
0.24679727

0.2489 1.7043823
0.11469327

[ =10.000 I' =9.0266
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Tracing paraxial rays in other wavelengths reveals only very small departures
from the thin-lens system. These are caused by the small assumptions that were
made in deriving Eq. (5-1b).

We must next achromatize for the zonal rays by use of the D — d method. For the
An values, we use (1, — 1) because we are endeavoring to unite C, e, and g at a com-
mon focus. When this is done, the fourth curvature becomes 0.14697738, and the
focal length drops to 9.7209. However, the spherical aberration is found to be
+0.35096, and we must bend the lens to the right to remove it. Repeating the design
with ¢; = 0.6, and adding the marginal, zonal, and paraxial rays in all three wave-
lengths gives the spherochromatism curves shown in Figure 7.7a. Both the zonal
aberration and the spherochromatism are clearly excessive, and so we adopt the
device of introducing a narrow air space after the front element.

As this quickly undercorrects the spherical aberration, we return to the pre-
ceding setup, with the addition of an air space, and once more determine the last
radius by the D — d method:

c d n,

0.39011389

0.4307 1.4879366
—0.35496974

0.0373 (air)
—0.35496974

0.1866 1.6166383
0.23767836

0.2584 1.7043823
0.11045547
f¢=10.000 1, = 8.8871

The spherochromatism curves are shown in Figure 7.7b, and the whole
situation is greatly improved. This is about as far as we can go. Increasing the
air space still further would lead to a considerable overcorrection of the zonal
residual, and the result would be worse instead of better; however, if the
air space is greatly increased, a different solution may be found as discussed later.

But first, it is of interest to compare this apochromatic system with a simple
doublet made from ordinary glasses. An f/8 doublet was therefore designed
using the regular procedure, the glasses being

ne ne g
(a) Crown 1.52036 1.52520 1.53415
(b) Flint 1.61218 1.62115 1.63887

The final doublet system is shown in Table 7.9. The spherochromatism curves
are shown in Figure 7.7c.
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Table 7.9
Prescription of f/8 Doublet Shown in Figure 7.7¢

¢ d
0.2549982
0.2 (crown)
—0.2557933
0.1 (flint)
0.00964734

It is clear that the zonal aberration is negligible, the only real defect being the
secondary spectrum. However, the effort to correct this in the three-lens apoc-
hromat has increased the zonal aberration and spherochromatism so much that
it is doubtful if the final image would be actually improved thereby. An apoc-
hromat is useful only if some means can be found to eliminate the large spher-
ochromatism that is characteristic of such systems.

7.4.3 Apochromatic Objective with an Air Lens

If the airgap is significantly increased and ¢, and c¢3 are allowed to differ some-
what, an air lens is formed between these surfaces. By using a computer optimiza-
tion program to achromatize the lens for g and C spectral lines, correct secondary
spectrum using g and e spectral lines, correct marginal and zonal spherical aber-
ration in the e spectral lines, and correct marginal spherochromatism for g and C
spectral lines, diffraction-limited performance can be obtained. A representative
lens is shown in Figure 7.8 that operates at f/8 and has the following prescription:

c d n,

0.49149130

0.4286 1.4879367
—0.30739277

0.3593 (air)
—0.45082004

0.1857 1.6166386
0.29139083

0.2571 1.7043829
0.14851018
/i =10.0086 I, = 7.4947

L
Figure 7.8 Layout of an f/8 apochromatic triplet objective lens having axial diffraction-limited
performance and showing ray paths for axial, 1°, 2°, and 3° extraaxial object points.
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Figure 7.9 Chromatic focal shift.

The glasses used in this example are Schott N-FK51, N-KZFS4, and
N-SF15, respectively. Figure 7.9 illustrates the achievable wide spectral band-
width for this apochromatic triplet objective. Notice the characteristic shape
of the central portion of the plot and the rapid chromatic undercorrection at
each end of the spectral bandwidth.

The longitudinal meridional ray errors for light from 440 nm to 700 nm in
steps of 20 nm is shown in Figure 7.10. The optimization criteria mentioned
above yielded a highly corrected lens system. As can be seen, the marginal and
axial chromatic error is negligible while some zonal aberration remains, although
it is quite small. The spherochromatism comprises primary, secondary, and ter-
tiary components having signs of minus, plus, and minus, respectively. Also,
notice that the intercepts of the plots are wavelength dependent, which means
that an amount of positive and negative zonal aberrations for each plot are wave-
length dependent. The amount of positive and negative zonal aberrations for the
e spectral line is essentially balanced (see arrow in Figure 7.10).

Does this apochromatic objective have excellent performance just on axis or
does it have a useful field-of-view? Figure 7.11 presents the transverse ray fans
for axial, 1°, 2°, and 3° extraaxial object points. The off-axis behavior will be
discussed in later chapters, but recalling the discussions in Chapter 4, it is evi-
dent that (1) the lateral chromatic aberration grows as the field angle increases,
(2) negative coma is dominant at 1° with very slight negative linear astigmatism,
and (3) linear astigmatism is beginning to become dominant by 3°. The
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Figure 7.10 Longitudinal meridional ray errors for light from 440 nm to 700 nm in steps of 20 nm.

& 0 £ £ 1° £
o, | Py - T, Y [ e«
& 2 & & 3 &

N

Figure 7.11 Transverse ray fans for axial, 1°, 2°, and 3° extraaxial object points. Scale is +£20 um.

acceptability of the extraaxial image quality is, of course, dependent on the
application.

The technique of incorporating air lenses in an optical system has been uti-
lized for a long time. In fact, one could view the air space between lens elements



226 Design of a Spherically Corrected Achromat

Figure 7.12 Air lens.

as air lenses. An air lens has no chromatic aberration, which is one reason the
D — d method of achromatizing works. Figure 7.12 illustrates a possible air lens.
The source is located in a material having a refractive index of n; and the image
is formed in a material having a refractive index of n,. The space between the
materials forms the air lens as is seen in the figure. If one or both of the bound-
ing surfaces of the air lens are made to be conic surfaces, there is the possibility
to dramatically control the marginal and zonal spherical aberrations magni-
tudes and sign.

Interestingly, in 2004, U.S. Patent No. 6,785,061 B2 entitled “Converging Air
Lens Structures” was issued. The basic lens appears similar to the lens shown in
Figure 7.12 except that an aperture stop was placed in the air space. The air lens
concept has been used in various lens such as an Angenieux zoom lens compen-
sated for temperature, vibration, and pressure.* Should the air space be replaced
with another optical material, the resultant optical system that forms a complete
imaging system is often referred to as a solid optic. Such systems have a variety
of specialized applications.

It should be noted that the above solutions are far from being the only pos-
sible triplet apochromat that can be designed. We could assemble the three ele-
ments of our thin-lens solution in any order; we could introduce an airgap in the
other interface; and of course we could use quite a different set of glasses.
Anyone seriously engaged in designing such a system is well-advised to try out
some of these other possibilities.

ENDNOTES

' 1t should be understood that one can use an optical design program to automatically opti-
mize this lens by configuring the merit function appropriately; however, following the pre-
sented procedure provides insight into the lens’ parametric behavior.

2 This procedure was suggested to Dr. Kingslake by his colleague, Mr. H. F. Bennett.

3 H. D. Taylor, Br. Patent 17994 (1892).

4 Allen Mann, Infrared Optics and Zoom Lenses, Second edition, pp. 84-85, SPIE Press,
Bellingham (2009).



Chapter 8

Oblique Beams

An oblique beam (also called a pencil) of rays from an extraaxial (or off-axis
or nonaxial) object point contains meridional rays that can be traced by the
ordinary computing procedures already described, and also a large number of
skew rays that do not lie in the meridional plane. Each skew ray intersects the
meridional plane at the object point and again at a “diapoint” in the image
space, and nowhere else. Skew rays require special ray-tracing procedures,
which will be discussed in Section 8.3. These are much more complex than for
a meridional ray, and it is observed that skew rays were seldom used before
the advent of electronic computers; now they are routinely traced by all lens
designers since the available computing power of even the most common per-
sonal computer is extraordinarily great.

In Chapter 4, we discussed both axial and off-axis/nonaxial aberrations in an
analytical sense rather than a causal sense. Axial aberrations have been investi-
gated in some detail in the last several chapters. In this chapter, we will begin a
more detailed study of field-dependent astigmatic and comatic aberrations. We
begin by looking at the origin of coma and astigmatism, and then the role vari-
ous types of stops have in lens systems. The remainder of the chapter discusses
general ray tracing and graphical representation of skew ray aberrations.

8.1 PASSAGE OF AN OBLIQUE BEAM THROUGH
A SPHERICAL SURFACE

8.1.1 Coma and Astigmatism

When a light beam is refracted obliquely through a spherical surface, several
new aberrations arise that do not appear on the lens axis. To understand why
this is so, we may consider the diagram in Figure 8.1 showing a single refracting
surface and an aperture stop that admits a circular cone of rays from an off-axis
object point B. We label the rays through the rim of the aperture by their posi-
tion angles taken counterclockwise from the top as viewed from the image
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Figure 8.1 Origin of coma and astigmatism.

space, so that the upper ray is called 0° and the lower ray 180°, while the front
and rear sagittal rays become 90° and 270°, respectively. The line joining the
object point B to the center of curvature of the surface, C, is called the auxiliary
axis, and obviously there is complete rotational symmetry around this axis just
as there is rotational symmetry around the lens axis for an axial object point.

Moreover, because of this symmetry, every ray from the object point B pass-
ing through the aperture stop must cross the auxiliary axis somewhere in the
image space. If we could trace a paraxial ray from B along the auxiliary axis,
it would form an image of B at, say, B’. However, because of the spherical aber-
ration arising at the surface, the intersection point for all other rays will move
along the auxiliary axis toward the surface by an amount proportional to the
square (approximately) of the height of incidence of the ray above the auxiliary
axis. Thus the upper limiting ray might cross the auxiliary axis at, say, U’, and
the lower limiting ray at L'. It is at once evident that the upper and lower rays
do not intersect each other on the principal ray but in general above or below it;
the height of the intersection point above or below the principal ray is called the
tangential coma (a relic of the old custom of calling meridional rays tangential
because they form a tangential focal line).

To find the point at which the two sagittal rays at 90° and 270° intersect the
auxiliary axis, we note that these rays are members of a hollow cone of rays cen-
tered about the auxiliary axis, all coming to the same focus on that axis. The
upper ray of this hollow cone strikes the refracting surface at K, slightly higher
than the principal ray, so that the spherical aberration of this ray will be a little
greater than that of the principal ray, forming an image at S on the auxiliary
axis (shown by the small circle). S lies below the principal ray on our diagram,
which indicates the presence of some negative sagittal coma, but not as much as
the tangential coma that we found previously. Indeed, it can be shown' that
for a very small aperture and obliquity, the tangential coma is three times the
sagittal coma; the exaggerations in our diagram do not make this relation obvi-
ous, but at least both comas do have the same sign.
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We thus see that the extreme upper and lower rays of the marginal zone
come to a focus at 7, while the extreme front and rear rays come to a different
focus at S. The longitudinal separation between S and 7 is called the astigma-
tism of the image, and evidently both coma and astigmatism arise whenever a
light beam is refracted obliquely at a surface. It is essential to note that each sur-
face in a lens has a different auxiliary axis, and that the proportion of coma and
astigmatism therefore varies from surface to surface. It is thus possible to cor-
rect coma and astigmatism independently in a lens system provided there are
sufficient degrees of freedom available.

In Sections 4.3.3 and 4.3.4, additional information about computing astigma-
tism and coma using exact ray tracing and the relationship to aberration coeffi-
cients was presented. In the next chapter, we will discuss coma, the Abbe sine
condition, and offense against the sine condition. Astigmatism, Coddington
equations, the Petzval theorem, distortion, and lateral color are explored in
more depth in Chapter 11. Also in that chapter, the important symmetry princi-
ple will be introduced.

8.1.2 Principal Ray, Stops, and Pupils

At this point, it is necessary to define several important terms. The aperture
stop or stop of a lens is the limiting aperture associated with the lens that deter-
mines how large an axial beam may pass through the lens. The stop can be an
element within the lens system or a mechanical element such as a hole in a disk.
A mechanical stop that can vary its opening size is also called an iris.

The marginal ray, also called the rim ray, is the extreme ray from the axial
point of the object through the edge of the stop. As discussed in Section 4.2,
the entrance pupil is the image of the stop formed by all lenses preceding it when
viewed from object space. It also is the reference surface used to define ray coor-
dinates, that is, (p, 0, H,). By convention, the entrance pupil is aberration free.
In a similar manner, the exit pupil is the image of the stop formed by all lenses
following it when viewed from image space. The exit pupil is used as a reference
surface for exiting wavefronts from the lens. Very often the rays incident at the
exit pupil are not rectilinearly mapped onto the exit pupil due to pupil
aberrations.

Consideration of the mapping error is necessary to properly compute image
energy distribution, M TF, and diffraction. These two pupils and the stop are all
geometric images of one another. The entrance and exit pupils can each be real
or virtual images of the aperture stop located at finite distances or at infinity
dependent on the optical configuration before and after the stop. For example,
if an aperture stop is placed between the object and a singlet lens, and closer to
the lens than the focal length, then the entrance pupil is clearly real and the exit
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pupil is virtual. In general, the spatial location of the pupils with respect to the
stop can be in order (for example [exit, entrance, stop], [entrance, exit, stop],
and [entrance, stop, exit]).

The principal ray is defined as the ray emanating from an off-axis object point
that passes through the center of the stop. In the absence of pupil aberrations, the
principal ray also passes through the center of the entrance and exit pupils. As the
obliquity angle of the principal ray increases, the defining apertures of the compo-
nents comprising the lens may limit the passage of some of the rays in the entering
beam, thereby causing the stop not to be filled with rays. The failure of an off-axis
beam to fill the aperture stop is called vignetting.” The ray centered between the
upper and lower rays defining the oblique beam is called the chief ray. When
the object moves to large off-axis locations, the entrance pupil often has a highly
distorted shape, may be tilted, and/or displaced longitudinally and transversely,
and no longer perpendicular to the lens axis.

Indeed, without this tilting of the entrance pupil a fisheye lens covering a full
490° in the object space would not transmit any light at the edge of the field.
Due to the vignetting and pupil aberrations, the chief and principal rays may
become displaced from one another. In some cases, the principal ray is vignetted
while the chief ray is never vignetted as long as light passes through the lens at
the considered obliquity angle. The terms principal ray and chief ray are fre-
quently used interchangeably; however, once vignetting occurs, the distinction
must be made.

DESIGNER NOTE

It is important that the lens designer understands how the optical design program being
used handles the aiming of the chief ray. Typically, the chief ray is aimed toward the
center of the (vignetted) entrance pupil, which is generally acceptable in the early stages
of design. In the final stages, the chief ray should be aimed at the center of the
(vignetted) stop. The reason for this is that additional computational time is required
to aim at the (vignetted) stop. Since the stop is a real surface, the entrance pupil may
well suffer aberrations. If the entrance pupil is considered unaberrated, then the stop
is likely aberrated in theory at least. A design that may appear quite satisfactory using
an unaberrated entrance pupil can perform in practice differently since the actual stop
is unaberrated, thereby changing what rays actually pass through the lens system!
Remember that the vignetted stop is made up of portions of the actual stop and bound-
aries of various lens elements (see Section 8.1.3).

The field stop is an aperture that limits the passage of principal rays beyond a
certain field angle. The image of the field stop when viewed from object space is
called the entrance window and is called the exit window when viewed from
image space. The field stop effectively controls the field of view of the lens



8.1 Passage of an Oblique Beam through a Spherical Surface 231

system. Should the field stop be coincident with an image formed within or by
the lens system, the entrance and exit windows will be located at the object
and/or image(s).

A telecentric stop is an aperture located such that the entrance and/or exit
pupils are located at infinity (see Section 12.5.3). This is accomplished by plac-
ing the aperture in the focal plane. Consider a stop placed at the front focal
plane of a lens. The stop image is located at infinity and the principal ray exits
the lens parallel to the optical axis. This feature is often used in metrology since
the measurement error is reduced when compared to conventional lens systems
because the centroid of the blur remains at the same height from the optical axis
even as the focus is varied.

8.1.3 Vignetting

In many lenses, and particularly those having a considerable axial length, an
oblique pencil may be unable to traverse the lens without part of the beam being
obstructed by the end lens apertures. For instance, in the triplet lens shown in
Figure 8.2 the upper rays of the 20° oblique beam are cut off by the rear lens
aperture, and the lower rays by the front aperture, so that the beam fails to fill
the iris. This process is known as vignetting, the oblique beam is projected onto
the plane perpendicular to the axis in the object space having the shape shown
in the figure. Vignetting is one of the reasons why the illumination on the
film/detector-array in a camera falls off at increasing transverse distances from
the lens axis. Other reasons are (a) the cos’ law, (b) distortion of the entrance
pupil at high obliquities, and (c) image distortion. The effects of these various
factors have been discussed elsewhere.*

To plot the vignetting diagram of a lens, the locations of the upper and lower
“rim” rays are readily found by trial, but it is then necessary to determine the
radii of the upper and lower limiting circular arcs. The lower arc obviously
has the same radius as the front lens aperture, but the upper arc is the image
of the rear aperture as seen through the lens. Its radius bears the same ratio
to the radius of the entering axial beam as the diameter of the rear aperture itself
bears to the diameter of the axial beam as it emerges from the rear of the lens.

In addition to the circles corresponding to the front and rear lens apertures,
an oblique beam is limited also by the iris, and the image of the iris must there-
fore be projected into the object space along with the image of the rear aperture.
To locate this iris image, we add a ray parallel to the upper and lower rim rays
and passing through the center of the iris. This middle ray is projected into the
vignetting diagram in Figure 8.2, and we draw a circle about it having the diam-
eter of the entering axial beam because the axial beam necessarily fills the
iris completely. The vignetted area of the oblique beam is shown shaded. The
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Figure 8.2 Vignetting diagrams.

“vignetting factor” is the ratio of the area of the oblique beam to the area of the
axial beam, both measured in a plane perpendicular to the lens axis. It is, of
course, an assumption that the images of the iris and of the rear lens aperture
are circles; indeed, they are much more likely to be arcs of ellipses, but we make
very little error by plotting them as circles.

An alternative method of plotting the vignetting diagram is shown in the lower
diagram of Figure 8.2. We begin by determining the location and size of the images
of the rear aperture and of the iris, projected into the object space, by use of para-
xial rays traced right-to-left from the centers of those two apertures. The front
aperture and the two images are shown at Cy, C,, and Cj3, their computed radii
being, respectively, r, 2, and r3. We can now replace the lens by these three circles,
and project their centers at any required obliquity onto a vertical reference plane
as shown. Knowing the centers of the circles and their radii, it is a simple matter
to draw the vignetting diagram directly. Of course, this procedure cannot be as
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accurate as the first method, but it is much simpler and generally sufficiently accu-
rate for most purposes. This simple procedure cannot be used for wide-angle or
fisheye lenses where the pupil is seriously distorted or tilted.

Another method that can be used relies on the linear nature of paraxial ray
tracing. It is easy to show that if two paraxial rays have been traced through
a lens system and at each surface y and y are known, then the intercept height
¥ for any other ray at any surface can be computed without ray tracing.* The
general equation is

5= 3= Gi= 37 (8-1)

Calculation of the coordinate of any ray on the entrance pupil (j = 1) having
the coordinate y; on the ith surface, with y; = 0, then Eq. (8-1) becomes
= = _\J

yi=0i—») o

Table 8.1 contains ray trace data for a simple two-lens system having an
internal stop. Lens A diameter is 3.0, the diameter of Lens B is 2.0, and the
diameter of the stop is 2.0. From Table 8.1, the entrance pupil is located a dis-
tance of 2.5 behind Lens A (or 0.5 to the right of the stop). The marginal ray
and two principal rays (u = 0.1 and 0.2) were traced. The size of the entrance
pupil can be determined in a couple of ways from the data in the table. First,
the marginal ray has a height of 1.25 for a stop radius of 1.0. Remember that
the linear nature of paraxial ray tracing implies that a stop diameter of 0.80,
or the magnification of the stop to form the entrance pupil, is 1.25. A second
way is to observe that the principal angle at the entrance pupil is 0.1 and is
0.125 at the stop. Hence, the magnification of the stop to form the entrance

(8-2)

Table 8.1
Ray Trace Data for Lens Systems Demonstrating Vignetting

Entrance
pupil Lens A Stop Lens B

Surf # 1 2 3 4
- 0 ~0.1 0 ~0.1
t -2.5 2 1
y } mareinal 1.25 1.25 1 0.875
u £ 0 ~0.125 ~0.125 ~0.2125
v } principal 0 ~0.2500 0 0.125
u 0.1 0.125 0.125 0.1125
’ } principal 0 ~0.5000 0 0.2500

0.2 0.25 0.25 0.2250
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Figure 8.3 Vignetting diagram for the lens system shown in Table 8.1 where (a) is for an axial
object, (b) is for a distant object having a field angle of 0.1, and (c) is for a distant object having
a field angle of 0.2.

pupil is again found to be 1.25 (u3/u;). To compute the shift, often called shear,
of the ith element’s projected center onto the entrance pupil, set y; = 0 and use
Eq. (8-2) with the data in the table. Determination of the projected size of the
lens onto the entrance pupil once again uses Eq. (8-2).

Figure 8.3 depicts the circular apertures for the stop and both lenses contained
in Table 8.1. where Figure 8.3a is for an axial object, Figure 8.3b is for a distant
object having field angle of 0.1, and Figure 8.3c is for a distant object having a
field angle of 0.2. The shaded area illustrates the portion of the lens that can pass
light at these three angles. Notice in Figure 8.3b that Lens B is starting to vignette
while Lens A is relatively far from vignetting. In Figure 8.3c, Lens B is vignetting
more and Lens A is just starting to vignette. The vignetted entrance pupil appears
to shift down and become elliptically shaped.

8.2 TRACING OBLIQUE MERIDIONAL RAYS

For any given object point, or for any given obliquity angle if the object is at
infinity, a specific meridional ray must be defined by some convenient ray
parameter. This may be the height 4 at which the ray intersects the tangent
plane at the first lens vertex, or it may be the intersection length L of the ray rel-
ative to the front lens surface. For a ray proceedings uphill from left to right
and entering the lens above the axis, 4 will be positive and L negative.

Whatever ray parameter is chosen, it is necessary to use appropriate “open-
ing equations” to convert the given ray data into the familiar (Q, U) values to
trace the ray.
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1. A Finite Object
If the object point is defined by its H and d, (Figure 8.4), then
tanU=—(A4—H)/dy and Q= AcosU
If the ray is defined by its L value, then
tanU =—-H/(L—dy) and Q= —LsinU

2. A Very Distant Object
The slope angle of all entering rays is now the same, being equal to the principal-
ray slope U,; we use only the second of the opening equations to find Q.

3. Closing Equations
Having traced an oblique ray through a lens, we generally wish to know the
height at which it crosses the paraxial image plane. This is given by (Figure 8.5)

H' = (Q +1I'sinU")/cos U’

Figure 8.4 Opening equations.

Figure 8.5 Closing equations.
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Figure 8.6 Coordinates of the intersection of two rays.
Sometimes we want to know the coordinates of the intersection point of two

traced rays, knowing their L’ or their Q' value and also their slope angles U’.
The formulas to be used are (Figure 8.6a)

L tan U/ — Ljtan U,
/=8 AN e~ T anl b’ where L' = —Q'/sinU’
tan U} — tan U, (8-3a)

W= _(L;z - ;b) tan U; = _(L;) - :zb)tan U;)

ab

8.2.1 The Meridional Ray Plot

Having traced a number of oblique rays through a lens from a given object
point, we need some way to plot the results and interpret the mixture of aberra-
tions that exists in the image. This mixture will contain spherical aberration, of
course, and also the oblique aberrations coma and meridional field curvature.
Astigmatism as such will not appear because it involves sagittal rays, which
are not traced in a meridional beam. The two chromatic aberrations will not
appear unless colored oblique rays are being traced.

The usual procedure is to plot the intercept height H' of the ray at the paraxial
image plane as the ordinate, with some reasonable ray parameter as the abscissa.
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For the latter we may use the Q value of the ray at the front lens surface, or the inci-
dence height A4 of the ray at the tangent plane to the front vertex, or the intersec-
tion length L of the ray at the first lens surface. Sometimes we use the height of
the ray at the paraxial entrance pupil plane, or its height in the stop. However,
there is good reason to use as abscissa the tangent of the ray slope angle U’ in
the image space. When this is done a perfect image point plots as a straight line,
whose slope is a measure of the distance from the paraxial image plane to the
oblique image point. The reason for this can be seen in Figure 8.6b, which shows
two rays in an oblique pencil having heights H/, and H/ at the image plane and
emerging slope angles U/, and U}, respectively. The longitudinal distance L,
from the image plane to the intersection of these rays with one another is given by

'w=H +L,tanU! and H, = H} + L, tan U,

!/
a

Eliminating H', gives

/ Hclz_H},;

=_——a b 8-3b
“ " tan U} — tan U, (8-3b)

If the data of the two rays are plotted on a graph connecting H’ with tan U’,
the slope of the line joining the two ray points will be a direct measure of L.
Consequently if all the rays in the beam have the same L/,, their ray points will
all lie on a straight line, with the lower rim ray at the left and the upper at the
right. The principal ray will fall about midway between the two rim rays. A per-
fect lens with a flat field will plot as a horizontal straight line (Figure 8.7a). A per-
fect lens with an inward-curving field plots as a straight line sloping down from
left to right (Figure 8.7b). Primary coma is represented by a parabolic graph,
the ends being up in the case of positive coma (Figure 8.7c), and down for nega-
tive coma (Figure 8.7d). Primary spherical aberration is represented by a cubic

Lower rim
Upper rim

(@) (b) (c)

(d) (e) U]

Figure 8.7 Some typical H — tan U curves: (a) a perfect lens, (b) inward-curving field, (c) posi-
tive coma, (d) negative coma, (e) spherical undercorrection, and (f) zonal spherical aberration.
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curve, and if the image along the principal ray lies in the paraxial image plane, the
middle of the cubic curve will be horizontal (Figure 8.7¢). Zonal spherical aberra-
tion is revealed by a curve with a double bend, which is a combination of a cubic
curve for the primary aberration component and a fifth-order curve for the sec-
ondary aberration (Figure 8.7f). Of course, any imaginable mixture of these aber-
rations can occur, and the experienced designer soon gets to recognize the
presence of the different aberrations by the shape of the curve.

8.3 TRACING A SKEW RAY

A skew ray>® is one that starts out from an extraaxial object point and enters
a lens in front of or behind the meridional plane. It should be noted that for
every skew ray there is another skew ray that is an image of the first, formed
as if the meridional plane were a plane mirror. Thus, having traced one skew
ray we have really traced two, the ray in front of the meridional plane and the
corresponding ray behind it. These two skew rays intersect each other at the
same diapoint (see Figure 2.1).

In tracing a skew ray, we denote a known point on the ray as X, Yy, Z, and the
direction cosines of the ray as K, L, M. Of course, in the object space the point
Xo, Yo, Zy can be the original object point, and we must somehow specify the direc-
tion cosines of the particular entering ray that we wish to trace. This is often done by
specifying the point at which the entering ray pierces the tangent plane at the
first lens vertex. Then, knowing Xy, Yo, Zy, and K, L, M, we can determine the point
X, Y, Z at which the ray strikes the following lens surface, and after refraction it will
have a new set of direction cosines K’, L', M’ and proceed on its way. The ray-
tracing problem thus reduces to two steps: the transfer of the ray from some known
point to the next surface, and the refraction of the ray at the next surface.

8.3.1 Transfer Formulas

Since the direction cosines of a line are defined as the differences between the
X, Y, Z coordinates of two points lying on the line divided by the distance
between these points, it is clear from Figure 8.8 that
X — X Y- Yo Z—-Zy+d
L= M=————

D’ D’ D
where D is the distance along the ray from the point X, Y, Z, to the point of
incidence X, Y, Z, and d is the axial separation of the surfaces. By means of
these relationships we see that

K=

X=KD+Xy,Y=LD+Yy,Z=MD+(Z—d) (8-4a)



8.3 Tracing a Skew Ray 239
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Figure 8.8 Transfer of a skew ray from one surface to the next.

The equation of the next refracting surface is, of course, known. For a sphere
of radius r it is

X4+ Y +22-2X=0 (8-4b)
and substituting Eqgs. (8-3a) in (8-3b) gives the equation to be solved for D as

D>~ 2rF-D+rG=0

where

KXO+LYQ+M(Zo—d)

r
X+ +(Zo-d}
r

F+ <F2 G)l/z
p

The ambiguous sign of the root indicates the two possible points of intersection
of the ray with a complete sphere of radius . Only one of these is useful, and the
appropriate sign must be chosen. Remember that D must always be positive.
Knowing D we return to Eq. (8-4a) and calculate X, Y, and Z, the coordinates
of the point of incidence. For a plane surface,

F=M -

(8-5)
G

2Zy — d)

The solution is, of course,

D=r

D=GJ2F = —(Zy—d)/M
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8.3.2 The Angles of Incidence

It is a well-known property of direction cosines that the angle between two
intersecting lines is given by

cosl = Kk + LI+ Mm

Here K, L, M are the direction cosines of the ray, and &, /, m the direction
cosines of the normal at the point of incidence. For a spherical surface,

X Y Z
k=—" =t m=1-% (8-6)
r r r
Hence,
cosI:F—B
r (8-7)

cosI' = [1—(n/n')*(1 — cos’I)]"/?

For a plane, cos 7/ = K.

8.3.3 Refraction Equations

To derive the refraction equations, we refer back to Figure 2.3, used in con-
nection with the process of graphical ray tracing. It is reproduced and enhanced
in Figure 8.9. In the vector triangle OAB, OA is a vector of magnitude 7 in the
direction of the incident ray, OB is a vector of magnitude »’ in the direction of
the refracted ray, while AB is a vector of magnitude n’ cos I’ — n cos I’ in the
direction of the normal. Hence, we may construct the vector equation

n'R" =nR + (n'cosT' — ncosI)N

/
//Incident ray

N
?7\ A

Figure 8.9 Refraction of a skew ray.
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where R’, R, and N are unit vectors. Since the components of a unit vector are
simply the direction cosines of the vector, we can resolve the vector equation
into its three component equations:

n'K' =nK + (n' cosI' —ncosl)k
n'L' =nL+ (n'cosI' —ncosncosl)] (8-8)
n’M' =nM + (n' cosI' —ncosI)m
The direction cosines of the normal, &, /, and m, are given in Eq. (8-6). Hence
Eq. (8-8) becomes
nK'=nK - JX
'l =nL—-JY (8-9)
n"M'=nM—J(Z—r)

where J = (n’ cos I' — n cos I)/r. As a check on our work, we can verify that
(K"? + L'> + M'?) = 1. For refraction at a plane surface these relations become

M =cosl, M' =cosl
nK' =nK, n'L'=nL, J=0

8.3.4 Transfer to the Next Surface

This has already been described. The direction cosines K’, L', M’ become the
new K, L, M, and we calculate the new point of incidence by Egs. (8-4), (8-5),
(8-7), and (8-9), in order.

8.3.5 Opening Equations

1. Distant Object
Here we have a parallel beam incident on the lens inclined at an angle U, to
the lens axis. Then

K=0, L=sinUy, M =cosUp,

The point of incidence of the particular skew ray must be determined in some
way so that the X, Y, Z can be found. It is common to define the ray by its
point of incidence with the tangent plane at the vertex of the first surface. If
this is done, it is convenient to regard this tangent plane as the first lens sur-
face with air on both sides of it, and use the general transfer equations to go
from the tangent plane to the first refracting surface in the ordinary way.
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2. Near Object
Here again we assume a tangent plane at the first lens surface, and we specify
the point Y, Z at which the skew ray is to pierce that plane. The Xj, Yo, Zg of
the object point are, of course, known and also the distance d between the
object and the front vertex. Then

X-X Y — Y,
- D - D

K

where

D> =d®+ (X — Xp)* + (Y — Yp)~.

8.3.6 Closing Equations

The closing equations for a skew ray are trivial, since the ray can be trans-
ferred to the final image plane by the ordinary transfer equations. This process
gives the X', Y’ coordinates of the intersection of the ray with the image plane
directly. The d is, of course, nothing but the back focal distance from the rear
vertex of the lens to the image plane.

8.3.7 Diapoint Location

For some purposes we may desire to determine the diapoint location of the
skew ray. As has been stated, this is the point where the ray pierces the meridi-
onal plane. The X coordinate of the diapoint is therefore zero, but the other
coordinates must be found. By means of a diagram such as that in Figure 8.10
it is easy to show that

L)=-X'M/K' and H =Y —(X'L/K’)

where K, L', M’ are the direction cosines of the ray as it emerges from the lens,
and Y’,Z’ are the coordinates of the point where the ray pierces the image plane.
The L/, H; are the required coordinates of the diapoint relative to the midpoint
of the image plane and the optical axis of the lens.

8.3.8 Example of a Skew-Ray Trace

To illustrate the kind of record required in the manual tracing of a skew ray
by these formulas, we will trace a ray through our old familiar cemented doublet
objective, entering at an upward slope of 3° through a point at unit distance
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Figure 8.10 Diapoint calculation.

behind the meridional plane and on the same level as the principal ray. Regard-
ing the tangent plane at the first vertex as a refracting surface, the starting data
at that surface are

Z =0, M =cos(—3°) = 0.9986295
Y =0, L=sin(—3°)=—0.0523360
X=1 K=0

We now transfer the ray from the tangent plane to the first spherical refracting
surface in the usual way. The results of the trace are shown in Table 8.2.

8.4 GRAPHICAL REPRESENTATION
OF SKEW-RAY ABERRATIONS

8.4.1 The Sagittal Ray Plot

The name sagittal is generally given to the 90° and 270° skew rays that lie in a
plane perpendicular to the meridional plane, containing the principal ray. This
is not one single plane throughout a lens but it changes its tilt after each surface
refraction (Figure 8.1). The point of intersection of a sagittal ray with the para-
xial image plane may have both a vertical error and a horizontal error relative
to the point of intersection of the principal ray, and both these errors can be
plotted separately against some suitable ray parameter. This parameter is often
the entrance pupil coordinate for 6 = 90° or the horizontal distance x from the
meridional plane to the point where the entering ray pierces the tangent plane at



Table 8.2

Manual Tracing of a Skew Ray

Tangent plane Image plane
r 9] 7.3895 —5.1784 —16.2225 00
d 0 1.05 0.4 11.28584
n 1 1.517 1.649 1
(n/n' ) 0.4345390 0.8463106 2.719201
F 0.9986295 0.8000638 0.9673926 0.9952001
G 0.1353271 1.584704 0.9077069 22.627015
D 0.0680706 0.8939223 0.4623396 11.368061
X 1 1.0 0.9584830 0.9457557 —0.0033456
Y 0 0.0035625 0.0342546 0.0491091 0.6289086
zZ 0 0.0679773 —0.0895928 —0.0276675 0
cos [ 0.9894178 0.9726889 0.9958924
cos I’ 0.9954155 0.9769360 0.9887907
J 0.0704550 —0.0261467 0.0402796
K 0 —0.0464436 —0.0275280 —0.0834884
L 0.0523360 0.0343342 0.0321289 0.0510025
M 0.9986295 0.9983305 0.9991040 0.9952011
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the first lens vertex. Figure 8.11 shows the layout for an f/2.8 triplet photographic
objective’ having a focal length of 10, and Figure 8.12 shows the set of meridional
and sagittal ray plots for this lens having the following prescription:

Radius t n vV

4.7350
0.6372 1.7440 44.9 (LaF2)
148.835 (stop)
1.0015 (air)

~5.8459
02705  1.7400  28.2 (SF3)
5.1414
09253 (air)
33.1041
0.6979  1.7440  44.9 (LaF2)
—4.4969

8.4894  (air)

The meridional plot, of course, has no symmetry, but the two sagittal ray
plots do have symmetry. The vertical errors are identical for rays entering at
equal distances in front of and behind the meridional plane, these errors being
forms of sagittal coma. The horizontal errors are antisymmetrical, so that the
error of the 90° ray is equal and opposite to the horizontal error of the 270°
ray; these errors represent sagittal field curvature and sagittal oblique spheri-
cal aberration, strictly analogous to the effects of tangential field curvature
and tangential oblique spherical aberration in the ordinary meridional ray
plot.

8.4.2 A Spot Diagram

The meridional and sagittal ray plots already discussed take account of only
the rays passing through a cross-shaped aperture over the lens. To include every
possible skew rays, it is necessary to divide the lens aperture into a checkerboard
of squares, or a rectangular grid, and to trace a ray through every intersection of
the lines. Assuming that each ray carries the same amount of light energy, the
assembly of the intersection points of all such rays with the image plane will
be a fair representation of the type of image that may be expected when the lens
has been fabricated, assembled, and tested.

Actually it requires a large number of rays, say hundreds, to provide a fair
approximation to the actual image. Of course, it is unnecessary to trace rays
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Figure 8.11 Typical ray plots for a triplet lens.

Figure 8.12 Layout of an f/2.8 triplet objective lens, U.S Patent 2,966,825.
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both behind and in front of the meridional plane since they are identical, but it
is necessary to plot both rays in the image plane.® Such dot patterns are called
spot diagrams, and they were obviously never plotted before the advent of
high-speed computers to do the ray tracing.’

A typical spot diagram for the aforementioned f/2.8 triplet photographic
objective is shown in Figure 8.13a, where a rectangular pattern was used; for
this pattern over a thousand skew rays were traced through each side of the lens
aperture. Figure 8.13b shows the same spot diagram except that a hexapolar
pattern was used, and a dithered pattern was used in Figure 8.13c. The dithered
pattern traces a pseudorandom distribution of rays through the entrance pupil.
The intent of using a dithered pattern is to mitigate the symmetry artifacts
caused by using either the rectangular or the hexapolar pattern.

(a) (b)

(c)
Figure 8.13 A typical spot diagram for an f/2.8 triplet lens at 14° off axis (f” = 10) for d light.
The ray pattern used at the entrance pupil was (a) rectangular, (b) hexapolar, and (c) dithered.
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The comparison of Figures 8.13a, b, and c clearly demonstrates the presence of
such artifacts and their mitigation. It should be recognized that there is no perfect
or best ray pattern. Also, the lens designer should be cautious about making infer-
ences about aberrations in the lens as a consequence of observing such induced
artifacts. And finally, spot diagrams are strictly geometric; however, an image of
the point source accounting for both aberrations and diffraction can computed
and displayed. Figure 8.14 presents the point spread function (PSF) for the same
image shown in Figure 8.13. Notice the similarities and differences between them,
but realize that the PSF is closer to what will actually be observed.

DESIGNER NOTE

A rough rule of thumb, often called the “three-to-one rule,” can be used to decide if
diffraction or geometric aberration dominates. If the rms geometric blur diameter is
less than one-third of the diffraction blur diameter, then diffraction is dominant. The
converse is also true. In the “in-between” region, both must be considered. The 3:1
ratio can be 5:1 or whatever the designer desires, but not less than 3:1.

Figure 8.14 Point spread function for the same lens and object as in Figure 8.13.
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8.4.3 Encircled Energy Plot

By counting the rays enclosed by a succession of circles of increasing size laid
over the spot diagram, it is possible, by a suitable computer program, to plot a
graph of the encircled energy of a given lens at several obliquities. This assumes
that each ray carries the same amount of light energy, a justifiable assumption if
the rays are incident in a checkerboard pattern at the entrance pupil of the lens.
To include chromatic effects it is necessary to trace many rays in other colors,
the size of the checkerboard squares for each wavelength being dependent on
the spectral response of the detector intended for that particular lens.

The encircled energy graphs of the f/2.8 triplet used above are shown in
Figure 8.15. As can be seen, this one plot shows the performance of the lens
at several obliquities. Graphs of this type provide the designer with a great deal
of useful information, particularly in comparing one design with another. It is
noted that Figure 8.15 is based on only geometric ray trace data. Encircled
energy plots can be made where the geometric data are multiplied by the
diffraction-limited values to produce perhaps a better expectation of what
may be observed. Diffraction-encircled energy plots can also be produced which
properly account for both diffraction and aberrations; however, computation is
more time-consuming than for the other versions.
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Figure 8.15 Encircled energy plot.
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8.4.4 Modulation Transfer Function

An important addition to the tools of the lens designer was the development
of the modulation transfer function (M TF) for optical systems; serious interest
in MTF began in the 1950s although it was not actually accepted by most prac-
titioners until the 1970s. Today, the MTF is arguably the dominant method for
describing the performance of lenses. Willams and Becklund have presented a
comprehensive history and study of the optical transfer function (OTF).'® The
MTF = |OTF| where the OTF is a complex value. Analogous to electronic com-
munication systems, optical systems can also be considered as linear systems
and utilize similar theory.!' In an electrical system, the MTF is essentially the
ratio of the output to the input of a linear system as a function of frequency
(i.e., MTF(f) = output(f)/ input(f)).

In a like manner, the MTF for a lens is MTF(v) = output(v)/input(v), where
v is spatial frequency and may be multidimensional, unlike temporal frequency
used in electronics. In a simple sense, the MTF is a measure of the fidelity
the lens-formed image has to the object. Although the measurement should
be, and has been, accomplished using sinusoidal spatial targets, most often
MTF is measured using alternating black and white bars. The resulting MTF
is known as square-wave MTF and the plots are not the same as the sine-wave
MTF. Figure 8.16 shows the geometrical MTF for the triplet lens multiplied by
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Figure 8.16 Geometrical M TF multiplied by the diffraction-limited MTF.
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Figure 8.17 Diffraction-based MTF and curve showing the diffraction-limited MTF for
comparison.

the MTF for a diffraction-limited lens. Compare this M TF to that in Figure 8.17,
which shows the diffraction-based M TF. As can be observed, the axial geometric
MTF is underestimated while being overestimated for 14° and is about the same
for the greater off-axis object points. Multiplication of the geometric M TF by the
MTF for a diffraction-limited lens should be used only when the geometric blur is
not greater than about one-third that of the diffraction blur.

When the lens is to be used over some finite spectral bandwidth, a method
has been determined for estimating the blur size and shape for a polychromatic
source and an aberration-free lens system.'> The perfect-image irradiance distri-
bution of a polychromatic point source can be written as

Em_xnﬁxﬂ@Fﬁ%£%£421

where (1) is the peak normalized spectral weighting factor and Cj is a scaling
factor. By invoking the central limit theorem to approximate this distribution by
a Gaussian function, we obtain

E(r) = Gy (727)

where C, is a scaling constant and o is the estimated variance of the irradiance
distribution. When ¥(4) = 1 in the spectral interval Aghore t0 Ajong and zero
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otherwise with Ashort < Aiong, an estimate of sigma can be written as

_ Miong
nDep

where M = 1.335 — 0.625b — 0.256>— 0.0465b> with b = (Z1ong/Ashort) — 1. Should
31‘?(/1) = lhiong in the spectral interval Agnor t0 Ajong and zero otherwise, which
approximates the behavior of a quantum detector, M = 1. 335 — 0.65b + 0.385h>
— 0.0995°.

The Gaussian estimate of residual error is less than a few percent for » = 0.5
and remains useful even as » — 0. A useful estimation of the modulation trans-
fer function for this diffraction-limited polychromatic lens system is given by

MTF(v) =~ e~ 2re)’

where v is the spatial frequency. This approximation can provide a useful insight
into expected performance limits.

8.5 RAY DISTRIBUTION FROM A SINGLE
ZONE OF A LENS

The nature of the various oblique aberrations of a lens may be better under-
stood if we trace a family of rays passing through a single zone of a lens,
both on and off axis. We take the cemented telescope doublet used many times
before and isolate a single zone of radius one unit. On axis, all the rays from
this zone will, of course, intersect at a single point, forming a perfect focus.
At an obliquity of only one degree, however, the rays from the zone form a succes-
sion of complicated loop figures as shown in Figure 8.18. As before, the upper and
lower rim rays are labeled 0° and 180°, while the sagittal rays are 90° and 270°.

Referring to this diagram, the tangential focus is at the intersection of rays
0° and 180°, giving 0.000084 for the amount of tangential coma. The sagittal
focus is where the 90° and 270° rays intersect, forming a sagittal coma of mag-
nitude 0.000035, about one-third of the tangential coma. It can be proved that
in the absence of higher-order aberrations this ratio should be exactly 3:1.'3
The presence of field curvature is indicated by the tangential and sagittal foci
not being in the same plane as the axial image of the zone. This series of pat-
terns arises at each zone of the lens, and it is clear that when all zones are open
together, the resulting image is very complicated indeed.

It should be noted that the diapoint locus of the zone is also indicated in
Figure 8.18. It is bisected by the sagittal image, and it ends at upper and lower
tangential rays. Conrady refers to the diapoint locus as the characteristic focal
line of a zone.
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Figure 8.18 Ray distribution from a single zone of a lens.
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Chapter 9

Coma and the Sine
Condition

9.1 THE OPTICAL SINE THEOREM

The Lagrange theorem applies only to paraxial rays, while the optical sine the-
orem is the equivalent for marginal rays. The optical sine theorem provides an
expression for the image height formed by a pair of sagittal rays passing through
a single zone of a lens. It is valid for a zone of any size but only at very small
obliquity. This obliquity limitation effectively removes all aberrations except
coma, which is represented by a difference between the image height for the
selected zone and the paraxial image height given by the theorem of Lagrange.
Recall that coma can be considered a variation in magnification from one zone
to another zone as discussed in Section 4.3.4.

To derive the optical sine theorem we consider the perspective diagram in
Figure 9.1a, which shows a pair of sagittal rays passing through a single refract-
ing surface, and Figure 9.1b, which shows the path of the marginal ray through
the same zone. The entering and emerging marginal ray slopes are U and U’,
respectively, in the usual way.

It was pointed out in Section 8.1.1 that a pair of sagittal rays intersect on the
auxiliary axis drawn through the object point and the center of curvature of the
surface. Hence, by the similar triangles shown in Figure 9.1,

h_;igiL’fri P’ sin U
h™ CBy L—r \sinU P

nsin U
n'sin U’
Hence,
h! n'sinU’" = hnsin U (9-1)
Copyright © 2010, Elsevier Inc. All rights reserved. 255
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Figure 9.1 Derivation of the sine theorem: (a) oblique view and (b) plan view.

It is essential to remember that h| is the height of the sagittal image for the
zone, namely, the intersection of the 90° and 270° rays, and has no relation what-
soever to the height of any other rays from the zonme. It is, in particular, not
related to the meridional rays in any way.

9.2 THE ABBE SINE CONDITION

Abbe regarded coma as a consequence of a difference in image height from
one lens zone to another, and he thus realized that a spherically corrected
lens (in his case a microscope objective) would be free from coma near the
center of the field if the paraxial and marginal magnifications m = nu/n'u’ and
M = n sin U/n' sin U’ were equal, that is,

u/u' =sin U/sin U’ (9-2)
This is known as the Abbe sine condition.

For a very distant object, the sine condition takes a different form. As was
shown in Section 3.3.4, the Lagrange equation for a distant object can be written as

h' = —(n/n')f" tan Uy,
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where f” is the distance from the principal plane to the focal point measured
along the paraxial ray, or /' = yi/uj. A similar expression can be written for
the focal length of a marginal ray, namely,

F' =Y /sin U] (9-3)

where F’ is the distance measured along the marginal ray from the equivalent
refracting locus to the point where the ray crosses the lens axis. Thus for a
spherically corrected lens and a distant object, Abbe’s sine condition reduces to
F/ :f/

This relation tells us that in such a lens, called by Abbe an aplanat, the
equivalent refracting locus is part of a hemisphere centered about the focal
point. The maximum possible aperture of an aplanat is therefore /0.5, although
this aperture is never achieved in practice. The greatest practical aperture is
about f/0.65 when the emerging ray slope is about 50°.

There is no equivalent rule for a lens that is aplanatic for a near object, such
as a microscope objective. We can, if we wish, assume that in such a case the
two principal planes are really parts of spheres centered about the axial conju-
gate points, but we could just as easily make any other suitable assumption
provided the marginal ray moves from one principal “plane” to the other along
a line lying parallel to the lens axis, as indicated for paraxial rays in Figure 3.10.

If the refractive index of either the object space or the image space is other
than 1.0, we must include the actual refractive index in the f~number:

f-number =

focal length [’ n
entering aperture 2y (;)
Thus if the image space were filled with a medium of refractive index 1.5, the highest
possible relative aperture would be f/0.33. To realize the benefit of this high aperture,
the receiver, film, CCD, or photocell must be actually immersed in the dense medium.
Similarly, when a camera is used for underwater photography, the effective aperture
of the lens is reduced by a factor of 1.33, which is the refractive index of water.
When the object is not located at infinity, the effective f~-number is given by

f-numberefreciive = f-number (1 — m).

If, for example, a lens is being used at unity magnification (m = —1), then
f-numberefrective = 2f-number,,. The numerical aperture of a lens is
NA = n’sin U'. If the lens is aplanatic, f-numberefrective = ﬁ.

9.2.1 Coma for the Three Cases of Zero
Spherical Aberration

It was shown in Section 6.1.1 that there are three cases in which a spherical
surface has zero spherical aberration: (a) when the object is at the surface itself,
(b) when the object is at the center of curvature of the surface, and (c) when the
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object is at the aplanatic point. It so happens that each of these possible situa-
tions also satisfies the Abbe sine condition, thus justifying the name aplanatic
for all of them. The reason for this is that in each case the ratio sin U/sin U’
is a constant. Thus, we have the following:

® Case (a), object at surface: U = I, U’ = I'; hence sin Ufsin U’ = n'/n
® Case (b), object at center: U = U’; hence sin U/sin U’ = 1
® Case (¢), object at aplanatic point: I = U’, I = U, hence sin U/sin U’ = n/n’

The aplanatic single-lens elements discussed in Section 6.1.2 are corrected for
both spherical aberration and coma, and hence fully justify the name aplanatic.
It should be added that such a lens introduces both chromatic aberration and
astigmatism in the sense that would be expected from a single positive element.

9.3 OFFENSE AGAINST THE SINE CONDITION

It is clear that we ought to be able to derive some useful information about
the magnitude of the coma from a knowledge of the paraxial and marginal mag-
nifications, even though the lens does have some spherical aberration. This sit-
uation is indicated in Figure 9.2. In this diagram B’ represents an oblique image
point in the paraxial image plane P of a lens at very small obliquity, its height
I’ being given by the Lagrange equation. The point S represents the sagittal
image formed by a single zone of the lens, its height £, being computable by
the sine theorem. The point S is assumed to lie in the same focal plane as the
marginal image M. At the very small obliquity considered here, the principal
ray must be traced by paraxial formulas; it emerges through the center of the
exit pupil EP’ as shown.

-~ I -
(L'=1'y)

EP’

Figure 9.2 Offense against the sine condition (OSC).
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We may express the magnitude of the sagittal coma by the dimensionless
ratio QS/QM in the marginal image plane, and we call this ratio the “offense
against the sine condition,” or OSC (see also Section 4.3.4 and Eq. (10-3)). Thus

M — OM M
osc=95 _SM—-OM _SM
oM oM oM
The length SM is the /%, given by the sine theorem; the length QM is obtainable
from the paraxial image height /4’ by

L-1,
QM:h’(l,_l,p>
pr

wll—r
osc == L)1
n <L’ =l
For a near object we can insert the values of 4’ and //, by the Lagrange and sine
theorems, respectively, giving

wsinU (' =1
0SC=——— L) -1
u sin U’ (L’ =1

_M Il _
m\ =1,

where M and m are, respectively, the image magnification for the finite and
paraxial rays.

The bracketed quantity, which contains data relating both to the spherical
aberration of the lens and the position of the exit pupil, can be readily modified to

J

and for a very distant object, M/m can be replaced by F'/f’. Hence for a distant
object, Eq. (9-4) becomes

F LA
osC="(1--——=2_| -1 (9-5)
7 ( L’—’iw>

Hence

9-4)

Conrady' states that the maximum permissible tolerance for OSC is 0.0025
for telescope and microscope objectives. This large tolerance is because in those
instruments the object of principal interest can always be moved into the center
of the field for detailed study. A very much smaller tolerance applies to photo-
graphic objectives.
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9.3.1 Solution for Stop Position for a Given OSC

Since the exit-pupil position (/1) appears in the formulas for OSC, it is clear
that as we shift the stop along the axis the OSC will change provided there is
some spherical aberration in the lens. If the spherical aberration has been cor-
rected, then shifting the stop will have no effect on the coma. We can thus solve
for the value of /},; to give any desired OSC by inverting Eqgs. (9-4) and (9-5).

For a near object,

.y LA
pr (Am/M) — (mOSC/M)
For a distant object,
LA

I =L —
pr AF/F"— (f"OSC/F")

These formulas find use in the design of simple eyepieces and landscape lenses
for low-cost cameras.

9.3.2 Surface Contribution to the OSC

By a process similar to that used for determining the surface contribution to
spherical aberration (Section 6.1), we can develop a formula giving the surface
contribution to the OSC. For this derivation, we trace a marginal ray and the
paraxial principal ray. The development given in Section 6.1 indicates that in
our present case we have

(Snutge )i, — (Snue)y =Y (Q — Q)i (9-6)

We can see from the diagram in Figure 9.3 that S’ = (L' — [},) sin U’, and
similarly for the incident ray. Hence, dividing Eq. (9-6) by the Lagrange invari-
ant and substituting for S and S’ we get

[(L’ —1I1,) sin U’n’u;r} B [(L — Ipy) sin Unupr] = (Q — Q")niy; 9-7)
k 1

Wn'v hnu (W'n'u'),

Now /'/u' oy = (I' = '), and hlup. = (I - I,y). Also, by the Lagrange and sine the-

orems we have
sinU'l  hnsinU (h'n"\  sin U, h_’
o e hin' \hmu) o w \hl),

S
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EP’

Figure 9.3 Surface contribution to OSC.

Substituting all this in Eq. (9-7) gives

[(L’—l{,r h’) sin U,
=Ty )

Now by Figure 9.2 we see that

I ST
1

I—ly u (Wn'u'),

= w

/!
| _ comay

L'—-r. n oM SM - QS
pr 27 - —1—
( )k S 5 5 1-0SC (approx.)

Thus Eq. (9-8) becomes

L— Iy _u (O — Q)i
(0SC— 1) + (1 — >1 T ina),

and hence

o _ L— lpr U (Q — Q’)nipr
0SC = [1 = J,J TSm0 2 G,
9-9)

_ —L4, U (Q — Q')nip:
U= by, s 2 (in'u),
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It should be noted that any spherical aberration in the object leads to a con-
tribution to the OSC. Also, the factor outside the summation, u,/sinU;, becomes
y1/Q; for a distant object.

Example

As an example of the use of this contribution formula, we will take our
old familiar telescope doublet (Section 2.5) and trace a paraxial principal
ray through the front vertex at an entering angle of, say, —5° (tan(—5°) =
—0.0874887), with the results shown in Table 9.1. Hence,

l;r = 0.9580946

u' I'—1,
—— | —& ] —1=-0.000171
CSin o\, 0.00017
For the OSC contribution formula, we pick up the data of the marginal ray

from Table 6.1, giving the tabulation shown in Table 9.2.

Table 9.1

Trace of Paraxial Principal Ray

Ypr(ntd) e 0 0.0605558 0.0821525
(1) pr —0.0874887 —0.0874887 —0.0890323 —0.0857457
Upy —0.0874887 —0.0576721 —0.0539916
ipr = (Vpr € —py) 0.0874887 0.0459782 0.0489275
Table 9.2

OSC Tabluation for Example Doublet

0-0’ —0.017118 —0.022061 0.037258

n 1 1.517 1.649

ipr 0.0874887 0.0459782 0.0489275

Constant 5.715023 5.715023 5.715023

OSC contribution —0.008559 —0.008794 0.017179 > =-0.000173

For this formula, the Lagrange invariant has the value (#'n’'u’) = 0.1749774.
The excellent agreement between the direct and contribution calculations
is evident. Also see Section 4.3.4 for an alternative OSC formula using the
y-coordinate ray intercept data from a sagittal ray and a principal ray:

Y(p79007H7 é) B Y(07007H7 5)
Y (0,00 H,¢)
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9.3.3 Orders of Coma

The coma of a pencil of rays at finite aperture and field may be analyzed into
orders (see Section 4.3.4) as follows:

coma=aq Y’H +aY*H +a;Y°H + ...
+b Y?H? + b, Y*H? + b3 YH"? + ...
+ Y HP + 6 Y*HP + 3 YOH? + ...

The first term, a; Y?H’, is the primary term, and it evidently varies as aperture
squared and obliquity to the first power. The whole top row of terms included
in the OSC is applicable to any aperture but only to a small field. The higher-
order terms represent forms of coma that appear in photographic lenses of high
aperture at angles of considerable obliquity.

9.3.4 The Coma G Sum

There is a G-sum expression for the primary coma of a thin lens analogous to that
for primary spherical aberration.” It varies with aperture squared and image height
to the first power. The coma of the object, if any, is transferred to the final image by
the ordinary transverse magnification, whereas primary spherical aberration, being
a longitudinal quantity, is transferred by the longitudinal magnification rule.

It should be noted that this coma G-sum expression is valid only if the stop is
located at the thin lens. The formula is

coma), = comay(h' /h) + I'y*(— 1 Gscey + Grevy + Ggc?) (9-10)
where
Gs=2n*—1)/n G;=02n+1)(n—1)/2n=Gy/n
Gs=nn—1)/2=G;/n

As before, with a thin doublet we assume an infinitely thin air layer between the
elements, and then the G sums may be directly added. Hence

OSC = coma! /I = y*|(G sum), + (G sum),]

9.3.5 Spherical Aberration and OSC

It should be clear by now that the spherical aberration of a lens is determined
by the location of the intersection point of a ray with the lens axis, whereas the
coma is determined by the slope angle of the ray at the image. If the shape of a
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Figure 9.4 Typical effect of bending a single thin lens.

lens is such that the equivalent refracting locus is too flat, the marginal focal
length will be too long and the OSC will be positive. A thin lens bent to the left
meets this condition. Similarly, if the rim of the lens is bent to the right the OSC
will be negative. Plotting spherical aberration and OSC against bending for such
a lens gives a graph like the one in Figure 9.4.

It should be noted that in any reasonably thin lens, the lens bending for
which the spherical aberration reaches an algebraic maximum is almost exactly
the same bending as that which makes the OSC zero. For the primary aberra-
tions of a single thin lens, this is easily verified by comparing the value of ¢; that
makes dLA,/0c; = 0 (Section 6.3.2) with the value of ¢, that makes the coma,
= 0 [Eq. (9-10)]. It will be found that for a variety of refractive indices and a
variety of object distances, the ¢; for zero coma is always slightly greater than
the ¢; for maximum spherical aberration.

DESIGNER NOTE

There is, of course, no aperture limit for a nonaplanatic system. A parabolic mirror, for
example, has zero spherical aberration for a distant axial object point, but the focal
length of each ray is the distance from the mirror surface to the image point, measured
along the ray. The focal length continuously increases with increasing incidence height,
which means the magnification is changing, as explained in Section 4.3.4. Consequently,
the image is afflicted with enormous positive coma. Consider an f70.25 parabolic mirror
as illustrated in Figure 9.5. Notice that the marginal ray heads toward the image orthog-
onal to the optical axis just as it does for an aplanatic lens (Section 9.2); however, the
focal length of the aplanatic lens remains constant as a function of incidence height while
the marginal focal length of the parabola is twice that of its axial focal length.



9.3 Offense Against the Sine Condition 265

A
/)

\/

Figure 9.5 Nonaplanatic f/0.25 parabolic mirror.

Figure 9.6 shows the geometric spot diagram for an f/0.26 parabolic mirror
with the paraxial image located only one-third of an Airy disk radius from the
optical axis. The small circle in this figure represents the Airy disk. As can be
observed, the coma is huge (contains many higher-order terms) compared to
the diffraction blur, assuming no aberrations, although the shift in the object
is just a fraction of the diffraction disk. This means that any calculations relying
on this type of optical system behaving as a linear system will be seriously
flawed. In contrast, a well-behaved system will have aberrations that are rela-
tively slow to change as the field angle changes, thereby having regions in the
image plane that are spatially stable, such that the shape (aberrations or wave-
front) of the point-source image remains constant over an area of at least sev-
eral Airy disk diameters. Such an image region is called an isoplanatic region
or patch. Beware that some optical design programs may blindly compute dif-
fraction-based M TF, point spread functions, etc. and produce erroneous results
as a consequence of not using a correct modeling construct! Use common sense
and test your program with an appropriate example to assure yourself of valid
results.’
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Figure 9.6 Image of point source located 1/3 of Airy radius from axis. The circle represents
the Airy disk.

9.4 ILLUSTRATION OF COMATIC ERROR

As seen in the preceding Designer Note, a parabolic mirror is free of spheri-
cal aberration but suffers from coma near the axis. Figure 9.7 shows the ray fan
plot at 2.25° off-axis for an f/1.7 parabolic mirror having a focal length of 12.
The corresponding spot diagram for this mirror is illustrated in Figure 9.8.
Examination of both figures indicates that the coma is essentially primary or
third-order linear coma (g,). The secondary coma is over a factor of 20 times
less as can be observed from the aberration coefficients.

Computing transverse coma using real rays was discussed in Section 4.3.4.
The tangential component is given by

Y(p,0°, H) + ¥ (p, 180°, H)
2

TCMA(p,H) = — ¥(0,0° H) = 0.031504

and the sagittal component by

SCMA(p,H) = Y(p,90°, H) — Y(0,0°, H) = 0.010164
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Figure 9.7 Ray fan plots at 2.25° off-axis for /1.7 parabolic mirror having a focal length of 12:
(a) tangential coma component; (b) sagittal coma component.
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Figure 9.8 Spot diagram at 2.25° off-axis for f/1.7 parabolic mirror having a focal length of 12.

which compare appropriately to Figure 9.7. The ratio TCMA/SCMA = 3.099
which is about the 3.00 ratio expected for linear coma (see Section 4.3.4).
Removal of the very small amount of astigmatic aberration was achieved by a
slight defocus of 0.02 towards the mirror. Otherwise, for example, the ends of
the curve in Figure 9.7a would be at different values (see Figure 4.4).
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(b)

Figure 9.9 (a) Original photograph.* (b) Image showing coma formed by f/1.7 parabolic
mirror.

To observe the degradation in image formation by coma caused by the
parabola, we can generate a simulated image of a photograph using an analysis
feature available in some lens design programs. Figure 9.9a shows the original
photograph and Figure 9.9b the resultant image formed by the parabolic mir-
ror. The linear growth of the comatic blur as a function of field angle is illu-
strated. Notice the fine detail reproduction in the center of Figure 9.9b since
spherical aberration is absent; however, details such as scratches and specks rap-
idly blur away from the center of the image due to coma. Compare this image
with the quadratic blur growth due to astigmatism shown in Figure 11.15.

ENDNOTES

1 A. E. Conrady, p. 395.

2 A. E. Conrady, p. 324.

3 R. B. Johnson and W. Swantner, “MTF computational uncertainities,” OE Reports, 104,
August (1992).

4 Circa 1910.



Chapter 10

Design of Aplanatic
Objectives

It has already been mentioned that Abbe used the term aplanatic to refer to a
lens system corrected for both spherical aberration and OSC. We shall use the
term aplanat for a relatively thin spherically corrected achromat that is also cor-
rected for OSC and thus satisfies the Abbe sine condition. As we have seen, a
cemented doublet has three degrees of freedom, which are typically used to main-
tain the focal length and control the spherical and chromatic aberrations. To
include the OSC correction requires an additional degree of freedom, which can
be obtained in various ways. The principal types of aplanat will now be considered.

10.1 BROKEN-CONTACT TYPE

In this type of aplanat the powers of the two lens elements are determined for
chromatic correction by the ordinary (c,, ¢;) formulas given by Eq. (5-4), and
then each element is separately bent to correct the spherical aberration and
OSC. Obviously such a lens cannot be cemented, and this type is used mainly
in large sizes. It is possible to perform a thin-lens predesign by the use of Seidel
aberration contributions, but the subsequent insertion of finite thicknesses
causes such an upset that the preliminary study turns out to be useless.

Since bending a lens affects the spherical aberration most, the OSC much
less, and the chromatic aberration scarcely at all, we select the bending of an
achromatic doublet that corresponds to the peak of the spherical-aberration
curve, since this is known to be close to the zero-OSC form. We then make
small trial bendings of each element separately, and plot a double graph by
which we can correct LA’ and the OSC using the bending parameters ¢; and c3.

Following this procedure, we see that the graph in Figure 7.2 for a crown-in-
front achromat reaches its maximum at ¢; = 0.15. Then, at ¢, = 0.5090, we find
¢, = ¢ — ¢, = —0.3590. We start with ¢3 = ¢, and a narrow air space such as
0.01. Suitable lens thicknesses are 0.42 and 0.15 for an aperture of 2.0 and a trim
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diameter of 2.2 (f/5). We shall, of course, achromatize every trial system by solv-
ing for the last radius by the D — d method (see Section 5.9.2). Our starting
System A is found to have

LA =0.1057, OSC = 0.00062

the /},; for the OSC formula being taken as zero; that is, the stop is assumed to
be in contact with the rear surface and consequently the exit pupil is the stop.

To build up our double graph, we next apply trial bendings of 0.01 to each of
the two lens elements separately. Bending the crown element gives System B,
with

LA'=0.1057, OSC = —0.00270

Restoring ¢; to its initial value and bending the flint element gives System C,
with

LA = —0.1245, OSC =0.00304

These values are plotted in Figure 10.1, with LA’ as abscissa and OSC as ordinate.
Inspection of the graph suggests that we ought to reach the aim point (0, 0),
assuming that all aberrations are linear. The process requires that a line be
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Figure 10.1 Double-graph solution for a broken-contact aplanat.
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drawn from the aim point parallel to the line AC. Line 4B is extended to
intersect the line from the aim point at point G. We now apply to the original
System A new changes for Ac; and Acs:

AG G(aim point)

Acy =—-001 =0.0172 ¢3 =

1B 1C -0.01 = 0.0212.

These changes, with ¢, = 0.5090 and the usual solution of the last radius, give
System D, with

LA =0.01522, OSC =0.00010

The coma is satisfactory but the spherical aberration is still much too large.

Since we are too close to the aim point for the first graph to be useful, we
enlarge both scales by a factor of 5, and drawing lines parallel to the original
lines (HE || AC and AB || DH) suggests that we try

Ac; = 0.0025, Acz =0.0031
Applying these changes gives System E, with
LA =0.0052, OSC = —0.00010

To remove these residuals resulting from slight nonlinearity of the adjustments,
we draw an even larger-scale graph (10x), giving

Ac; = —0.00045, Acz = —0.00020

The final System F has LA" = —0.00027 and OSC = 0. The zonal aberration is

+0.0040, of the unusual overcorrected type. As was pointed out in Section 7.3,

this is to be expected in view of the narrow air space in this lens. Notice that the

zonal aberration was undercorrected in that case, as is more commonly expected.
The final system (Figure 10.2) is given in the following tabulation:

c d np V
0.16925
0.42 1.523 58.6
—0.33975
0.01 (air)
—0.33490
0.15 1.617 36.6
—0.06682

where /' = 9.9302, I’ = 9.6058, Y = 1.0, trim diameter = 2.2, LA’ = —0.00027,
LZA = +0.0040, and the OSC = 0.
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Figure 10.2 Broken-contact aplanat.

DESIGNER NOTE

It is worth noting that the air space in this lens has the form of a negative element, the
equivalent of a positive glass lens that undercorrects the spherical aberration. Increas-
ing the airgap will increase the zonal aberration noticeably, while decreasing it at this
separation will reduce the zonal aberration only slightly. A broken-contact lens of this
type requires the utmost care in mounting, and particularly in centering one element
relative to the other.

In a large lens it is best to mount each element into a separate metal ring, using
push—pull screws to secure and adjust the separation to give the best possible definition.
For a small lens, the air space is too narrow for a loose spacer to be used, and it is best
to mount the two elements on opposite sides of a fixed metal flange with separate
clamping rings to hold them in place.

10.2 PARALLEL AIR-SPACE TYPE

As an alternative to the broken-contact type just discussed, we may prefer to
keep the two inner radii equal to save the cost of a pair of test plates, and vary
the air space to correct the spherical aberration. Then if the coma is excessive,
we can correct it by bending the whole lens.

As before, we start at the maximum of the bending curve, with ¢; = 0.15 and
¢, = 0.5090, giving ¢; = ¢3 = —0.3590. In Section 10.1 our starting setup had
an air space of 0.01, giving LA" = 0.10566 and OSC = 0.00062 (Setup A in Fig-
ure 10.1). If we increase the air space to 0.04, with the usual D — d solution for
the last radius (Section 5.9.2), we obtain Setup B:

LA = —0.01466, OSC = 0.00305
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We next apply a trial bending of 0.01 to the entire lens, with the 0.04 air
space, and we get LA" = —0.00646 and the OSC = 0.00201 (Setup C). These
values are plotted on a double graph with spherical aberration as abscissa and
OSC as ordinate, as before (Figure 10.3). Evidently a further bending by

0.0198 should bring us close to the aim point. Actually this bending gave
LA = 0.00014 and OSC = 0 (Setup D).
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Figure 10.3 Double graph for a parallel air-space aplanat.

As the zonal aberration of this air-spaced lens is liable to be strongly overcor-
rected, we prefer to have a small negative value for the marginal aberration. Since
our trial change in air space gave dLA'/O(space) = 4.0, we try increasing the air
space by 0.0001. This gives the final setup as follows for trim diameter = 2.2,
f'=10.1324,/ =9.7012, LA’ = —0.00017, LZA = +0.00666, OSC = 0. It should
be noted that the overcorrected zonal aberration is now 1.6 times as great as in
the broken-contact design, and this is the principal reason why the previous type
is generally to be preferred (Figure 10.4). However, the air space is now wider,
which may be of help in designing the lens mount. Nevertheless, the LA’ is very
sensitive to changes in the airgap. Figure 10.4 shows the excellent state of zonal
chromatic correction. The prescription for the final design is as follows.
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c d n 14
0.1798
0.42 1.523 58.6
—0.3292
0.0401
—0.3292
0.15 1.617 36.6
—0.0553
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Figure 10.4 Spherochromatism of a parallel air-space aplanat.

The spherical aberration for the parallel air space aplanat shown in
Figure 10.4 almost entirely comprises primary and secondary (third- and fifth-
order) contributions. The spherochromatism for each the C and F also has the
same general shapes. If now the first surface of this aplanat is made aspheric
to reduce the spherical aberration in d light, a dramatic reduction can be
obtained as illustrated in Figure 10.5. Notice that the spherical aberration con-
tributions now contain a tertiary (seventh-order) term. This is a nice example to
illustrate that the inclusion of an aspheric surface can cause remarkable varia-
tion in spherochromatism. Overall, the image quality of the lens with the
aspheric first surface is superior. Also, as you should expect, the zonal chro-
matic correction is unchanged as is the zonal secondary color.
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Figure 10.5 Spherochromatism of a parallel air-space aplanat with aspheric first surface.

10.3 AN APLANATIC CEMENTED DOUBLET

In Section 9.3.5 it was pointed out that the bending of a cemented doublet
that yields zero OSC almost coincides with the bending for maximum spherical
aberration. Consequently, if we can find two types of glass for which the spher-
ical aberration curve just reaches zero at the top of the bending parabola, this
peak bending will also be very nearly aplanatic.

Some guidance as to likely types of glass can be obtained by calculating the
spherical G sums, and plotting the thin-lens bending curve as in Figure 7.2,
relying on the fact that the true thick-lens curve coincides closely with the
approximate thin-lens graph shown there. A few trials along these lines indicate
that the spherical aberration curve will be bodily lowered if we increase the V'
difference between the glasses or if we reduce the n difference between them.

Since we have only three degrees of freedom in a cemented doublet, which
must be used for focal length, spherical aberration, and OSC, it is clear that
we must leave the final choice of glass until the end in order to secure achroma-
tism by the D — d method. Since there are more crowns than flints in the Schott
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catalog, we will adopt some specific flint and try several crowns to see how
the chromatic condition is operating. Taking as our flint Schott’s SF-9 with
np = 1.66662 and Vp = 33.08, we select three possible crowns, and with each
we adopt an approximate value of ¢, = 0.3755 for f” = 10.

Thus we find by a series of trials the value of c3 that corrects the spherical
aberration at f75. The whole lens is then bent, again by a series of trials, to elim-
inate the OSC. Then the D — d sum of the aplanat is found for the marginal ray;
finally we find, also by the D — d method, what value the crown V'p should have
to produce a perfect achromat. Repeating the process with each of the three
crowns enables us to plot a locus of possible crowns on the glass chart
(Figure 5.5), and if this locus happens to pass through an actual glass, that glass
will be used to complete the design. Figure 10.6 is a magnified portion of the
glass chart containing this locus.

)

160 %

1.59

1.58

1.57

1.56

Figure 10.6 Locus of crown glasses for a cemented doublet aplanat, using SF-19 as a flint.

Our three trials give the results shown in Table 10.1. Even without plotting a
curved locus on the blowup of the glass chart as shown in Figure 10.6, we can
see that the third selection, SK-11, gives a close achromat with our chosen flint.
The final design after solving the last radius to give a zero D — d sum is as follow:

¢ d Glass np Vp
0.1509
0.32 SK-11 1.56376 60.75
—0.2246
0.15 SF-19 1.66662 33.08

—0.052351
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Table 10.1

Crown Glass Selection

Desired crown V for

Crown glass type np ng—ne Vp > (D—-d)An perfect achromatism
SK-12 1.58305  0.00983 59.31 0.0000365 58.16
BaK-6 1.57436  0.01018 56.42 —0.0000906 59.23
SK-11 1.56376  0.00928  60.75 0.0000083 60.46

for trim diameter = 2.2, /' = 10.3663, I’ = 10.1227, LA’ = —0.00010, LZA =
—0.00176, and OSC = 0.00060. This would make an excellent objective. The
undercorrected zonal residual is very small, being only 40% of that found for
the common achromat in Section 7.2.1, Table 7.3.

DESIGNER NOTE

The comparative smallness of this zone is due to the use of higher-index glasses. It is
found that with a given flint, the zonal residual is large for low-index crowns, drops
to a minimum for some medium-index crowns, and then rises again for high-index
crowns. There are clearly two opposing tendencies. Raising the crown index weakens
the front radius, but it also lowers the index difference across the cemented interface
thereby requiring a stronger curvature at the interface.

Somewhat in defiance of this well-known behavior, Ditteon and Feng developed an
analytical method for designing a cemented aplanatic doublet where they discovered a
pair of glasses, namely FK-54 and BaSF-52, that corrected both coma and secondary
spectrum at the same time.! The FK-54 (437907) is a very-low index crown while the
BaSF-52 (702410) is a medium index flint. The approach was to lower the spherical
aberration parabola (see Figure 7.2) by having a large difference in Abbe values to have
a single zero spherical aberration solution rather than two. Coma is essentially zero as
we learned in Chapter 7. The secondary spectrum is corrected by having the partial dis-
persions of the glasses be essentially equal.

10.4 A TRIPLE CEMENTED APLANAT

Another way to obtain the additional degree of freedom necessary for OSC
correction is to divide the flint component of a cemented doublet into two
and place one part in front of and the other part behind the crown component
to make a cemented triplet. Of course, alternatively the crown component could
be divided in this way, but it is generally better to divide the flint.
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Table 10.2

Thin Lens Formulas for Triple Cemented Aplanat

Lens a Lens b Lens ¢
Net curvature (c) X Cr Fl — x
Front curvature (¢) y+x ¥ y—Cr

Reciprocal object distance (v) v = 1/l v + (n, — Dx vi + (n, — Dx + (n, — 1)Cr

Conrady? has given a very complete study of this system on the basis of the
spherical and coma G sums. To apply such an analysis, for each element we
need net curvature ¢, bending parameter ¢;, and reciprocal object distance v.
In this triplet lens we have two absolute degrees of freedom, which we may call
x and y: the amount of flint power in the front element and a bending of the
whole lens. We therefore define x = ¢; — ¢» = ¢4, and y = ¢».

The total powers of crown and flint are found by the ordinary (c,, ¢;) formu-
las (Eq. 5-4); they will be referred to here as Cr and Fl. Hence for the three thin-
lens elements we have what is shown in Table 10.2. Here n, = n, is the flint
index and #n;, the crown index. To draw a section of the lens to determine suit-
able thicknesses, we note that the thin-lens value of ¢4 is x + y — (Cr + Fl).

In performing the G sum analysis, we find that the spherical aberration
expression is quadratic, while the coma expression is linear. Hence there will
be two solutions to the problem. To reduce the zonal residual and to have as
many lenses as possible on a block, we choose that solution in which the stron-
gest surface has the longer radius. (A “block” refers to the tool to which the lens
blanks are affixed for grinding and polishing. The working diameter of a short
radius tool is less than that for a longer radius tool, which means that, for a
given lens diameter, more elements can be mounted on the longer radius
block.?)

As an example, we will design a low-power cemented triplet microscope
objective, with magnification 5x and tube length 160 mm. This represents a
focal length of 26.67 mm. The numerical aperture, sin U}, is to be 0.125; there-
fore the entering ray slope is sinU; = 0.025. We will use the following common
glass types:

(a) Flint: F—3, n. = 1.61685, An = 0.01659, V. = 37.18
(b) Crown: BaK—2, n. = 1.54211, An = 0.00905, ¥, = 59.90

with V;, — V, = 22.72. The (c,, ¢p) formulas give for the total crown and flint
powers

Cr =0.1824, Fl= —-0.0995
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Conrady’s G-sum analysis gives the following approximate solutions:

X —0.088 -0.019

y +0.158 +0.072

Hence

cg=x+Yy 0.070 0.053

=y 0.158 0.072

c;=y-Cr —0.0244 —0.1104

¢ =x+y-(Cr+ Fl —-0.0129 —0.0299 (or —0.03035 by D — d)

The strongest curve in the first solution is ¢, = 0.158, whereas the strongest sur-
face in the second solution is ¢; = —0.1104. We therefore continue work on the sec-
ond solution. Since the radii are approximately 18.9, 13.9,-9.1, and — 33.4, we can
draw a diagram of the lens. The semiaperture is to be 5.0 since the Y of the mar-
ginal ray is 160 x 0.025 = 4.0. Suitable thicknesses are found to be 1.0, 3.5, and
1.0, respectively (Figure 10.7), all dimensions in millimeters.

We begin by tracing a marginal ray with L; = — 160 and sin U; = 0.025, solv-
ing the last radius by the D — d method as usual. We calculate the LA’ and OSC
of this ray (Setup A), assuming that the aperture stop is located at the rear lens
surface, where OSC = (M!'/mL’) — 1. We then make small experimental changes
in x and y, and plot the usual double graph with OSC as ordinate and LA’ as
abscissa (Figure 10.7).
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Figure 10.7 Double graph for a triple cemented aplanat.
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This graph indicates the required very small changes in x and y from the
starting setup to make both aberrations zero, namely, Ax = —0.0017 and
Ay = +0.0014. These changes give the following solution to the problem:

c d e
0.0527
1.0 1.61685
0.0734
3.5 1.54211
—0.1090
1.0 1.61685
(D-4d) —0.030667

with L; = —-160 mm, sin U; = 0.025, LA’ = 0.00042 mm, LZA = —0.04688 mm,
OSC =-0.00002, /" = 30.145 mm, 1/m = -4.927, and NA = 0.123.

Since the numerical aperture is slightly below our desired value of 0.125, we
may shorten the focal length in the ratio 0.123/0.125 = 0.984 by strengthening
all the radii in this proportion. The small zonal residual is far less than the
Rayleigh tolerance of 0.21 mm and is negligible.

10.5 AN APLANAT WITH A BURIED
ACHROMATIZING SURFACE

The idea of a “buried” achromatizing surface was suggested by Paul Rudolph in
the late 1890s.* Such a surface has glass of the same refractive index on both sides,
but because the dispersive powers are different, it can be used to control the chro-
matic aberration of the lens. Thus achromatism can be left to the end and the avail-
able degrees of freedom can be used for the correction of other aberrations.

Some possible matched pairs of glasses from the 2009 Schott catalog are
shown in Table 10.3.

Table 10.3

Matched Glass Pairs Suitable for Buried Achromatizing Surface

np ng—Ne Vb V difference

1) N-SK16 1.62032 0.01029 60.28

F2 1.61989 0.01705 33.37 23.91
2) N-SK 14 1.60302 0.00933 60.60

F5 1.60328 0.01587 38.03 22.57
3) N-SSK2 1.62229 0.01168 53.27

F2 1.61989 0.01705 36.43 16.84
4) SK-7 1.65103 0.01165 55.89

N-BaF51 1.65211 0.01451 44.96 10.93
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DESIGNER NOTE

An exact index match is unnecessary; particularly since the actual index of standard
delivery fine annealed glass may depart from the catalog values by as much as
£0.0005% and the Abbe number by +0.8%. Within a given lot of fine annealed glass,
the refractive index variation is £0.0001 and about twice that within a lot of pressings.
The lens designer should be attentive to the impact such variations may have on the
lens performance. Also, for critical applications it is wise to use the actual melt data
for the glass purchased and make final adjustments to the curvatures and thicknesses
of the lens before making the lens elements. (Glass is typically delivered with a test
report according to ISO 10474.)

The measurements are performed with an accuracy of £3 x 107> for refractive
index and +2 x 107> for dispersion. Data are provided to five decimal places. The
reported values are the median value of the samples taken from the lot. Consequently,
the actual value of a part made from the lot may vary by the aforementioned refractive
index tolerance. Most lens design programs include tolerancing analysis and some
include tolerance sensitivity mitigation during lens optimization.

As an example of the use of a buried surface, we will design a triple aplanat
in which the third surface will be buried. The remaining three radii will be used
for spherical aberration and coma, the last radius being in all cases solved for
the required focal length. We will maintain a focal length of 10.0 and an aper-
ture of Y = 1.0 (f/5), allowing sufficient thicknesses for a trim diameter of
2.2 for the crown and for the insertion of the buried surface in the flint.
For the crown lens we will use K—5 glass (np = 1.5224, An = 0.00876, and
Vp = 59.63). For the flint we will use the glasses in selection (3) in Table 10.3,
performing the ray tracing with the average index of 1.6222.

A convenient starting system is

c d np
0.16
0.42 1.5224
-0.26
0.35 1.6222

(solve for f”)

The last curvature comes out to be —0.069605, giving LA" = 0.01013 and
OSC = 0. We now make a trial change in ¢; by 0.01, giving LA’ = 0.02059
and OSC = —0.00096. Returning to the original setup and changing ¢, by
0.01 gives LA" = —0.00241 and OSC = 0.00016. These values are plotted on
the double graph of Figure 10.8, and we conclude that we should make a further
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Figure 10.8 Double graph for a buried-surface triple aplanat.

change in ¢; by 0.0022. This completes the design so far as spherical aberration
and coma are concerned.

We must now introduce the buried surface for achromatism. To do this we
calculate the D values of the two elements along the marginal ray and divide
the axial thickness of the second lens suitably, say at 0.15 and 0.20, to form
the new second and third elements. We tabulate the four surfaces with as much
information as we have. Knowing the value of (D — d) An for the front element,
we see that the sum of the remaining two elements must be equal and opposite
to it. We also know the sum of the two D values for the last two lenses. Solving
the two simultaneous equations tells us that D, for lens » must be 0.2779594 and
D, for lens ¢ must be 0.1650274. Knowing the Y values at the various surfaces,
we finally ascertain that c3 must be 0.0080508. This completes the design, which
is as follows:

c d np Vp
0.1622
0.42 1.5224 59.63
-0.25
0.15 1.62222 36.07
0.008051
0.20 1.62218 53.13
—0.066105

for f/ = 10.0, I’ = 9.6360, LA’ = —0.00008, LZA = —0.00232, and OSC =
—0.00005. Compare the performance of this design with the aplanatic cemented
doublet in Section 10.3.
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10.6 THE MATCHING PRINCIPLE

If we wish to design an aplanatic lens of such a high aperture that a single
doublet is impossible, we resort to the use of two achromats in succession. We
now have four degrees of freedom. The subdivision of power between the two
components and the air space between them is arbitrary, while the two bendings
can be used for the correction of spherical aberration and OSC. Any reasonable
types of glass can be used, and by achromatizing each component separately we
automatically correct both the chromatic aberration and the lateral color.

The design of lenses of this type has been described in detail by Conrady,’ in
particular when used as a microscope objective of medium power. Having
decided on suitable values for the two arbitrary quantities, we trace a marginal
ray through the system from front to back, solving r; and r¢ by the D — d
method, and we then add two paraxial rays, one through the front component
from left to right using /; = L; and u; = sin Uj{, and the other through the
rear component from right to left, taking us = sin Ug and I§ = L as starting data.
If we can now find such a pair of bendings that the two paraxial rays match in
the air space between the lenses, the system will be corrected for both spherical
aberration and OSC. This is what is meant by the matching principle.

To make the required trial bendings, we have no problem with the front com-
ponent, but we must adopt standard entry data for the rear component. We can
easily adopt a fixed value for L4 by always choosing a suitable air space between
the lenses, but any standard value of U, that we may adopt will never agree
exactly with the emerging slope U} from the front component. Consequently
it becomes necessary to match actual aberrations in the air space rather than
trying to match lengths and angles.® So far as lengths are concerned, we have
always L4 = L% — d, and we require that /; = /5 — d. Subtracting these tells us that
we must select bendings such that

LA, = LA, (10-1)

To match the slope angles of the paraxial rays in the air space, we have
approximately sin U, = sin U}, and we require that u, should also be equal to
u4. Dividing these gives

0SC, = 0SC} (10-2)
where the OSC is defined as
OSC = (u/sinU) — 1 (10-3)

Since this kind of OSC does not contain the usual correcting factor for
spherical aberration and exit-pupil position (see Sections 4.3.4 and 9.3), we



284 Design of Aplanatic Objectives

refer to it as uncorrected OSC in the present context. Recall that we are trying to
match the ray slope angles in the space between the front and rear components;
hence the uncorrected OSC is just a convenient gauge of the relation linking the
paraxial and marginal rays. To reiterate, should the matching principle concept
of requiring Egs. (10-1) and (10-2) to be satisfied not be fulfilled, it is certain
that the lens system suffers imperfect correction of its aberrations.

As an example to illustrate the matching principle, we will design a 10x micro-
scope objective of numerical aperture 0.25, so that the entering ray slope at the
long conjugate end is 0.025. Assuming an object distance of —170 mm, we can
trace any desired rays into the front component of the system. It should be noted
that, as always, we calculate a microscope objective from the long conjugate to
the short, because the long conjugate distance is fixed while the short is not, so
that the long-conjugate end becomes the “front” of our system. This conflicts with
ordinary microscope parlance, which regards the front of a microscope objective
as the short conjugate end; this is a unique exception and we shall ignore it here.

Our first problem is to deal with the two arbitrary degrees of freedom,
namely, the subdivision of refracting power between the two components, and
the air space between them. For this, it is common to require that the paraxial
ray suffers equal deviation at each component, and to place the rear component
approximately midway between the front component and its image. This makes
the object distance for all rear-element bendings about 20 mm, and we shall
adopt that value here.’

As the overall paraxial deviation is 0.25 + 0.025 = 0.275, we must allow each
component to deviate the paraxial ray by 0.1375, which makes the ray slope
between the components equal to 0.1125. We shall therefore adopt this value
of sin Uy, in making all trial bendings of the rear component. For both lenses
we use the following common types of glass:

(a) Crown: n, = 1.52520, np — ne = 0.00893, V, = 58.81
(b) Flint: n, = 1.62115, np— ne = 0.01686, V, = 36.84

with V, — V;, = 21.97. The thin-lens data of the two components (Figure 10.9)
are as shown in Table 10.4.

After determining the last radius by the D — d method in every case, the
results of several bendings of each component are found to be as shown in
Table 10.5. These results are plotted side by side on one graph in Figure 10.10.

Front
, _ ——0.025) . ) i} S
-170 \J] o Uloas

Figure 10.9 A Lister-type microscope design.
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Table 10.4
Thin-Lens Data for Lister-type Microscope Shown in Figure 10.9

Object Image Focal Clear Suitable
distance distance length aperture thicknesses
(mm) (mm) (mm) (mm) Ca < (mm)
-170 37.77 30.90 8.5 0.1649  —0.0874 3.2, 1.0
20.0 9.00 16.36 4.5 0.3116  —0.1650 2.0,0.8
Table 10.5

Aberrations Versus Bendings for Lister-type Microscope

Front component

L] = l] = —170.0 sin U] =Uuy = 0.025
] 0 0.02 0.04 0.06 0.08
c3byD—d —0.08273 —0.06254 —0.04130 —0.01870 +0.00558
L4 33.149 34.666 35.465 35.567 35.005
LA —0.1474 0.9529 1.3282 0.8596 —0.6049
uncorrected OSC} 0.01164 0.03753 0.03727 0.01360 —0.03567
Rear component
L4 = 20.00 sin Uy = —0.1125
Cq 0.05 0.10 0.15 0.20 0.25
cgbyD—d —0.11360 —0.05405 0.01450 0.09511 0.19249
s =16 7.3552 7.3700 7.2695 7.0888 6.8570
sin Ug = ug —0.25862 —0.24760 —0.23939 —0.23259 —0.22588
Iy 18.8706 20.2829 20.7971 20.4545 19.3870
LA, 1.1294 —0.2829 —0.7971 —0.4545 0.6130
uncorrected OSCy 0.03222 —0.03055 —0.04323 —0.01363 0.05653
I
LA”| OSC . f
2| 0.04 T !
osc.,” \\\ Top \ 1 OSC
/
’ \ !
11002 /M N j
/ v
/ \ /
Long ‘N Middle N /LA
0rO T /
\ 5 s
\ \
\ 5 /
-1} -0.02 \ \ /
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\ N ,
\ \
-2 |- -0.04 —
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0 0.02 0.04 0.06 0.08 0.05 0.10 0.15 0.20 0.25

Figure 10.10 The matching principle.
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Table 10.6
Matching Solutions

Rectangle C] C C3 Cq Cs Ce

A (top) 0.032 —0.133 —0.050 0.045 —0.266 —0.119
B (middle) 0.067 —0.098 —0.010 0.070 —0.242 —0.091
C (bottom) 0.081 —0.084 0.007 0.165 —0.147 0.037
D (long) 0.003 —0.162 —0.080 0.228 —0.084 0.147

It is our aim to select such values of ¢; and ¢4 that LA = LA, and simulta-
neously OSC5 = OSCy. This is done by searching for rectangles that just fit into
the four curves, with spherical aberration and coma points, respectively, each
being on the same level. In this case, there are four such rectangles to be found,
indicating that the curves represent quadratic expressions. The four solutions
are shown in Table 10.6.

For many reasons we shall continue the design using solution C. All the other
solutions contain stronger surfaces, and moreover both components of solution C
contain almost equiconvex crown elements. This starting setup is as follows:

c d n,
0.081
32 1.52520
—0.08394
1.0 1.62115
0.00685
14.9603 (air)
0.165
2.0 1.52520
—0.14654
0.8 1.62115
0.03730

with lg = 7.2095, LAg = 0.01383, ug = 0.2361, and OSC§ = —0.00297. For the
final OSC§ calculation we assumed that the exit pupil is in such a position that
(/" = I}xy) is about 17.0. This puts the exit pupil about 10 mm inside the rear ver-
tex of the objective.

Although this solution is close, we must improve both aberrations by means
of a double graph. Changing ¢; by 0.001 and maintaining the D — d solutions,
and L, = 20.0, we find that the aberrations become

LA; = —0.000829, OSC{ = —0.002404
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Restoring the original ¢; and changing ¢4 by 0.001 gives

LAy =0.001306, OSCy = —0.003279

Inspection of the graph suggests that we change the original ¢; by 0.001 and ¢4
by —0.01. These changes give

LAy = —0.000403, OSCg = +0.000474

Unfortunately the numerical aperture of the system is now 0.2381, whereas it
should be 0.25. We therefore scale all radii down by 4%, which gives

LAY =0.001114, OSC) = 0.000221

Further reference to the double graph suggests that we try Ac; = 0.0005 and
Acs = 0.002. This change gives the almost perfect solution drawn to scale in
Figure 10.9, namely,

c d ne
0.08578
32 1.52520
0.08576
1.0 1.62115
0.009152
13.8043 (air)
0.16320
2.0 1.52520
—0.16080
0.8 1.62115
0.02602

with lg = 6.8925, ug = 0.2500, LAg = 0.000004, OSCs = -0.000095, and LZAg =
—0.00289. In practice, of course, we should apply trifling further bendings to
both components to render the crown elements exactly equiconvex. These
changes are so slight that they have no significant effect on any of the
aberrations.

The zonal aberration tolerance is 64/sin> U’,, = 0.053, so that the zonal resid-
ual of our objective is about half the Rayleigh limit. To improve it, we would
have to go to a flint of somewhat higher index, but the present design would
be acceptable as it stands.
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DESIGNER NOTE

In searching for matching rectangles, there is no a priori certainty of how many rectan-
gles may be found. In the example given, four solutions were found; however, there
may be three, two, one, or even no useful solutions, particularly if the chosen glasses
are very abnormal. The lens designer should observe from the design of this Lister-type
microscope objective that multiple solutions exist and that there are reasons why one
solution should be preferred over another. When attempting to design this or other lens
systems using an automatic optical design program, the lens designer should be attentive
to exploring alternative solutions that the optical design program may not find. This is
not dissimilar to the difficulty most optical design programs would have in finding
multiple solutions of the spherically corrected achromat discussed in Section 7.2.%
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Chapter 11

The Oblique Aberrations

In Chapter 4 we introduced the subject of the oblique aberrations of a lens, and in
Chapter 8 discussed in detail the origin and computation of coma. In this chapter we
continue the discussion, giving computing procedures for the remaining oblique
aberrations, namely, astigmatism, field curvature, distortion, and lateral color.

11.1 ASTIGMATISM AND THE CODDINGTON
EQUATIONS

When a narrow beam of light is obliquely incident on a refracting surface,
astigmatism is introduced, and the image of a point source formed by a small
lens aperture becomes a pair of focal lines, a series of beam sections being indi-
cated in Figure 11.1. One focal line (sagittal) is radial to the field and points
toward the lens axis, while the other focal line (tangential) is tangential to the
field. Both focal lines are perpendicular to the principal ray, and their locations
can be calculated once the principal ray has been traced. The astigmatic images
formed by the first surface become the objects for the second, and so on through
the system. The locations of the focal lines are found by the two Coddington'
equations, which will now be derived.

11.1.1 The Tangential Image

In Figure 11.2, BP is an entering principal ray, B being the tangential object
point distance ¢ from the point of incidence P; the length ¢ being measured along
the principal ray, negative if the object point lies to the left of the surface as
usual. The line BG represents a neighbor ray close to the principal ray, lying
in the meridian plane, so close in fact that the short arc PG = rdf can be
regarded as tangent to the refracting surface itself.

The central angle 6 = I — U, and hence

d0 = dI — dU (11-1)

Copyright © 2010, Elsevier Inc. All rights reserved. 289
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Figure 11.1 The astigmatic focal lines.
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Figure 11.2 The tangential focus.

The short line PQ, perpendicular to the incident ray, is given by
PQ=—tdU = PGcosI =rcosldb

But by Eq. (11-1) we have dU = dI — dO. Therefore, PQ = —t(dl — db) =
r cos Id0, hence

d[:{p"“;“} do (11-1a)
Similarly for the refracted ray we have

!
dr’ = {1 _reost } do (11-1b)

By differentiating the law of refraction we obtain
ncosI dI =n'cosI'dl’ (11-1¢)
and inserting (11-1a) and (11-1b) into (11-1c) we get

n’ cos? Iy ncos*l, n'cosly —ncosly
v r (11-2)

The term on the right degenerates to the surface power (n’ — n)/r when the
object point lies on the lens axis so that I,, = I, = 0. It may be regarded as
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the obligue power of the refracting surface for the principal ray. The oblique
power is always slightly greater than the axial power, which provides a conve-
nient check on the calculation.

11.1.2 The Sagittal Image

The other focal line is located at the sagittal image point B,. This is a para-
xial-type image formed by a pair of sagittal (skew) rays lying close to the prin-
cipal ray. As explained in Section 8.1.1, the image of a point formed by a pair of
sagittal rays always lies on the auxiliary axis joining the object point to the cen-
ter of curvature of the surface. This property of sagittal rays enables us to derive
the second Coddington equation locating the sagittal focal line.

In Figure 11.3 we show the principal ray, the sagittal object point B, and the
sagittal image By, with the auxiliary axis joining B, C, and B,. Now, the area of
any triangle ABC is given by %ab sin C; and since triangle BPB; = triangle BPC
plus triangle PCB,, we have

1 . | 1 .
_ESSI sin(180° — I +1') = —Esrsm(ISOO -1 +§s’rs1n1’
where
—ss'sin(I —I') = —srsinI + s'rsin I’
Expanding sin(/ — I') and multiplying by (n'/ss'r) gives

n'sinfcosl’ —n'cosIsinl’ n'sinl n'sinl’

r s’ K

But by the law of refraction, n’ sin I’ can be everywhere replaced by n sin I.
When this is done, the sin [ cancels out, giving

! !
n n_n cosIpr —ncos I

- = (11-3)

Bs

X\ .
AU Lens axis

/S
/\_\ ary N\

Figure 11.3 The sagittal focus.
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The term on the right is the same oblique power of the surface that we found
for the tangential image in Eq. (11-2). Thus the only difference between the
formulas for tangential and sagittal foci is the presence of the cos® terms in
the tangential formula.

Conrady® has also given a very direct derivation of these formulas by a
method depending on the equality of optical paths at a focus. However, the
purely geometrical derivations given here are easier to follow and are quite
valid.

11.1.3 Astigmatic Calculation

To use these formulas to calculate the astigmatism of a lens, we begin by
tracing a principal ray at the required obliquity. We calculate the starting values
of s and ¢ from the object to the point of incidence measured along the principal
ray (see Opening Equations section).

Oblique Power
We next determine the oblique power of each surface by
¢ =c(n'cosl’' —ncosli)

for a spherical surface of curvature c. If the surface is aspheric, then it is neces-
sary to calculate the separate sagittal and tangential surface curvatures at the
point of incidence by

cg=sin(I —U)/Y,c; = (d*Z/dY?)cos*(I — U)

The second derivative d>Z/dY? is found from the equation of the aspheric
surface. The rest of the data refers to the principal ray itself at the surface. It
is common to find a great difference between the sagittal and tangential surface
curvatures; indeed, they may even have opposite sign.

Oblique Separations

The third step is to calculate the oblique separation between successive pairs
of surfaces, measured along the principal ray, by

D= (d+Z,—Zy)/cos U}
where the Z values of the principal ray at the various surfaces are found by

I —cos({ - U)
o C

Z
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or better by
Z =Gsin(I — U)

Sagittal Ray
We then trace the sagittal neighbor ray by applying at each surface

l
, n

(n/s+¢)

Transfer is s, = s] — D.

Tangential Ray
The formula for tracing the tangential neighbor ray is
, n'cos? I
~ [(ncos? 1)/t + ¢

Transfer is #, = #{ — D. The process for tracing the tangential ray can be made
similar to that for the sagittal ray by listing across the page the values of n
cos’ I and n’ cos” I, and then treating these products as if they were the actual
refractive indices of the glasses.

Opening Equations

If the object is at infinity, the opening values of both s and ¢ are infinity. If
the object is at a distance B from the front lens vertex (negative if to the left),
then we must calculate (see Figure 11.4a)

s=1t=(B—Zy)/cos Uy = (Hy — Ypr)/ sin Up.

Closing Equations

Having traced the sagittal and tangential neighbor rays, we generally wish to
know the axial distances of the sagittal and tangential focal lines from the para-
xial image plane. These are given by (see Figure 11.4b):

Z =s'cosU, +Z-1'
Zi=tcosU,+7Z-1' (11-4)

where Z is the sag of the rear lens surface computed for the principal ray.
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Figure 11.4 (a) Opening equations. (b) Closing equations.

Example

As an example of the use of these formulas, we will trace a principal ray
through the Section 2.5 cemented doublet used several times before. The
principal ray will enter the front vertex at an angle of 3°. The tabular layout
of the computation, as perhaps performed on a small pocket calculator,
is given in Table 11.1. The closing equations give Z, = —0.02674 and
Z{ = —0.05641 recalling that /’ = 11.28586 (Section 6.1). The tangential focal
line is thus about twice as far from the paraxial focal plane as the radial focal
line, and both are inside the focal plane.

11.1.4 Graphical Determination
of the Astigmatic Images

The location of the sagittal focus along a traced principal ray is easily found
because the image lies on an auxiliary axis drawn from the object point through
the center of curvature of the surface.

T. Smith* credits Thomas Young with the discovery of a similar procedure for
locating the tangential image point. Young’s method for the construction of the
refracted ray itself involves drawing two auxiliary circles about the center of cur-
vature of the refracting surface, one with radius rn/n’ and the other with radius
rn’/n (Figure 11.5). The incident ray is extended to cross the second of these auxil-
iary circles at E, and then E'is joined to the center of curvature C. This line crosses
the first auxiliary circle at E’; then the refracted ray is drawn from P through E’.
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Table 11.1
Calculation of Astigmatism Along a Principal Ray
¢ 0.1353271 —0.1931098 —0.0616427
d 1.05 0.4
n 1.517 1.649
Tracing of 3° principal ray
0 0 0.0362246 0.0491463
o’ 0 0.0362270 0.0491086
I 3.00000 1.57608 1.67722
I 1.97708 1.44989 2.76642
U 3.0 1.97708 1.85089 2.94009
Tabulation of cosines
cos / 0.9986295 0.9996217 0.9995716
cos I’ 0.9994047 0.9996798 0.9988346
cos U 0.9994047 0.9994783 0.9986837
Oblique powers of surfaces
¢ 0.0700274 —0.0254994 0.0400344
Oblique separations
zZ 0 —0.0001268 —0.0000745
D 1.050499 0.4002611
Sagittal ray
K 00 20.612450 33.884695
s 21.662949 34.284956 11.274028
Tangential ray
n cos® I 0.9972609 1.5158524 1.6475874
n' cos® I 1.5151944 1.6479443 0.9976705
t 00 20.586666 33.836812
t 20.637165 34.237073 11.244328

Figure 11.5 Young’s construction for the sagittal and tangential foci (n = 1, n’ = 1.7).
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To locate the tangential image of any point B situated on the incident ray, we
drop perpendiculars from C onto the two sections of the ray, striking them at D
and D’, respectively. Then the point of intersection of DD’ and EE’ is the point
O. The line DD’ is found to be perpendicular to EE’. This point O replaces C
when graphically locating the tangential image of B, so that the line from B to
O crosses the refracted ray at the tangential image, while the line from B
through the center of curvature C locates the sagittal image.

The proof of this is difficult. It is best to assume that the angle 6 in triangle
BDO is equal to the angle 0 in triangle BPT; then the geometry of the two
triangles leads to the regular Coddington equation for the tangential image.

11.1.5 Astigmatism for the Three Cases
of Zero Spherical Aberration

In Section 6.1.1 it was pointed out that a single spherical surface contributes
no spherical aberration when the object is at (a) the surface itself, (b) the center
of curvature of the surface, and (c) the aplanatic point. In Section 9.2.1 it was
shown that the OSC also is zero for these three object points.

By means of the Coddington equations it is easy to show that at small oblig-
uity the astigmatism contribution will be zero in cases (a) and (c), but when the
object is at the center of curvature the astigmatism contribution is large and in
the unexpected sense—that is, the convex front surface of a positive lens, for
instance, contributes positive astigmatism when we would ordinarily have
expected it to lead to an inward-curving field. This result is often of great signif-
icance, and it explains many anomalies, such as the flat tangential field of a
Huygenian eyepiece.

11.1.6 Astigmatism at a Tilted Surface

If a lens surface is tilted through a given angle, the procedure outlined in Sec-
tion 2.6 can be used to trace the principal ray, and the ordinary Coddington
equations can be used to locate the astigmatic images along the principal ray.
However, because of the asymmetry, the astigmatism at some angle, say 15°,
above the axis will not be the same as the astigmatism at 15° below the axis,
and to plot the fields it is now necessary to trace several principal rays with both
positive and negative entering obliquity angles.

As an example, we will refer ahead to the design of a Protar lens (Section 14.4),
and pick up the principal-ray data at several obliquities. We will next suppose
that the rear lens surface has been tilted clockwise through an angle of 0.10°
(6 arcmin), so that « = 0.1. By comparing the field curves given in Figure 11.6
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Figure 11.6  Fields of a Protar lens, (a) centered and (b) rear surface tilted clockwise by 6 arcmin.

before and after the last surface was tilted, the effect of the tilt can be readily seen.
Briefly, it causes the field to tilt in a counterclockwise direction, the tangential
field being tilted and distorted much more than the sagittal field. Limiting our-
selves to one field angle, say 17.2°, we find that the tangential field has been tilted
by 35.2 arcmin while the sagittal field has been tilted through 13.3 arcmin, both
considerably more than the surface tilt that caused the problem. Actually, the
effects of a tilt as small as 5 arcmin can generally be detected, and it is customary
to try to limit accidental surface tilts in any good lens to about one arcmin.
Surface tilt does more damage to an image than any other manufacturing error,
and in assembling a lens it is essential to avoid tilted surfaces at any cost.

11.2 THE PETZVAL THEOREM

From very simple considerations, it is clear that a positive lens ought to have
an inward-curving field. The extraaxial or off-axis points on a flat object are
further from the lens than the axial point, and consequently their images should
be closer to the lens than the axial image, leading at once to an inward-curving
field.



298 The Oblique Aberrations

P\m(\\\a\'\]
Surface % / aX\s
P /
r \‘// \ l Lens axis
- o - - -
/

] 7 V—]

M\ () / //

Object /

Figure 11.7 The Petzval theorem.

The exact amount of this natural field curvature can be calculated by the fol-
lowing argument. Suppose we place a small stop at the center of curvature C of
a single spherical refracting surface (Figure 11.7). This will automatically elimi-
nate coma and astigmatism by forcing the oblique light to be refracted along an
auxiliary axis as if it were an axial beam. If the stop is small enough to eliminate
spherical aberration also, we shall be left with nothing but the basic field curva-
ture that we are trying to evaluate.

It is, of course, obvious that under these conditions an object having the
form of a sphere centered about C must be imaged as a sphere also centered
about C. If the radii of curvature of object and image are represented by p
and p’, then’

p=1—r, p=I-r

and since for a single surface n'/l'’ — n/l = (n’ — n)/r, we can readily show that, for
one surface,

1 1 n'—n
nw'p' mp mn'r

We can now write this expression for every surface in the lens and add them
up, but this procedure will be valid only if we can assume that all traces of astig-
matism have somehow been eliminated. Nevertheless, for such a lens having
k surfaces, we find that

1 Zn —n
nn'r

!/
P My

This expression relates the radius of curvature of the image with the radius of
curvature of the object, provided there is no astigmatism present. It is clear,
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then, that the radius of curvature of the image of a plane object with p; = oo, is
given by

1 , n —n
p—;(:nkz e (11-5)
It should be noted that a positive value of p corresponds to a negative sag, or an
inward-curving image. Hence the sag of the curved image of a plane object, in
the absence of astigmatism, will be given by

, 1., n' —n
Z, = —Eh,‘,anZW (11-6)

This is the famous Petzval theorem, and we shall have many occasions to refer
to it since it is only possible to design a flat-field lens free from astigmatism by
reducing the Petzval sum, thus the Petzval theorem dominates the entire design
processes for flat-field photographic lenses.

The quantity under the summation in these different expressions is called the
Petzval sum, and the radius of curvature of the image is evidently the reciprocal
of the Petzval sum. Another useful term is the Petzval ratio, which is the ratio of
the Petzval radius to the focal length of the lens. It is given by

p'/f =1/f'E

where X is the Petzval sum. Note the reciprocal relationship here. A long focal
length lens tends to have a small Petzval sum, while the sum is large in a strong
lens of short focal length.

11.2.1 Relation Between the Petzval
Sum and Astigmatism

It can be shown® that at very small obliquity angles the tangential astigmatism—
that is, the longitudinal distance from the Petzval surface to the tangential focal
line—is three times as great as the corresponding sagittal astigmatism. Thus, if
the astigmatism in any lens can be made zero, the two focal lines will coalesce
on the Petzval surface. In all other cases the locus of the tangential foci at various
obliquities is called the tangential field of a lens, and similarly for the sagittal field.
As the Petzval surface in most simple lenses is inward-curving, it is often possible
to flatten the tangential field by the deliberate introduction of overcorrected astig-
matism, leaving the sagittal image to fall between the Petzval surface and the tan-
gential image. However, when designing an “anastigmat” having a flat field free
from astigmatism, it is necessary to reduce the Petzval sum drastically.

If it is necessary to design a lens having an inward-curving field to meet some
customer requirement, the astigmatism can easily be removed and the Petzval
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sum adjusted to give the desired field curvature. On the other hand, if the field
must be backward-curving, it is difficult to avoid an excessive amount of over-
corrected astigmatism. It is worth noting that in some types of lens, if the
Petzval sum is made too small the separation between the astigmatic fields
becomes excessively large at intermediate field angles.

Many decades ago, lens designers taught that the tangential astigmatic field
should be flattened to obtain the smallest spot size.”* This can be easily under-
stood by considering Eqs. (4-6) and (4-7) and assuming that all aberration coef-
ficients are zero other than primary astigmatism (¢3) and Petzval (g4). The
sagittal and tangential astigmatic ray errors in the paraxial image plane are
(03 + a4)pH?sin 0 and (363 + 04)pH? cos 0, respectively. Three basic cases to
contemplate are a flat sagittal field, a flat tangential field, and equally balanced
fields about the paraxial image plane. For a flat sagittal field, 3 + 04 = 0 or
03 = —a4, which means that the residual tangential astigmatism in the paraxial
image plane is 303 + 04 = —204. When the tangential field is flat, 303 + o4 = 0,
which implies that 63 = —04/3 and the residual sagittal astigmatism is 2a4/3.
When the errors are balanced, the tangential astigmatism is equal to the nega-
tive of the sagittal astigmatism, or o3 = —ag4/2.

In the balance-fields case, the values of the residual sagittal and tangential
astigmatism are observed each to be smaller than the residual values of the prior
two cases. This might lead one to select this condition as the optimal minimum
spot size'’; however, such a conclusion is erroneous.'! It is a general practice by
lens designers to adjust the astigmatic surfaces such that the tangential field is
flat and then adjust the position of the image plane to the location of the smal-
lest blur at the edge of the field. The definition of the imagery is relatively
uniform over the whole image area. In a balanced-field case, the image defini-
tion is quite superior in the central region of the image to that of the flat tangen-
tial field case, and inferior in the outer portions of the imagery.'> As B. K.
Johnson stated, “It therefore depends much on the requirements for which the
lens is to be used, as to which criterion is to be adopted.”

11.2.2 Methods for Reducing the Petzval Sum

There are several methods by which the Petzval sum can be reduced, and one
or more of these appear in every type of photographic objective. These methods
can also be applied to a wide variety of optical systems.

A Thick Meniscus

If we have a single lens in which both radii of curvature are equal and of the
same sign, the Petzval sum will be zero, while the lens power is proportional to
the thickness. Cemented interfaces in such a lens have very little effect on the
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Petzval sum. This property has been used in many symmetrical lenses such as
the Dagor and Orthostigmat.

Separated Thin Elements

In a system containing several widely separated thin elements, the Petzval
sum is given by

Piz=> ¢/n (11-7)

where ¢ is the power of an element. If there is about as much negative as posi-
tive power in such a system, the Petzval sum can be made as small as desired.
This property has been used in many lenses of the dialyte type (see Section 13.2).

Negative Lens Field Flattener

An interesting special case is that in which a negative lens element is placed at
or near an image plane, as illustrated in Figure 11.8. This element has little or
no effect on the focal length or the aberrations, but it contributes its full power
to the Petzval sum. (See Section 11.7.4.)

Conversely, if it is necessary to insert a positive lens in an image plane to act as
a field lens, then this lens has a large adverse effect on the Petzval sum. For this
reason it is almost impossible to reduce the Petzval sum in a long periscope hav-
ing several internal images and field lenses. However, by using photographic-type
lenses as field lenses it is sometimes possible to reduce the sum appreciably.

It should be noted that in a lens having a long central air space, the Petzval
sum is increased if both components are positive (as in the Petzval portrait lens)
because the rear component acts partly as a positive field lens. On the other
hand, if the rear component is negative (as in a telephoto), then the Petzval

Figure 11.8 Negative lens element is placed at or near an image plane.
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sum is reduced, and in an extreme telephoto it may actually become negative,
requiring some degree of undercorrected astigmatism to offset it.

A Concentric Lens Field Flattener

The preceding field flattener has several inherent problems that may make it
difficult or impossible to use. There are situations where a field flattener needs
to be remote from the image plane—for example, an infrared detector array
located inside a vacuum dewar. Rosin'® described the use of a concentric lens
centered about the focus of diverging or converging axial rays as illustrated in
Figure 11.9. Since any of these axial rays are incident normal to the lens sur-
faces, the position of the image does not change with the introduction of this
lens nor does it change the image size.

It can be shown that aberration contributions of this lens have the following
characteristics.

® Zero spherical aberration

® Zero tangential and sagittal coma

® Zero axial color

® Zero lateral color

® Distortion is unchanged

® Sagittal field curvature is unaffected

® Tangential field curvature can be independently controlled

The tangential field contribution is proportional to (R, — Ry)(27), which
means that the effect cause is based on the thickness of the lens and the distance
to its center of curvature. Higher-order aberrations will generally remain cor-
rected for spherical aberration, axial color, distortion, sagittal coma, sagittal
field curvature, spherochromatism, zonal spherical aberration, and sagittal

Figure 11.9 Concentric lens used to flatten tangential field.
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oblique spherical aberration. In cases where the stop is significantly distant from
the lens, certain higher-order aberrations can become bothersome, namely, tan-
gential coma, lateral color, tangential field curvature, and tangential oblique
spherical aberration. In addition to these possible limitations, the lens curva-
tures toward the image plane may restrict the size of the field due to the geomet-
ric size of the field flattener lens. It should be noted that since these lens
aberrations are all about zero, spatial positioning of this lens does not need to
be nearly as precise as a lens contributing large amounts of aberrations.

The concentric field flattener lens was independently discovered'* and suc-
cessfully employed, beginning in 1968, to enhance the performance of a variety
of thermal infrared optical systems having low f-numbers and moderate fields-
of-view. However, the exact concentricity and positioning of the lenses were
deviated from the above lens specifications to mitigate potential ghost images
that could be formed at the image plane due to reflections from surfaces R;
and R, when centered on the axial image point. In some cases, this nearly con-
centric field flattener was used as the dewar window. The amount of aberrations
induced by breaking exact concentricity and positioning can be reasonably
small while still providing predominate control of the tangential field curvature.

Mann used a concentric field flattener in a 3:1 infrared zoom lens and signif-
icantly reduced the field curvature over the zoom range, and generally achieved
balanced astigmatic fields (see Section 11.2.1)."° His design technique for the
field flattener was to first design the zoom lens and then to place a flat plate
where the dewar window was to be located. He then allowed the computer pro-
gram to vary the curvatures, and somewhat the flattener’s thickness, which nat-
urally became near concentric about the axial image. The final system was near
diffraction-limited.

Figure 11.10 illustrates a typical configuration shown by Rosin where the
concentric field flattener is located in the image space of a Petzval-type lens.
In this case, he followed a design procedure of reducing the Petzval and sagittal
field curvatures while rather ignoring the tangential field curvature as shown in

[
\_VZ |

Figure 11.10 Concentric lens behind Petzval lens.
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Figure 11.11 Flattening of tangential field using concentric lens where lens was designed to
have flat sagittal field. (a) Initial design with flat sagittal field; (b) Tangential field bought into
coincidence with the sagittal and Petzval curvatures using the concentric field flattener.

Figure 11.11a. With the introduction of the concentric field flattener lens, the
tangential (T) field curvature was brought into coincidence with the Petzval (P)
and sagittal (S) field curvatures as depicted in Figure 11.11b. A substantial
improvement in resolution uniformity and contrast over the field of view was
obtained. An alternative location for the concentric lens is to place it between
the front and rear elements. In this case, the radii of the concentric lens are
centered at the focus location of the front element.

A concentric field flattener lens may be introduced in other than the image
space of a lens; however, this can shift the spatial location of the image plane.
Another form of the concentric field flattener can be realized by considering a
solid glass plate placed in image space, as illustrated in Figure 11.12a, which
has been shown in Sections 3.4.4 and 6.4 to shift the image location and intro-
duce aberrations.'® A concentric air lens'” is now formed by removal of the mid-
dle section of the glass plate—that is, a plano-concave lens followed by a
convex-plano lens as illustrated in Figure 11.12b. The internal surface curva-
tures are centered on the image location that would occur should the glass plate
have contained the image. The design of a lens being combined with this con-
centric field flattener element should include the aberrations resulting from a
glass plate having a thickness equal to the distance between the plano surfaces
of the concentric field flattener lens. The air concentric field flattener lens has
a manufacturing advantage over the form shown in Figure 11.9 since it is more
difficult to colocate the centers of the surfaces of a concentric lens element.

Another field flattener approach'® uses a concentric shell centered about
the stop (convex toward the image). The beam passing through this lens has
the chief ray always perpendicular to the surfaces of the shell so its induced
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Figure 11.12 (a) Image shift caused by glass plate. (b) Creation of concentric air lens from the
glass plate.

aberrations are constant as a function of field angle. As it does have some neg-
ative power, the shell affects the Petzval sum. It also shifts the image somewhat.

PROBLEM: For a concentric field flattener lens, show that spherical aberration, tan-
gential and sagittal coma, axial color, and lateral color are zero, and that distortion
and sagittal field curvature are unaffected.

PROBLEM: Consider the field diagrams shown in Figure 11.11 and explain the astig-
matic aberrations depicted in both using Seidel aberration coefficients (o3 and ay4).

A New-Achromat Combination

By 1886, Abbe and Schott in Jena, Germany, had developed barium crown
glasses having just the required property to reduce the Petzval sum, and these
glasses were immediately adopted by Schroder in 1888 in his Ross Concentric
lens."” These glasses provided the sought after method for controlling the
Petzval sum by using a crown glass of low dispersion and high refractive index
in combination with a flint glass of higher dispersion and a low refractive index.
This is precisely opposite to the choice of glasses used in telescope doublets and
other ordinary achromats. Lenses of this type are therefore known as “new
achromats.” They have been used in the Protar (Section 14.4) and many other
types of photographic objectives.
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11.3 ILLUSTRATION OF ASTIGMATIC ERROR

As has been observed, our dutiful cemented doublet (Section 2.5) suffers
from astigmatism, as is evident by examination of the ray fans plots in
Figure 11.13, the focusing ray bundles in Figure 11.14a, and the field curves
shown in Figure 11.14b. Also, both the tangential and sagittal fields are inward
curving, and the maximum zonal spherical aberration is less than 10% of the
peak astigmatic error at 5°. By comparing the 3.5° plot with the 5° plot, we
can see that the aberration plots are linear with p and the ratio of the errors
between these plots is about 2:1.

From our study, we recognize that the aberration is primary linear astigma-
tism since (H’% /H}5.)” ~ 2 and the linear behavior with p. Consequently, only
a3 and a4 of the field-dependent aberration coefficients have significant values.
Recalling Eqgs. (4-6) and (4-7), it is easy to compute that o3 ~ 0.79¢4, which
means the Petzval curve is also inward curving but lies between the sagittal
curve and the image plane. Computing the transverse astigmatism using real
rays was discussed in Section 4.3.3. The tangential component is given by

TAST(p,H) = Y(p,0°,H) —Y(p,180°, H) —=2Y (p,0°,0) = —0.053159
and the sagittal component by
SAST (p,H) = 2[X(p,90°,H) —Y(p,0°,0)] = —0.025650

which compare favorably to Figure 11.14. Coma is insignificant.

To observe what degradation in image formation the astigmatism in our lens
will cause, we can generate a simulated image of a photograph using an analysis
feature available in some lens design programs. Figure 11.15a shows the original
and Figure 11.15b the resultant image (see page 311). The quadratic growth of
the blur as a function of field angle is demonstratively illustrated. Compare this
image with the linear blur growth due to coma shown in Figure 9.9b. Notice
that the fine detail is observable over a larger central area than coma as a con-
sequence of the quadratic growth of the blur. However, the image degradation
at the top/bottom center and left/right sides is similar since the blur sizes are
roughly the same although the shapes differ. The blurring in the corners is worse
for Figure 11.15b than for Figure 9.9b.

11.4 DISTORTION

Distortion is a peculiar aberration in that it does not cause any loss of defi-
nition but merely a radial displacement of an image point toward or away from
the lens axis. Distortion is calculated by determining the height Hy, at which the
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Figure 11.13 Monochromatic ray fans for Section 2.5 cemented doublet.
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Figure 11.14 (a) Monochromatic focusing behavior for Section 2.5 cemented doublet. (b)
Field curves for the tangential and sagittal foci.
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(b)

Figure 11.15 (a) Original photograph. (b) Image formed by Section 2.5 cemented doublet
showing the effect of astigmatism.

principal ray intersects the image plane, and comparing that height with the
ideal Lagrangian or Gaussian image height calculated by paraxial formulas.
Thus

distortion = H,, — '

where A’ for a distant object is given by (f'tan U,,), or for a near object by (Hm),
where m is the image magnification.

As discussed in Section 4.3.5, distortion is aperture-independent coma and
can be resolved into a series of powers of H', namely,

distortion = osH"” + puj, H"” + 10H" + ... (11-8)

However, very few lenses exhibit much distortion beyond the first cubic
term. Because of the cubic law, distortion increases rapidly once it begins to
appear, and this makes the corners of the image of a square, for example,
stretch out for positive (pincushion) distortion, or pull in with negative (barrel)
distortion.

The magnitude of distortion is generally expressed as a percentage of the
image height, at the corners of a picture. Figure 11.16 shows two typical cases
of moderate amounts of pincushion distortion, namely, 4% and 10%, respec-
tively. The diagrams represent images that should be 50 mm squares, the quan-
tity d beneath each figure being the lateral displacement of the midpoints of the
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Figure 11.16 Pincushion distortion. (a) 4%, d = 0.50 mm, r = 676 mm; (b) 10%, d = 1.25 mm,
r = 302 mm.

sides of the square due to distortion. The quantity r is the radius of curvature
of the sides of the images, which should, of course, be straight. As can be
seen, 4% distortion is just noticeable, whereas 10% is definitely objectionable.
Consequently, we generally set the distortion tolerance at about 1% since few
observers can detect such a small amount. For specialized applications such as
aerial surveying and map copying, the slightest trace of distortion is objection-
able, and the greatest care must be taken in the design and manufacture of
lenses for these purposes to eliminate distortion completely.

11.4.1 Measuring Distortion

Since distortion varies across the field of a lens, it is difficult to determine the
ideal Gaussian image height with which the observed image height is to be com-
pared. One method is to photograph the images of a row of distant objects
located at known angles from the lens axis and measure the image heights on
the film. Since focal length is equal to the ratio of the image height to the tan-
gent of the subtense angle, we can plot focal length against object position
and extrapolate to zero object subtense to determine the axial focal length with
which all the other focal lengths are to be compared. If the lens is to be used
with a near object, we substitute object size for angular subtense and magnifica-
tion for focal length. The determination can be performed at several object field
positions and the coefficients os, u;,, and 79 for Eq. (11-8) can be found.
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11.4.2 Distortion Contribution Formulas

To develop an expression for the contribution of each lens surface to the distor-
tion, we repeat the spherical-aberration contribution development from Section
6.1 but using the principal ray instead of the marginal ray. Thus Eq. (6-3) becomes

(S'n'u) = (Smu), = ni(Q' - Q)
where capital letters now refer to the data of the traced principal ray.

Figure 11.17a shows that at the final image S}, = H}, cos Up,, and similarly
for the object. Hence if there are k surfaces in the lens,

nucos U ni(Q' —
e R e
nyuy cos Uy nyuy cos Uy
For a distant object, the first term in this expression reduces to
f'(sin U/cos Uy) .,
To relate this formula to the distortion, we note that Dist = H' — h’, where I’,
the Lagrangian image height, is equal to f” tan U;. Hence

distortion = <C°S Ui _ 1) + Z(m(g—_g)‘“ (11-9)
pr

Lagrangian Y /
muy cos Uy ),

!
cos U,

Curved
image surface

(b)

Figure 11.17 Distortion diagrams. (a) Basic geometry for distortion computation in image
plane and (b) distortion when image surface is curved.
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Note that the two parts of this formula are similar in magnitude, the first being
caused by the difference in slope of the principal ray as it enters and leaves the
system, the second being derived from the lens surface contributions.

To verify the accuracy of this formula, we take the much-used cemented dou-
blet of Section 2.5 and trace a principal ray entering at 8° through the anterior
focal point to form an almost perfectly telecentric system (see Table 11.2).%°

The agreement in the results of this calculation between the direct measure of
the image height and the sum of the various contributions is excellent. For the
distortion itself we first calculate

, (cos U,

Lagrangian | 5o U - l) = —0.0163489

When this is added to the summation value in Table 11.2 we find the distortion
to be —0.0618321, again in excellent agreement. The change in slope of the prin-
cipal ray has contributed about one-third of the distortion, the remainder com-
ing from the lens surfaces themselves.

Unfortunately, the quantities under the summation sign are not really “con-
tributions” that have merely to be added together to give the distortion. Each
lens surface, to be sure, provides an amount to be summed, but it also

Table 11.2

Calculation of Distortion Contributions

c 0.1353271 —0.1931098 —0.0616427
d 1.05 0.4
n 1.517 1.649
Paraxial
¢ 0.0699641 —0.0254905 0.0400061
—d/n 0.6921556 —0.2425713 I’ = 11.285857
¥y 1 0.9515740 0.9404865 f' = 12.00002
nu 0 —0.0699641 —0.0457080 —0.0833332
u 0 —0.0461200 —0.0277186 —0.0833332
(ye+u)=i 0.1353271 —0.2298783 —0.0856927
8° Principal ray, with L; = —11.76
Q 1.6527600 1.7050560 1.7263990
o’ 1.6947263 1.7117212 1.7233187
U 8° 0.56367° 2.10291° —0.50119°
Distortion contributions

(Q—0')pr —0.0419663 —0.0066652 0.0030803
ni 0.1353271 —0.3487254 —0.1413073
1/uf. cos U} 12.000478 12.000478 12.000478
Product —0.0681528 0.0278930 —0.0052234 > = —0.0454832

Hence H' = 1.6701438 — 0.0454832 = 1.6246606
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contributes to the slope of the emergent ray in the first term of the distortion
expression. The relation just given is therefore mainly of theoretical interest;
however, the Buchdahl coefficients for distortion discussed in Chapter 4 do
not suffer the above issue.

11.4.3 Distortion When the Image Surface Is Curved

If a lens is designed to form its image on a curved surface, the meaning of
distortion must be clearly defined. As always, distortion is the radial distance
from the ideal image point to the crossing point of the principal ray; but now
the ideal image is represented by the point of intersection of a line drawn
through the second nodal point at the same slope as that of a corresponding
ray entering through the first nodal point (Figure 11.17b). Then

distortion = [(Y> — Y1)? + (Z> — )12

where subscript 2 refers to the traced principal ray and subscript 1 to the ideal
ray through the nodal points.

11.5 LATERAL COLOR

Lateral color is similar to distortion in that it is calculated by finding the height
of intercept of principal rays at the image plane, but now we must compare two
principal rays in two different wavelengths, typically the C and F lines of hydro-
gen, although, of course, any other specified lines can be used if desired. Then

lateral color = Hy. — H|.

Lateral color can be resolved into a power series, but now there is a first-order
term that does not appear in distortion (the first-order term in distortion is the
Gaussian image height; see Figure 4.5):

lateral color = aH' +bH"” + ¢cH” + ...

Some people consider that only the first term represents lateral color, all the
others being merely the chromatic variation of distortion. No matter how it is
regarded, lateral color causes a radial chromatic blurring at image points
located away from the lens axis. Of course, both distortion and lateral color
vanish at the center of the field.

11.5.1 Primary Lateral Color

The first term of this series, representing the primary lateral color, can be cal-
culated by a method similar to the calculation of the OSC, except that now we
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trace paraxial rays in C and F light instead of tracing a marginal and a paraxial
ray in brightest light. Thus, writing paraxial data in F in place of the original
marginal ray data, and paraxial data in C in place of the original paraxial ray
data, our formula Eq. (9-4) becomes

CDM

/ l/ _ l/
lateral color _ uc ( ¢ pr) — 1 for a near object (11-10)

~ image height  u) \ ! Pl
Af’ Al . .
— 7{ 7 for a distant object (11-11)
f " fpr

where Af’ = ff — f& and A’ = I — I{. The latter is, of course, the ordinary
paraxial longitudinal chromatic aberration. The expression CDM is an abbrevi-
ation for chromatic difference of magnification and it is strictly analogous to
OSC.

In a symmetrical lens, or any other lens in which the pupils coincide with the
principal planes, !’ — [}, = f’, and Eq. (11-11) becomes

CDM = (Af' — AI')/f' (11-12)

The numerator of this expression is simply the distance between the second prin-
cipal planes in C and F light. Thus, if these principal planes coincide, there will
be no primary lateral color. This is often a convenient computing device for use
in the early stages of a design. Later, of course, it is necessary to trace true prin-
cipal rays in F and C and calculate the difference in the heights of these rays at
the focal plane.

The logic of this last relationship can be understood by the diagram in
Figure 11.18, which shows the principal rays in C and F, at small obliquity,
emerging from their respective principal points and proceeding to the image
plane. It is clear that

primary lateral color = z tan U}, = z(h'/f")

“"Lateral color

Figure 11.18 Primary lateral color depends on z.
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and hence
CDM = lateral color/h' = z/f".

Although six of the cardinal points are wavelength dependent, reference to
Section 3.3.7 shows that the seventh cardinal point (optical center) is spatially
stationary with wavelength. Just as higher-order lateral color can be thought
of as chromatic variation of distortion, all of the comatic and astigmatic aberra-
tions are wavelength dependent (unless the optical system is all reflective).
Spherochromatism was covered in some depth in Chapter 7.

11.5.2 Application of the (D — d) Method
to an Oblique Pencil

It has been shown by Feder? that Conrady’s D — d method can be applied to
an oblique pencil through a lens. He pointed out that if we calculate > D An
along each ray of the pencil and > d An along the principal ray, then we can
plot a graph connecting > (D — d) An as ordinate against sin U’ of the ray as
abscissa. The interpretation of this graph is that the ordinates represent the lon-
gitudinal chromatic aberration of each zone, while the slope of the curve repre-
sents the lateral color of that zone.

Typical curves at 0 and 20°, calculated for the f72.8 triplet used in Section
8.4.1, are given in Figure 11.19 for An = (nr— nc). The fact that the axial graph

D—-dsum
y
0 e T
\/Principal ray angent at pring;
LR ray —al
20° y
UR
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-0.2 -0.1 0 0.1 0.2

Figure 11.19 Application of the (D — d) method to an axial and an oblique pencil through a
triplet objective.
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Figure 11.20 Spherochromatism of f/2.8 triplet objective.

is not a straight line indicates the presence of spherochromatism; this is shown
plotted in the ordinary way in Figure 11.20. The tilt of the 20° curve at the
principal-ray point (Figure 11.19) indicates the presence of lateral color, of
amount about —0.0018. The lateral color found by actual ray tracing was
Hj:— H- = —0.00168, which is in excellent agreement considering the difficulty in
graphically determining the exact tangent to the curve at the principal-ray point.

11.6 THE SYMMETRICAL PRINCIPLE

A fully symmetrical (holosymmetrical) system is one in which each half of the
system, including the object and image planes, is identical to the other half, so
that if the front half is rotated through 180° about the center of the stop it will
coincide exactly with the rear half.

Such a fully symmetrical system has several interesting and valuable proper-
ties, notably complete absence of distortion and lateral color, and absence of
coma for one zone of the lens. These are the three transverse aberrations, with
the contributions of the front component being equal and opposite to the con-
tributions of the rear. The two half-systems also contribute identical amounts
to each of the longitudinal aberrations, but now the contributions have the same
sign and add together instead of canceling out.

The reason for this cancellation of the transverse aberrations can be seen by
consideration of Figure 11.21a. Any principal ray in any wavelength starting
out from the center of the stop and traveling both ways to the object and image
planes will intersect those planes at the same height above and below the axis,
giving a magnification of exactly —1.0 over the entire field. Thus distortion
and lateral color are automatically absent.

To demonstrate the absence of coma, we must trace a pair of upper and
lower oblique rays in the stop both ways until they intersect each other at P
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(b)

Figure 11.21 Transverse aberrations of a holosymmetrical system. (a) Distortion and lateral
color and (b) coma.

and P’ (Figure 11.21b). We then add a principal ray through the center of the
stop at such a slope that it passes through P. Symmetry will then dictate that
it will also pass exactly through P’. Hence, this one zone of the lens will be
coma-free, although one cannot draw any similar conclusion for other zones
of the lens. It should be noted that if there is any coma in each half of the lens,
the principal ray in the stop will not be parallel to the parallel upper and lower
oblique rays initially placed there. The symmetry principle is a powerful tool for
the lens designer, but its limitations must be kept in mind.

DESIGNER NOTE

If the lens is symmetrical but the conjugates are not equal, then the distortion will be
corrected only if the entrance and exit pupils, where the entering and emerging portions
of the principal ray cross the axis, are fixed points for all possible obliquity angles.??

Similarly, lateral color will be absent if the entrance and exit pupils are fixed points
for all wavelengths of light. These two conditions are often referred to as the Bow—
Sutton condition. No corresponding conclusions can be drawn for coma, but it is
generally found that coma is greatly reduced by symmetry, even though the conjugate
distances are not equal. The point to notice is that if distortion and lateral color must
be well corrected over a wide range of magnifications, as in a process lens used to copy
maps, then the designer must concentrate on correcting the spherical and chromatic
aberrations of the principal rays rather than on correcting the primary image, stopping
the lens down if necessary to maintain the image quality. Stopping the lens down, of
course, has no effect on the aberrations of the principal ray.
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11.7 COMPUTATION OF THE SEIDEL
ABERRATIONS

In some designs it is advantageous to determine the contributions of the var-
ious surfaces, or thin lens elements, to the seven primary or Seidel aberrations.
This procedure has the advantage of indicating where each aberration arises in
the system, and the computation is rapid enough to permit an approximate
design to be reached in a short time before any real ray tracing is attempted.

To calculate the surface contributions, we first trace a regular paraxial ray
from object to image, and also a paraxial principal ray through the center of
the stop. The entering values of the (y, u) of the paraxial ray and the (yp,, tp)
of the paraxial principal ray must correspond to the desired values for the real
lens, so that the y is equal to the true Y at the first surface, and the u,, is equal
to the tan Uy, of the angular field for which the primary aberrations are desired.
In this notation, the Lagrange invariant can be written

it = n(ttpey — Yyt

11.7.1 Surface Contributions

Both Conrady”® and Feder®* have given simple formulas by which the surface
contributions to the Seidel aberrations can be rapidly computed. We calculate the
following equations in order, noting that subscript 0 in u{ and /j refers to the
final image, while other symbols refer to the surface in question. Having traced
the paraxial ray and the paraxial principal ray, we calculate their angles of inci-
dence by the usual relation (i = yc¢ + u), where c is the surface curvature. Then

n . )
K :yn(W— 1)(1 +u')/2u;
SC =Ki*, CC = Kiipeup, AC = Kiy,
b, (n—n
PC__EhOC( o’ >

pr
An  An’
L:y}’l(—n ——n/> u62

(11-13)

LChC = Li, TChC = LipruE)

Here c is the surface curvature, as usual; for the aberrations, SC is the con-
tribution to longitudinal spherical aberration, CC to the sagittal coma, AC to
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sagittal astigmatism (i.e., the longitudinal distance from the Petzval surface to
the sagittal focal line), PC to the sag of the Petzval surface, and DC to the dis-
tortion; Ly, C and Ty, C are the surface contributions to the longitudinal chro-
matic aberration and lateral color, respectively. Of the two expressions for the
distortion contribution, the first is easier to compute by hand, but it fails if
the object is at the center of curvature of the surface, for then AC = —PC and
DC becomes indeterminate.

The second alternative expression requires the calculation of CC for the prin-
cipal ray, and it is therefore recommended that a subroutine be written for
CC that can be applied successively to the paraxial ray and the principal ray
data. Alternative equations for the surface contributions were presented in
Section 4.4, as were the scaling factors for presenting the aberrations as trans-
verse, longitudinal, or wave aberrations.

11.7.2 Thin-Lens Contributions

In some thin-lens predesigns it is convenient to reduce the system to a succes-
sion of thin elements separated by finite air spaces. We trace the same two para-
xial rays through the system, using Egs. (3-17) for this purpose. We then list the
values of Q = (yp/y) at each thin lens. The computation now falls into two
parts: first, the calculation of each contribution as if the stop were at the thin
lens, and then the modification of each contribution to place the stop in its true
position. The second stage makes use of the Q at each lens.

The equations for the first stage are

SC—fKZ(G P — Gycter + GiPvy)
= u62 1C 20 C 3C7 V]
+ G4cc% — Gseeyvy + GGCV%
CC = —y*h), Z (1 Gscer — Grevy — Gsc?)
AC = =1hg > (1/f) (11-14)
PC=—5hg Y (1/nf)
DC=0, TqC=0

»? 1
Lac=-2% ()

The summations in these expressions are used only if the thin component is
compound, such as a thin doublet or a thin triplet; they are not required for a
single thin element. The formulas for the G terms are in Sections 6.3.2 and 9.3.4.
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We next apply the calculated Q factors (Q = y,/y) to place the stop in its
correct position. The true contributions, marked with asterisks, are found in
the following way:

SC*=SC, PC*'=PC, LyuC'=LyC

CC* = CC + SC(Quy)

AC* = AC + CC(2Q/u}) + SCQ* (11-15)
DC* = (PC +3AC)Quj +3CCQ* + SC(Q*uy)

T C* = LChC(Quf))

These expressions are generally known as the stop-shift formulas. It should be
observed that for the stop shift to affect the value of coma, residual spherical
aberration must be present in an adequate amount. In a like manner, spherical
aberration and/or coma must be present for the stop shift to affect the value of
astigmatism. Distortion can be affected by a stop shift if spherical aberration
and/or coma and/or astigmatism exist.

11.7.3 Aspheric Surface Corrections

If we are computing the Seidel surface contributions and encounter an
aspheric surface, we first calculate the contributions, assuming that the surface
is a sphere with the vertex curvature ¢, and then add a set of correcting terms
depending on the asphericity.

The aspheric surface is assumed to be of the form

Z =1cS% +j,S* +j6S® +
where S? = y? + z% and the j values are the aspheric coefficients. Then
)

addition to SC = 4]4(
addition to CC = 4j, (n 7 )y Vpr

(11-16)

addition to AC = 4j,

addition to DC = 4]4( )yypr
ug

It should be noted that only the j, coefficient appears in the primary aberra-
tions, since the higher aspheric terms affect only the higher-order aberrations.”
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Also, if the stop is located at an aspheric surface, the yp, there will be zero, and the
only aberration to be affected by the asphericity is the spherical aberration.

11.7.4 A Thin Lens in the Plane of an Image

This case is exemplified by a field lens or a field flattener. We cannot now use
the thin-lens contribution formulas already given because both the stop and the
image cannot lie in the same plane. Consequently, we have to return to the sur-
face contribution formulas and add them up for the case in which y = 0. When
this is done, we find that for a thin lens situated in an image plane

SC=CC=AC=0, L;,C=T,C=0

The Petzval sag PC has its usual value of —1A /f’N, where N is the index of
the glass. The distortion must be carefully evaluated. It turns out to be

: 1 N 1
DC = Lp2y (2w I\ S
€ =2kt <Nf’ ui) [ * o

where f” is the focal length of the thin lens. The distortion contribution depends
on the shape of the thin lens in addition to its focal length and refractive index.
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Lenses in Which Stop Position
Is a Degree of Freedom

It is obvious that, depending on its position in a lens system, a stop selects some
rays from an oblique pencil and rejects others. Thus, if the stop is moved along the
axis (or for that matter, if it is displaced sideways, but that case will not be consid-
ered here), some of the former useful rays will be excluded while other previously
rejected rays are now included in the image-forming beam. Consequently, unless
the lens happens to be perfect, a longitudinal stop shift changes all the oblique
aberrations in a lens. It will not affect the axial aberrations provided the aperture
diameter is changed as necessary to maintain a constant f~number.

12.1 THE H' - L PLOT

The results of a stop shift can be readily studied by tracing a number of
meridional rays at some given obliquity through the lens, and plotting a graph con-
necting the intersection length L of each ray from the front lens vertex as an
abscissa, with the intersection height H’ of that ray at the paraxial image plane
as ordinate. This graph (Figure 12.1a) is similar to the meridional ray plot in
Figure 8.7 discussed in Section 8.2, except that the abscissas have reversed signs,
so that the upper rim ray of the beam now appears at the left end of the graph while
the lower rim ray falls at the right, as illustrated in Figure 12.1b. Locating a stop in
any position selects a portion of the graph and rejects the rest of it. The ray passing
though the center of the stop is, of course, the principal ray of the useful beam.

Figure 12.1b shows the lens with the stop in front. The dashed line extending
from the top of the stop to the plot in Figure 12.1a indicates the height of the prin-
cipal ray in the Gaussian image plane. The diameter of the beam of light from the
left is limited by the stop. If the obliquity angle is increased, it is evident that the
lower rim ray is determined by the stop while the upper rim ray will be vignetted
by the top of the lens. The outer vertical dashed lines from the axial crossing
points of the upper and lower rim rays bound the portion of the ' — L plot that
corresponds to the aforementioned meridional ray fan plot. Assuming that the
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Figure 12.1 A typical H' — L graph for a meniscus lens.

stop, having diameter D, is limiting the beam diameter at the obliquity 6 under
study, the distance along the axis having intersections with the upper and lower
rays defining the beam is simply D/tan 6. In Figure 12.1 these axial intersections
are shown by the vertical dashed lines. This distance is centered on the principal
ray intersection.

This graph tells us a great deal about the aberrations in the image and how
they will be changed when the stop is shifted along the axis. It should be under-
stood that this technique can be used with a lens of any complexity, not just a
simple singlet. Let us now explore how to interpret H' — L plots.

12.1.1 Distortion

The height of the graph at the principal-ray point above or below the
Lagrangian image height is a direct measure of the distortion. As shown in
Figure 12.1a, the principal-ray point is below the Lagrangian image height
which means the distortion is negative.

12.1.2 Tangential Field Curvature

The first derivative or slope of the graph at the principal-ray point is a mea-
sure of the sag of the tangential field Z/, a quantity that is ordinarily determined
by the Coddington equations. If the slope is upward from left to right it
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indicates an inward-curving field because the upper rim ray strikes the image
plane lower than the lower rim ray. Conversely, if the slope is downward from
left to right, it indicates a backward-curving field because the upper rim ray
strikes the image plane higher than the lower rim ray. A graph that is horizontal
at the principal-ray point indicates a flat tangential field.

12.1.3 Coma

The second derivative or curvature of the graph at the principal-ray point is a
measure of the tangential coma present in the lens. If the ends of the portion of the
graph used are above the principal ray, this indicates positive coma. The coma is
clearly zero at a point of inflection where the graph is momentarily a straight line.
It is possible that a stop position can be found where both the slope and the curvature
are zero; however, this requires that spherical aberration be present.

12.1.4 Spherical Aberration

The presence of spherical aberration is indicated by a cubic or S-shaped curve,
undercorrection giving a graph in which the line joining the ends of the curve is more
uphill than the tangent line at the principal-ray point. If the line joining the ends of
the curve is more downhill, then the spherical aberration is overcorrected.

All of these phenomena are illustrated in the typical H' — L graph shown in
Figure 12.1. If the principal ray falls at A, the field will be drastically inward-
curving. At B the field is flat but there is strong negative coma. At C the coma
is zero but the field is now backward-curving. At D the field is once more flat
but now the coma is positive, while at E the field is once more drastically
inward-curving. The overall S shape of the curve indicates the presence of con-
siderable undercorrected spherical aberration.

Thus we reach the important conclusion that we can eliminate coma by a
suitable choice of stop position if there is spherical aberration present; indeed,
this result is implicit in the OSC formulas in Section 9.3. Furthermore, we can
flatten the tangential field by a suitable choice of stop position if there is a suf-
ficiently large amount of coma or spherical aberration or both. In terms of the
primary or Seidel aberrations, these conclusions are in agreement with the stop-
shift formulas given in Eq. (11-15) in Section 11.7.2.

12.2 SIMPLE LANDSCAPE LENSES

It is instructive to plot the 20° H' — L curves for a single lens bent into a vari-
ety of shapes, as in Figure 12.2. The focal length is everywhere 10.0, the thick-
ness 0.15, and the refractive index 1.523. In these graphs the abscissa values
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Figure 12.2 Bending a meniscus lens (20°). The abscissa value is measured from the anterior
principal point in each case.

are measured from the front or anterior principal point in each case. The refer-
ence point for the parameter L can be the vertex of the first lens surface, the
anterior principal point, or any other point the designer may select. In curve
(a) the lens is shown bent into a strongly meniscus shape, concave to the front
where parallel light enters. There is a large amount of spherical undercorrection,
leading to an S-shaped cubic curve, and the interesting region containing the
maximum, inflection, and minimum points lies close to the lens. Placing the stop
at the location denoted by a “tick mark” on the H' — L plot results in a flat tan-
gential field (slope is zero) and no coma (zero curvature or inflection point). The
distortion is negative since the Gaussian image height is 3.64.
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In curve (b) of Figure 12.2, the lens is bent into such a weak meniscus shape
that there is very little spherical aberration, with no maxima or minima. With
the stop at the tick mark, the astigmatism is inward curving and the coma is
positive. In curve (c) of the figure, a plano-convex lens with its curved face to
the front is shown. There is now no coma and very little spherical aberration
so that the curve is practically a straight line. The tangential astigmatic field is
strongly inward curving. In the remaining graphs the lens is a meniscus with a
convex side to the front, and now the interesting region has moved behind the
lens, still on the concave side of the lens. Curve (d) in Figure 12.2 shows spheri-
cal aberration with no coma (inflection point) and some inward curving tangen-
tial astigmatic field. The final curve is for a stronger bending and shows stronger
spherical aberration and a slight inward curving field. It will be noticed that all
the graphs have about the same slope at L = 0. This bears out the well-known
fact that any reasonably thin lens with a stop in contact has a fixed amount of
inward-curving field independent of the structure of the lens.

As a simple meniscus lens has only two degrees of freedom, namely, the lens
bending and the stop position, it is clear that only two aberrations can be cor-
rected. Invariably the two aberrations chosen are coma and tangential field cur-
vature. The axial aberrations, spherical and chromatic, can be reduced as far as
necessary by stopping the lens down to a small aperture; f/15 is common although
some cameras with short focal lengths have been opened up as far as f/11.
The remaining aberrations, lateral color, distortion, and Petzval sum, must be
tolerated since there is no way to correct them in such a simple lens. Changes in
thickness and refractive index have very little effect on the aberrations.

DESIGNER NOTE

In designing a landscape lens, one should choose a bending such that the H' — L curve
is a horizontal line at the inflection point. This will ensure that the coma is corrected
and the tangential field will be flat at whatever field angle was chosen for plotting
the H' — L curve. Of course, the field may turn in or out at other obliquities.

12.2.1 Simple Rear Landscape Lenses

To meet the specified conditions, it is found that by interpolating between the
examples shown in Figure 12.2 for a simple rear landscape lens, a front surface
curvature of about —0.28 is required. With the thickness and refractive index used
here, there is very little latitude. Solving the rear curvature to give a focal length
of 10.0, we arrive at the 25° H' — L curve shown in Figure 12.3. This curve indi-
cates that the stop must be at B, a distance of 1.40 in front of the lens. At f/15 the
stop diameter will be 0.667, and to cover a field of up to 30° the lens diameter
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Figure 12.3 The H' — L graph of a rear meniscus lens having a flat coma-free field (25°).

must be about 1.80. Actually, because of excessive astigmatism, it is unlikely that
this lens would be usable beyond about 25° from the axis. The lens system is

¢ d n
—0.28
0.15 1.523
—0.4645

with 7 = 10.0003, /’ = 10.1445, LA’ (f/15) = -0.2725, and Petzval sum = 0.0634.
The astigmatism is shown in Figure 12.4 and has the values presented in Table 12.1.

If a flatter form were used, the spherical aberration would be slightly reduced
and the tangential field would be inward curving. This would reduce the astig-
matism, but the sagittal field is already seriously inward curving and flattening
the lens would make it even worse. It therefore appears that the present design is
about as good as could be expected with such a simple lens.
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Figure 12.4 Astigmatism of a simple rear meniscus lens. The sagittal field is the solid curve
and the tangential field is the dashed curve.
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Table 12.1

Astigmatism and Distortion for Lens Shown in Figure 12.4

Field (deg) X! X Distortion (%)
30 —0.584 0.044 —3.34
20 —0.260 0.003 —1.41

For a second example, consider a similar lens having a focal length of 10,
operating at f/10, and a 20° semi-field-of-view. Since the f~number is signifi-
cantly lower (larger aperture) than in the prior example, we increase the lens
thickness to 0.40 to maintain reasonable thickness at the trim diameter. Using
Eqgs. (4-6) and (4-8), with the entrance pupil coordinate p being a tenth of the
pupil radius (same as stop in this case), we have real-ray definitions for astigma-
tism and coma. Using these equations for defect optimization in a lens design
program produced the following design.

c d n
—0.192009
0.40 1.523
—0.373366

This lens is a bit flatter as a consequence of the somewhat smaller field
of view and lower f-number. The stop to first vertex distance is 1.592 or about
14% greater than for the prior case. The Seidel coefficients are o; = —0.002047,
g, = 0.000000, g3 = —0.000659, o4 = 0.002063, and o5 = —0.007043. The pri-
mary tangential astigmatism is 303 + o4 = 0.000086 or essentially flat, while
the sagittal astigmatism remains the same as the preceding lens. However, the
distortion increases to —1.9% from —1.4% for the previous lens.

12.2.2 A Simple Front Landscape Lens

Quite by chance, the curve for lens (e) in Figure 12.2 has a horizontal inflec-
tion, and it therefore meets the requirements for a landscape lens. Its structure is

¢ d n
0.7675
0.15 1.523
0.60

with /" =9.99918, 1’ =9.60387, LA’ (f715) =-0.4729, stop distance = 0.8641, stop
diameter = 0.5830, and Petzval sum = 0.0575. The results are shown in Table 12.2.
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Table 12.2

Astigmatism and Distortion for Lens Shown in Figure 12.5

Field (deg) Z! A Distortion (%)
30 —0.603 +0.074 +3.50
20 —0.246 +0.005 +1.41

The lens diameter should be about 1.6 (Figure 12.5) so that the lens will not
vignette the rays entering at the maximum obliquity. Note that the surfaces on this
lens are much stronger than those of the rear meniscus and the aberration residuals
are generally worse. The spherical aberration particularly is much greater than in
the system shown in Figure 12.4. Nevertheless, front landscape lenses are usually
preferred because the camera can then be made shorter for the same focal length,
and the large front lens acts as an effective shield to prevent the entry of dirt into
the shutter mechanism. In an effort to reduce the spherical aberration a flatter lens
is often employed, but the resulting inward-curving field must then be offset in part
by the use of a cylindrically curved film gate. The compensation is not very good,
however, because a cylinder does not fit very well on a spherically curved image.

30° -

-0.5 0

Figure 12.5 Astigmatism of a front-meniscus lens. The sagittal field is the solid curve and the
tangential field is the dashed curve.

DESIGNER NOTE

It is worth noting that the remaining spherical and chromatic aberration residuals in a
simple landscape lens have the effect of greatly increasing the depth of field, so that if
the film is correctly located relative to the lens, any object from, say, 6 ft to infinity will
be sharply imaged on the film in some particular wavelength and some particular lens
zone. The other wavelengths and other zones will be more or less out of focus. Thus we
have a sharp image superposed on a slightly blurred image of objects at all distances
(within limits), and if the exposure is kept on the short side, very acceptable photographs
can be obtained without the necessity for any focusing mechanism on the camera.
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12.3 A PERISCOPIC LENS

It was found empirically very early in the development of photography that
placing two identical landscape lenses symmetrically about a central stop
removed the distortion and lateral color thereby giving a better image than
could be obtained by the use of a simple meniscus lens alone. Such a lens was
called periscopic.

To design the rear half of a symmetrical lens, we assume that there will be
parallel light in the stop space, and now we can evidently ignore coma since it
will be corrected automatically by the symmetry (in at least a single zone).
Therefore we have to consider only the tangential field curvature, and by the
H’ — L curve we can select a stop position to flatten the field, provided the lens
bending is equal to or stronger than that used for a landscape lens, but we can-
not use stop position to flatten the field if the bending is weaker than that of a
landscape lens. This is because the H' — L curve doesn’t contain a place where
the slope is zero. Also, the steeper the bending the closer the stop will be to
the lens, resulting in a more compact system.

Using the thickness and refractive index employed in our previous designs,

we will try a rear-meniscus lens with ¢; = —0.8. The structure is
¢ d n
—0.8
0.15 1.523
—0.95198

with /" = 9.99975, I’ = 10.41182. The H' — L curve for a 20° obliquity is shown
in Figure 12.6.

This graph tells us that our lens will have a flat tangential field if the stop is
placed at a distance of —0.85 or —0.23 from the front lens surface. Naturally,
we choose the nearer position, and we mount two similar lenses about a central
stop located 0.23 from each of the facing surface vertices. The focal length now

H

3.60

1 1 1 1 1 1 1 L
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Figure 12.6 The H' — L curve of the rear component of a periscopic lens (20°).
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drops to 5.3874, and so we scale up the combined system to a focal length of
10 (scale factor = 10/5.3874; remember that the radius is scaled by this value,
not the curvature). The resulting system is shown in Figure 12.7a.

c d n
0.51287
0.278 1.523
0.431
0.427
0.427
—0.431
0.278 1.523
—0.51287
20° + 1
1
1
. i ‘
I
!
10°
1 1 1 1 1
-0.4 0
(a)
i
20° | }
|
I
B |
10°
-0.4 0
(b)

Figure 12.7 Two periscopic designs. The sagittal field is the solid curve and the tangential field
is the dashed curve.
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Table 12.3

Astigmatism and Distortion for Lens Shown in Figure 12.7a

Field (deg) Z! A Distortion (%)

19.8 —0.231 +0.019 +0.04

with [/ = 10.00414, [/’ = 9.32841, stop diameter (f/15) = 0.620, LA’ (f/15) =
—-0.2959, Petzval sum = 0.0562. Astigmatism and distortion are presented in
Table 12.3.

The spherical aberration and field curvature calculated here are for parallel
light entering the left-hand end of the system, but it was designed on the assump-
tion that there would be parallel light in the stop. It is actually rather surprising
that the aberrations for a distant object resemble so closely the aberrations of
the rear half alone. It is clear from examination of Figure 12.7a that the tangen-
tial field is slightly too far backward, and it is therefore desirable to reduce the
central air space slightly to flatten the field. Also, the scaling-up process has made
the lens elements unnecessarily thick, and it would be worth going back to the
beginning and redesigning the system with much thinner lenses.

It is of interest to compare this design with the original Steinheil “Periskop”
lens, which was of this type. According to von Rohr,' the specification was

¢ d n
0.5645
0.1316 1.5233
0.4749
0.6484
0.6484
—0.4749
0.1316 1.5233
—0.5645

with /' = 10, I’ = 9.2035, stop diameter (f7/15) = 0.627, LA’ (f/15) = —0.355,
Petzval sum = 0.0615. Table 12.4 presents the astigmatism and distortion. The
modified lens is shown in Figure 12.7b.

Table 12.4

Astigmatism and Distortion for Lens Shown in Figure 12.7b

Field (deg) Z! Z| Distortion (%)

234 —0.364 —0.010 —+0.07
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12.4 ACHROMATIC LANDSCAPE LENSES
12.4.1 The Chevalier Type

In this type, a flint-in-front lens of slightly meniscus shape is used, with stop
in front and the concave side facing the distant object.
As an example we will use the following glasses:

(a) Flint: n; = 1.62360, V' = 36.75, An = 0.01697
(b) Crown: n; = 1.52122, V' = 62.72, An = 0.00831

For a focal length of 10, we find using Eq. (5-4)
¢, =—0.2269, ¢, =+0.4634

Assuming an equiconcave flint as a starter and establishing suitable thick-
nesses (actually those used here were too thick), we solve the last radius by
the D — d method and find the focal length to be 10.515. After scaling down
to a focal length of 10 we have

c d n
—0.1189
0.28 1.62360
0.1189

0.56 1.52122
—0.3424

with f/ = 10.00, ' = 10.4510, LA’ (f/15) = -0.162, Petzval sum = 0.0667.

We next trace a set of oblique rays through the upper half of the lens at 20°
to locate the stop position for zero coma (Figure 12.8). This gives the values
shown in the table on the next page.

H

3.58

3.57

3.56 1 1 1 1 1 1 1 L

Figure 12.8 The H’ - L curve of a Chevalier achromat (20°).
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L H

0 3.579278
-1.0 3.566382
-2.0 3.577830
-3.0 3.576493
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The inflection point of this graph is at L = —1.67, and because the graph is
S-shaped, the tangential field will obviously be backward-curving (see Section
12.1.2). Performing Coddington traces at several obliquities produces data for
Figure 12.9 (see Table 12.5).

Unfortunately, it is not possible to flatten the tangential field in a lens of this
type at the same time as eliminating the coma. The concave front face and
the dispersive interface both contribute overcorrected astigmatism of about
the same amount, and bending the lens merely increases one contribution while
reducing the other. Using modern barium crown glass with a flint of the same
index, one could make an achromatic lens that would behave like a simple land-
scape lens so far as the monochromatic aberrations are concerned, with the
interface then being merely a buried surface. Another possibility is to depart

30° -
////
7
200 L // |
/
/
/
/
//
10° | / |
!
1
1
I
-0.5 0 0.5 1 1.5

Figure 12.9 Astigmatism of a Chevalier achromat. The sagittal field is the solid curve and the
tangential field is the dashed curve.

Table 12.5

Astigmatism and Distortion for Lens Shown in Figure 12.9

Field (deg) X! X{ Distortion (%)
30 —0.341 1.325 —4.18
20 —0.134 0.394 —1.84

10 —0.043 0.079 —0.46
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from strict achromatism by weakening the cemented interface, but the high cost
of such a lens over that of a single element would be scarcely justified.

12.4.2 The Grubb Type

In 1857 Thomas Grubb” made a lens that he called the aplanat, consisting of
a meniscus-shaped crown-in-front achromat. The spherical aberration was vir-
tually corrected by the strong cemented interface, and as a result the user had
to accept either the coma or the field curvature since both could not be cor-
rected together. The Grubb lens eventually led to the “Rapid Rectilinear”
design discussed in Section 12.5.1.

12.4.3 A”New Achromat” Landscape Lens

Since the cemented interface in the “old” Chevalier achromat has the effect
of overcorrecting the astigmatism at high obliquities, it is evident that we could
reverse the effect if we were to use a crown glass of higher refractive index than
the flint glass (a “new achromat”). Furthermore, this combination of refractive
indices has the effect of reducing the Petzval sum, but it will be accompanied by
a large increase in the spherical aberration.

The design procedure for a new achromat is entirely different from that for
an old achromat, because now we leave the achromatizing to the end and solve
the outside radii of curvature for Petzval sum and focal length. We select refrac-
tive indices such that there are a variety of dispersive powers available for
achromatizing after the design is completed. Two typical refractive indices
meeting this requirement are

(a) Flint: 1.5348 (available V" numbers from 45.7 to 48.7)
(b) Crown: 1.6156 (available ' numbers from 54.9 to 58.8)

As a first guess we will aim for a Petzval sum of 0.03 on a focal length of 10. We
must also guess at a likely interface radius and lens thicknesses. This gives the
following as a starting system.

c d n
—0.551
0.1 1.5348
0.164
0.4 1.6156

—0.5687




12.4 Achromatic Landscape Lenses 337

with /7 = 9.9998, I’ = 10.8865, Petzval sum = 0.030. The large thickness helps
to reduce the Petzval sum without using very strong elements (see “A Thick
Meniscus” in Section 11.2.2).

In plotting the H' — L graph, we use a larger obliquity angle than before
because new achromats tend to cover an exceptionally wide field. The graph
shown in Figure 12.10 represents the curve for 25°, and we see that the inflection
falls at L = —0.326. The astigmatic field curves are also shown and indicate that
they suffer higher-order astigmatic and Petzval terms. As was mentioned in
Section 11.2.1, the longitudinal distance from the Petzval surface to the tangen-
tial focal line is three times as great as the corresponding sagittal astigmatism
when considering primary (Seidel) aberrations.

In a like manner, when the secondary or fifth-order Petzval occurs, the
longitudinal distance from the secondary Petzval surface to the tangential
focal line is five times as great as the corresponding sagittal astigmatism.>*>
The field focus locations can be written as

z, = [(34ST3 + PTZ3)H? + (SAST5 + PTZ5)H*| Ju'

40° ,/
/
- /
/
//
30° b ;
!
- ! |
20°
I
- I I
|
10° -
0 L1 11 | |
-05 0 05

Figure 12.10 Tentative design of a new-achromat lens. The sagittal field is the solid curve and
the tangential field is the dashed curve.
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and

2y = [(AST3 + PTZ3)H* + (AST5 + PTZS)H'] Ju'.

It is evident that the collective interface should be made stronger to move the
field inward, and a smaller Petzval sum would also be desirable. Hence for our
next attempt we try ¢, = 0.25 and Petzval sum = 0.027. The changes listed in the
following table give the system that is shown in Figure 12.11.

c d n
—0.5777
0.1 1.5348
0.25
0.4 1.6156
—0.57795

with f7 = 9.99996, I’ = 10.91516, Petzval sum = 0.027, LA' (f/15) = -0.50,
and stop position = —0.102. The astigmatic and distortion behavior are shown
in Table 12.6.

Assuming that this is acceptable, the last step is the selection of real glasses
for achromatism. A few trials, using the D — d method, indicate that the follow-
ing Schott glasses would be excellent:

(a) LLF1: n, = 1.55099, An = 0.01198, V = 45.47
(b) N-SK4: n, = 1.61521, An = 0.01046, V' = 58.37

40° b -

T
~<

20°

-0.5 0 0.5 1.0

Figure 12.11 Astigmatism of a new achromat, later form. The sagittal field is the solid curve
and the tangential field is the dashed curve.
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Table 12.6

Astigmatism and Distortion for Lens Shown in Figure 12.11

Field (deg) Z! A Distortion (%)
40 —0.075 0.869 -9.23
30 —0.207 0.027 —4.68
20 —0.130 —0.083 —2.04
10 —0.041 —0.041 —0.46

Of course, the design should be finalized using these specific glasses since the
n, and V values are a bit different.

It is perhaps not obvious which of these two designs would be the better.
For a narrow field such as +22°, the lens in Figure 12.10 is to be preferred,
while for a wider field such as +33° the lens in Figure 12.11 would obviously
be better. It is interesting to see how the small changes in the design have made
such a large difference to the tangential field at the wider field angles.

The large spherical aberration is a definite disadvantage of the new-achromat
form. This was corrected by Paul Rudolph in his Protar design which will be
discussed in Section 14.4.

12.5 ACHROMATIC DOUBLE LENSES
12.5.1 The Rapid Rectilinear

The Rapid Rectilinear, or aplanat lens is one of the most popular photo-
graphic lenses ever made. The lens is symmetrical, and the rear half is spheri-
cally corrected and has a flat field. In order to keep the lens compact, a large
amount of positive coma is required in the rear component. This implies that
a graph of spherical aberration against bending should rise high above the zero
line, much higher than is usual for telescope objectives. To achieve this, the
difference between the old-type crown and flint glasses should be small, but a
large index difference is helpful. The exact ¥ difference depends on the aperture
and field required. For a normal lens of f/6 or f/8 aperture, a V difference of
about 7.0 is satisfactory. A smaller V" difference can be used for a wide-angle
lens of f716 aperture, while a larger V difference leads to a longer lens of higher
aperture, suitable for portraiture applications.

All three of these variations have been used by different manufacturers.
At first, two flint glasses were utilized, but after about 1890 it was common to
find an ordinary crown in combination with a light barium flint (see “A New-
Achromat Combination” in Section 11.2.2).
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Figure 12.12 Bending curve for the rear component of a Rapid Rectilinear.

To initiate the design procedure, we will select the following glasses:

(a) Light Flint: n, = 1.57628, An = np— nc = 0.01343, V' = 4291
(b) Flint: n, = 1.63003, An = ng— nc = 0.01756, V' = 35.87

The Abbe number difference is V,, — V;, = 7.04. In designing the rear compo-
nent, the procedure already described for telescope doublets is followed, except
that because of the strongly meniscus shape of the lenses, the preliminary G-sum
analysis is not very helpful and will be omitted.

Using these glasses for a focal length of 10, the (c,, c;) formulas give,

¢q = 1.0577, c¢,= —0.8089

Assuming that ¢; will be about one-half ¢, with negative sign, we make a draw-
ing of the lens at a diameter of about one-tenth the focal length, enabling us to
set the thicknesses at 0.3 for the crown and 0.1 for the flint.

Taking a few bendings and solving each for perfect achromatism by the D — d
method on a traced f/16 ray, we can plot the graph in Figure 12.12. Recalling
Figures 7.2 and 9.4, it should be evident that we want to select a value for ¢; in the
neighborhood of the left-hand solution, where the coma is positive; the stop position
will be in front of the rear component. The right-hand solution with negative coma is
useless since it would require the stop to be behind the lens to flatten the field. Since
this is a photographic lens, we desire a small amount of spherical overcorrection
to offset the zonal undercorrection shown in Figure 12.13a, which suggests that
we try ¢; = 0.5 for further study.

This lens has a focal length of 10.806, LA;, = +0.026, and LZA =-0.0178. To
find the stop position for a flat tangential field, we plot the H' — L graph at 20° for
a succession of L values as illustrated in Figure 12.13b. Remember that such plots
are easily generated using an optical design program by filling the lens aperture
(assuming the lens is the temporary stop) with meridional rays and then viewing
the tangential ray fan plot for that obliquity. As already stated, the abscissa is
reversed between the two plots. We now observe that the minimum point falls at
L =-0.2, which is the distance from the stop to the front (concave) surface.

We now assemble two of these lenses together about a central stop, as illu-
strated in Figure 12.14a, and find that the focal length is 5.6676. It is best to
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scale this immediately to a focal length of 10.0, yielding the prescription in the
following table.

c d n
0.3974
0.1764 1.63003
0.8828
0.5293 1.57628
0.2834
0.3529
0.3529
—0.2834
0.5293 1.57628
—0.8828
0.1764 1.63003
—0.3974
M H
v 3.587 -
3.586
3.585 -
A
P L L ! 3.584 L L L L L
-0.02 0 0.02 0.04 -0.3 -0.2 -0.1 0
(a) (b)

Figure 12.13 Aberrations of the rear component of a Rapid Rectilinear: (a) spherical aberra-
tion; (b) the H' — L curve at 20° obliquity.
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Figure 12.14 The final Rapid Rectilinear design: (a) layout; (b) longitudinal spherical aberra-
tion; (c) astigmatic field curves where the sagittal field is the solid curve and the tangential field
is the dashed curve.
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In the table at the top of 341, we have f’ = 10.00, // = 9.0658, lens diameter =
1.8, and Petzval sum = 0.0630. The f/8 axial ray from infinity gives LA' =
0.0350, and it also tells us that the f/8 stop diameter must be 1.110. An f/11.3
zonal ray gives LZA = —0.0108, enabling us to plot the spherical aberration
graph in Figure 12.14b.

To plot the fields, we now add two other principal rays having slope angles in
the stop space of 28° and 12°, respectively. The principal-ray slope angles in the
stop space between the lenses are generally somewhat different than the entering
or outside slope angle (see Section 12.5.2). The sagittal and tangential fields
traced along these principal rays are shown in Table 12.7.

The fields are plotted in Figure 12.14c and closely resemble those of the rear
half-system. Both the spherical aberration and the astigmatism are thus very
stable in this type of lens for changes in the object distance, which was one of
the reasons for its great popularity.

Table 12.7

Astigmatism and Distortion for Lens Shown in Figure 12.14a

Outside angle (deg) Angle at stop (deg) Z! A Distortion (%)
24.4 28 —0.3411 0.2050 0.09
17.5 20 —0.2013 0.0044 0.04
10.6 12 —0.0789 —0.0196 0.01

12.5.2. A Flint-in-Front Symmetrical Achromatic
Doublet

There is, of course, a companion system to the Rapid Rectilinear in which
the rear component is a flint-in-front spherically corrected achromat. To design
such a lens we may use the same glasses as for the Rapid Rectilinear, and we
plot a graph of spherical aberration at f/16 against bending, of course in the
region of the left-hand solution where the coma is positive (Figure 12.15).
For each plotted point the last radius is solved for strict achromatism by the
D — d method, and the curvatures are scaled to a focal length of 10, keeping
the thicknesses at 0.1 and 0.3 as before.

We recall that when we were designing a telescope objective, we found that
the left-hand solution for a flint-in-front doublet has a much smaller zonal
residual than the left-hand crown-in-front doublet (Section 7.2). Consequently
we shall plan the present design to be a “portrait” lens with an aperture of
f74.5 and covering a somewhat narrower field than the Rapid Rectilinear.
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Figure 12.15 Spherical aberration vs. bending for a flint-in-front doublet.

The rear half of the new lens will therefore have to work at f/9, and since the
graph in Figure 12.15 represents the f/16 aberration, we must select a bending
having a small residual of undercorrected aberration, at say ¢; = —0.11. This
gives the following rear half-system:

¢ d n
—0.11
0.1 1.63003
0.69
0.3 1.57628
(D -d) —0.3489

with /" = 10.0542, I’ = 10.3008, Petzval sum = 0.0706, LA’ ( f/9) = —0.0336, LA’
(f/11.4) = -0.0365, and LA’ (f716) = —0.0254. The residual aberration at f/9 was
deliberately made negative since it was found that mounting two similar compo-
nents about a central stop tended to overcorrect the aberration. The last radius
was determined, of course, by the D — d method as usual.

To locate the stop, we trace several rays at 20° giving the H' — L curve
shown in Figure 12.16. The minimum falls at L = —-0.50 for a flat tangential
field. Mounting two of these lenses about a central stop as depicted in
Figure 12.17 and scaling to f/ = 10 gives the prescription shown in the table
on the next page.
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c d n
0.19450
0.5382 1.57628
—0.38462
0.1794 1.63003
0.06132
0.8970
0.8970
—0.06132
0.1794 1.63003
0.38462
0.5382 1.57628
—0.19450

with /7 = 10.0, /' = 8.4795, Petzval sum = 0.0787, LA' (f/4.5) = +0.0181, and
LA (f15.6) = —0.0069. The astigmatism and distortion are shown in Table 12.8.
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Figure 12.16 The H' — L graph of the rear component of a flint-in-front double lens (20°).
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Figure 12.17 Completed f/4.5 symmetrical portrait lens.
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Table 12.8

Astigmatism and Distortion for Lens Shown in Figure 12.17

Angle in object space Angle in stop Z; Z{ Distortion (%)
24.956° 28° —0.496 +0.543 +0.21
17.925° 20° —0.294 —0.021 +0.10
10.798° 12° —-0.115 —0.055 +0.03

Plotting the fields and aberrations of this lens makes an interesting compari-
son with the comparable data for the Rapid Rectilinear (Figure 12.18). The rea-
sons for regarding this as a portrait lens are evident.

As a final check, we will trace a family of rays at 17.925° to complement the
20° principal ray already traced, and we plot the (H — tan U) curve shown in
Figure 12.19. As mentioned previously, the slope angle of the entering oblique
bundle of parallel rays is slightly different than slope angle in the space between
the lenses. The ends of this curve represent rays passing through the extreme
top and bottom of the diaphragm, and as can be seen, the lower ray is very
bad and should be vignetted off. It is customary in lenses of this kind to limit
every surface to a clear aperture equal to the entering aperture of the marginal
ray, which in this case is ¥ = 1.1111. This limitation cuts off the lower rays
drastically, placing the true lower rim ray at the point marked L on the graph
in Figure 12.19 and the lens drawing in Figure 12.17. It also somewhat reduces
the upper part of the aperture to a limiting rim ray marked U in both figures.

It is clear that the remaining aberration of the lens is a small residual of neg-
ative coma (see Eq. (4-8)) of magnitude

Coma, = 3 (Hy, + H)—H,, = —0.0182
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Figure 12.18 Comparison of Rapid Rectilinear (a) flint-in-front and (b) crown-in-front forms.
(Spherical aberration and astigmatism curves for f/ = 10.) The sagittal field is indicated by the
solid curve and the tangential field is indicated by the dashed curve.



346 Lenses in Which Stop Position Is a Degree of Freedom

H
Principal ray
3.25 y
/\e ’/9
- UR
B /
3.20 / U
/
/
/
/
/
3.15 /
/
1
I
[
I
310 &, p
1 1 1 1 1 - tan U’
-0.4 -0.3 -0.2

Figure 12.19 The meridional ray plot for the final system at 17.9° field angle.

Assuming that the sagittal coma is one-third the tangential coma, the equivalent
OSC becomes —0.00096, which is small enough to be neglected, especially since a
lens of this type is unlikely to be used at a field as wide as 17.9°. See Sections
4.3.4 and 9.3.

Although we have regarded this as a portrait lens, it has seldom been used in
this way, but it could very well be used at or near unit magnification as a relay
lens in a telescope, in which case the coma and distortion would automatically
vanish due to symmetry (Section 11.6).

12.5.3 Long Telescopic Relay Lenses

In many types of telescopes and periscopes, an erector system working at or
near unit magnification is inserted between the objective and eyepiece to give an
erect image. This erector often consists of two identical spherically corrected
doublets mounted symmetrically about a central stop, the stop position being
chosen to give a flat field exactly as in the Rapid Rectilinear lens, except that
now we often need a long system rather than a short one.

As was pointed out in connection with the design of the Rapid Rectilinear in
the beginning of Section 12.5.1, the greater the amount of coma in the rear lens
the smaller the stop shift required to give a flat tangential field, and the shorter
the relay will be. For a long relay, we therefore need a spherically corrected lens
with a very small amount of coma, and hence we select a design in which the
graph of spherical aberration against bending rises only a little way above the
abscissa line. Furthermore, whatever lens we use for the rear component of
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our relay must have positive coma in order that the flat-field stop position will
be in front of the lens.

Referring to the bending curve in Section 9.3.5 for a normal cemented dou-
blet, we see that the left-hand solution has positive coma, and it is therefore suit-
able for the rear of a telescopic relay. We locate the stop position for a flat field
as we did for the Rapid Rectilinear by tracing several oblique parallel rays
through the upper half of the lens, a suitable obliquity being now about 4°.
The left-hand flint-in-front solution is much preferable to the crown-in-front
form since it has only about a third of the zonal aberration, and we will con-
tinue with that design here. The graph connecting H’ with L for this lens is
shown in Figure 12.20, and since the minimum falls at L = -3.2, that will be
the stop position in this case. The computed astigmatism at 4° when the stop
is at that position is found to be Z, = -0.0117 and X{ = +0.0006, representing
the desired flat tangential field. Figure 12.21 shows that two of these lenses
mounted together about a central stop would make an excellent relay.

If a still longer relay is required, the spherical aberration graph must be low-
ered still further, and the left-hand solution for the near aplanat discussed in
Section 10.3 can be used. In this case the stop position, calculated at a very
small obliquity such as 2°, falls at a distance of 9.2 in front of the lens which
is close to the anterior focal point thereby making the system nearly telecentric
in the image space. The combination of two such systems forms a 1:1 afocal
telecentric relay, which has been used in contour projectors to give a longer
working distance, and in borescopes, where up to four relays can be assembled
in sequence without any need for field lenses at the intermediate real images.

H
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1 0
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Figure 12.20 The H' — L curve of a flint-in-front telescope objective at 4° obliquity.

Figure 12.21 A 1:1 telescopic relay consisting of two flint-in-front objectives with a stop at the
flat-field position.
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This is important since, when a field lens is employed, it must have positive
power and will adversely impact the field curvature.

The main relay in a submarine periscope consists of a pair of highly corrected
aplanatic objectives spaced apart by a distance equal to two or three times their
focal length, the field angle being then less than 1°. In this case the astigmatism
is negligible so long as the tangential field is flat. Coma is corrected by the sym-
metry in the usual way.

12.5.4 The Ross “Concentric” Lens

This is the classic example of a symmetrical objective consisting of two
deeply curved new achromats surrounding a central stop. It was patented by
Schroeder in 1889, with the structure of the rear half, after scaling to a focal
length of 10, according to von Rohr® as follows:

c d n vV
0.194 (air)
—1.94125
0.020 1.5366 48.69
0
0.071 1.6040 55.31
—1.78358

with /7 = 10, I’ = 10.5961, L,, = +0.6166, Petzval sum = -0.00618. The glasses
are assumed to be light flint No. 26 and dense barium crown No. 20 in Schott’s
catalog of 1886. The nearest "modern" Schott glass for No. 26 is LLF-6 and for
No. 20 is SK-8.

Tracing a fan of rays entering at —20° gives the H' — L curve shown in
Figure 12.22a. Clearly the stop position for a flat tangential field should be at
about L = —0.237 (point A), but von Rohr’s specification places it at B, where
L = —0.194, resulting in a slightly backward-curving field. (Incidentally, mea-
surements made on an actual Concentric lens did not agree with this specifica-
tion in any respect.) The front principal point is at C.

After combining two of these lenses together and scaling to a focal length of
10, the spherical aberration at f/15 was found to be an unacceptable value of
—0.65, so that the lens should not be used at any aperture greater than about
1720 (spherical aberration decreases to about —0.27; see Eq. (6-12)). The fields
with the preferred air space (0.868), and with that given by von Rohr (0.768),
are also shown in Figure 12.22b. The unusual backward-curving sagittal field
is, of course, due to the Petzval sum being negative. It is remarkable how great
an effect a small change in the central air space has on the two fields.
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Figure 12.22 Ross Concentric lens: (a) H' — L curve of rear half (20°) and (b) astigmatism of
complete lens, where the sagittal field is indicated by the solid curve and the tangential field by
the dashed curve.

ENDNOTES

' M. von Rohr, Theorie und Geschichte des Photographischen Objektivs, p. 288. Springer,
Berlin (1899).

2 T. Grubb, British Patent 2574 (1857).

* R. R. Shannon, The Art and Science of Optical Design, pp. 256-257. Cambridge University

Press, Cambridge (1997).

H. A. Buchdahl, An Introduction to Hamiltonian Optics, pp. 66, 132. Cambridge University

Press, Cambridge (1970).

5 H. A. Buchdahl, Optical Aberration Coefficients, p. 76, Dover, New York (1968). Using the
relationships between polar and nonpolar coefficients, Eqs. (31.8), it can be shown using
Eq. (41.21) that the secondary Petzval curvature is (Su;; — t10)/4-

¢ M. von Rohr, p. 234. Also see U.S. Patent 404,506.



This page intentionally left blank



Chapter 13

Symmetrical Double
Anastigmats with
Fixed Stop

13.1 THE DESIGN OF A DAGOR LENS

For 25 years after the introduction of the Rapid Rectilinear lens, designers
tried unsuccessfully to modify it in such a way as to reduce the Petzval sum,
and so remove the astigmatism that limited the performance of the Rectilinear
in the outer parts of the field. In 1892 the German designer von Hoegh' made
three useful suggestions to mitigate this limitation: (1) to insert a collective inter-
face convex to the stop in the flint element of the Rapid Rectilinear, thus turn-
ing the half-system from a doublet into a triplet; (2) to use progressively
increasing refractive indices outward from the stop; and (3) to use almost equal
outside radii of curvature and to thicken the lens sufficiently to give the desired
focal length and Petzval sum. In this way he created the famous “Double Anas-
tigmat Goerz,” later renamed the Dagor,> which covered a fairly wide anastig-
matic field at f/6.3. The symmetry, of course, automatically eliminated the
three transverse aberrations, leaving the designer only spherical and chromatic
aberrations and astigmatism to be corrected in each half.

As an example of the design of such a lens, we first select three refractive
indices for which there are many glasses available having different dispersive
powers, so that we can achromatize the lens at the end by choosing suitable
types of glass from available catalogues. These indices will be 1.517, 1.547,
and 1.617, although of course other values could have been chosen that would
be equally satisfactory. For a focal length of 10.0, we can start the design of
the rear half-system with the radii -1, —0.5, +2, and -1, suitable thicknesses
being determined from a scale drawing as 0.14, 0.06, and 0.19, respectively.
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These thicknesses are actually somewhat meager, but it is better to keep the
lens as thin as possible to reduce vignetting at high field angles. Since the stop
position will not be a degree of freedom, because we can correct all the
aberrations without its help, we place the stop as close as possible to the lens,
at a distance of 0.125, to minimize the diameter of the lens elements.

We shall employ the four radii in the rear component in the following
manner. First r is varied to give the desired Petzval sum after solving ry4 for
focal length. The two internal surfaces contribute very little to the sum since
the refractive index difference across these two surfaces is small. We find that
a suitable value for the Petzval sum in a lens of this type is about 0.018 for a
focal length of 10, which is about 0.2% of the focal length. Now r; is varied
to make the marginal spherical aberration approximately equal and opposite
to the 0.7 zonal aberration®; and we select r5 to give a flat tangential field on
a principal ray passing through the center of the stop at an angle of 30°.

With the tentative initial data given above, we find that for the focal length
and Petzval sum desired, ¢; must be —0.78 and ¢4 should equal —-0.7748. Our
starting system prescription is therefore as follows:

¢ d n

0.125 (air)
—0.78

0.14 1.517
-2.00

0.06 1.547

0.50

0.19 1.617

—0.7748

with /7 = 10.0, // = 11.057, Petzval sum = 0.0182, f/12.5 stop diameter = 0.8,
LA (f112.5) = 0.160, LZA (f717.7) = -0.150, X{ at 30° = —0.076.

A scale drawing of the lens is shown in Figure 13.1. By chance the spherical
aberration is about right and will be accepted. However, the 30° tangential field
is more inward-curving than we would like, so we proceed to reduce c; slightly,
a suitable value being 0.486. This gives X{ = —0.0056 and X, = —0.0686. Tracing
a few more principal rays at other obliquities enables us to plot the field curves
for the rear half of the system in the figure.

Regarding this as a satisfactory rear half, we now assemble two of these
lenses together and scale up to an overall focal length of 10.0. This gives the
following prescription for the front half with the rear half being symmetrical:
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c d n

0.4464

0.3304 1.617

—0.2795

0.1043 1.547
1.1502

0.2434 1.517
0.4486

0.2173
Stop (rear half symmetrical about stop)

with /" = 10.0, I’ = 9.2260, Petzval sum = 0.0211, f/6.8 stop diameter = 1.276,
LA (f16.8) = 0.0001, LZA (f79.6) = —0.1130. The spherical aberration is much
less overcorrected than for the half-system, and the strong interfaces could be

slightly deepened to rectify this.

40°

20

—_— —

101

-0.5 0 0.5

-02-01 0 01 02

Figure 13.1 Aberrations of rear half of a Dagor lens (/' = 10) with ¢z being 0.436.

It will be noticed that the zonal aberration here is greater than in the
corresponding Rapid Rectilinear lens; this is the major problem in lenses of
the Dagor type. The fields are shown plotted in Figure 13.2, and it will be seen
that they are not greatly different from those of the half-system. As should be
expected, there is a minute amount of distortion, about 0.13% at 30°, which

can be ignored.
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Figure 13.2 Aberrations of a complete Dagor (/' = 10).

The final step in the design is the selection of glasses for achromatism. We
return to the marginal ray trace through the rear half-system, and compute
the value of D — d in each of the three lens elements. At an aperture of f/12.5
these are, respectively, —0.27299, +0.50191, and —0.25560. Our problem is there-
fore to find three glasses with the approximate indices used in this design, hav-
ing An values such that Y (D — d) An = 0. A brief search in the Schott catalog
suggests that the following would make an achromatic combination:

(a) KF-3: n, = 1.51678, An = 0.00950, V, = 54.40
(b) KF-1: n, = 1.54294, An = 0.01079, V, = 50.65
(c) SK-6: n, = 1.61635, An = 0.01100, V, = 56.08

The refractive indices are close but not exactly equal to those assumed in the
design. It would therefore be necessary to repeat the whole procedure using
the exact index data for the real glasses, to obtain the final formula.

DESIGNER NOTE

This lens is a good example of how the lens designer can gain an understanding of
how specific parameters such as radii and thicknesses control the various aberrations.
It is unlikely that these parameters will be independent or orthogonal to one another,
but very often the coupling is relatively small. This is why the “doubling graphing”
technique used often in examples already presented illustrates reasonably linear behav-
ior. When the parameters are more tightly coupled or correlated, they behave in a
nonlinear manner such as will be seen in Figure 14.10.
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Although an automatic lens design program can design a Dagor-type lens, it is
an interesting exercise to set up the program to perform such a design and com-
pare the results with the manual method taught above. Quite often one will find
that the program will take an unexpected path toward a solution as it does not
have the inherent understanding of the lens designer. Frequently, the program
will attempt to use the thicknesses that are more than desired to control the aber-
rations, so in the early stages, it is typically a good idea to not allow the glass
thicknesses to vary and to appropriately limit the element spacings.

13.2 THE DESIGN OF AN AIR-SPACED
DIALYTE LENS

This name is given to symmetrical systems containing four separated lens ele-
ments, as illustrated in Figure 13.3. This type was originated by von Hoegh,*
who called it the “Double Anastigmat Goerz type B,” this name being later
changed to Celor. The rear separated achromat contains five degrees of free-
dom, namely, two powers, two bendings, and an air space, with which it is pos-
sible to obtain the desired focal length and correct four aberrations: Petzval
sum, spherical aberration, chromatic aberration, and astigmatism. If we then
mount two of these components symmetrically about a central stop, we correct
in addition the three transverse aberrations: coma, distortion, and lateral color.
The stop position is not a degree of freedom since we have sufficient variables
without it. However, as the lens will generally be used with a distant object,
we may have to depart slightly from perfect symmetry to remove any residuals
of coma that may appear.

We can save a good deal of time by first determining the two powers and the
separation of the rear component to yield the desired lens power, chromatic,
and Petzval values, assuming thin lenses and using the Seidel contribution for-
mulas given in Eq. (11-14), Section 11.7.2. The thin-lens predesign requires

A
VULV

Figure 13.3 The dialyte objective.
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solution of the following three equations for ¢, ¢, and d-

Zy(b = yﬂd)a +Yb¢b = 0y, (pOWGI‘) (13-1)
f b
o (1 !
Z; — (n_a) ¢, + (E) ¢, =Ptz (Petzval) (13-3)

From Eq. (13-1) we express y, as a function of y,, by y, = y(® — ¢)/ dp.
Inserting this in Eq. (13-2) gives

2 2D — ¢ )?

However, using Eq. (13-3),
by = ny(Ptz—¢, /na) (13-5)

and putting this into Eq. (13-4) gives a quadratic for ¢,:
Q2 Va — Vinp /4] + [Ptz ny V=20V, — Ly OV, Viny/n,)
+ DV, (1 + Ly, Ptz my V] =0 (130

Thus we obtain ¢, by Eq. (13-6), ¢, by Eq. (13-5), and finally the separation
d by

d= (d)a + (Z)b - (D)/¢a¢b (13'7)

As an illustration of the design of such a lens, we will first solve the rear com-
ponent for a focal length of 10, a Petzval sum of 0.030 (0.3% of f’), and zero
chromatic aberration. The selection of glasses must, however, be made with some
care for if the V difference is too great the negative lens will be too weak to enable
us to correct the other aberrations. A reasonable glass choice is

(a) Barium flint: np = 1.6053, np = 1.61518, ne = 1.60130, V' = 43.61
(b) Dense barium crown: np = 1.6109, np = 1.61843, no = 1.60775, V"= 57.20

with V difference = 13.59. The above algebraic solution gives
¢, = —0.4958, ¢, = 0.5458
and since ¢ = ¢/(n — 1), we find that
¢, = —0.8191, ¢, =0.8934, d=0.1848

This completes the predesign of the thin-lens powers and separation.
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We could, of course, determine the bendings of the two thin elements in the
rear half-system for spherical and astigmatic correction, but it is best to insert
thicknesses first and assemble the two components before doing this. To assign
thickness we must decide on the relative aperture of the finished lens, and f/6 is
a good value to adopt. This makes the aperture of the rear component about
f712, and a diameter of 1.0 is suitable. The thicknesses of the two lenses will then
be 0.06 for the flint and 0.20 for the crown.

For our starting bendings we may assign 40% of the total flint curvature to
the front face of the rear negative element, and 25% of the crown curvature to
the front face of the rear positive element. However, because of the finite thick-
nesses, we must scale each thick element to restore its ideal thin-lens power, and
the air space must be adjusted to maintain the ideal separation between adjacent
principal points. With the stop at a distance of 0.12 from the flint element, the
whole lens becomes

c d r n
¢ =—cg = 0.6788 (1.473)
0.2 flint
¢y = —c7 = —0.2263 (-4.418)
0.0756 air
3 = —c¢ = —0.4893 (-2.043)
0.06 crown
¢y = —c5 = 0.3262 (3.065)
0.12 air

(stop)

The lens in its present state is drawn to scale as was shown in Figure 13.3.
The focal length is 5.6496 and the Petzval sum (for f/” = 10) is 0.04039. Tracing
f78.5 rays in F and C light, with Y; = 0.3323, gives the zonal chromatic aberra-
tion as 0.03312. The increase in Petzval sum is due to the finite thicknesses of
the lenses.

We must now restore the desired values of Petzval sum and chromatic aber-
ration by changing the power of the two crown elements and the two outer air
spaces, maintaining symmetry about the stop and letting the focal length go. Of
course we could equally as well vary the power of the flint elements, but we
must adopt a fixed procedure or we shall never reach a satisfactory solution.
A double graph is a great convenience here, plotting the zonal chromatic aber-
ration as ordinate and the Petzval sum for f/’ = 10 as abscissa. The starting
point will be (0.0404, 0.0331) and the aim point will be (0.034, 0). A trial change
of the outer air spaces by 0.05 gives zonal chromatic aberration = —-0.0016 and
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Figure 13.4 Double graph for chromatic aberration and Petzval sum.

Ptz = 0.0368, and then weakening both surfaces of the crown elements by 2%
gives that the zonal chromatic aberration = 0.0133 and Ptz = 0.0331. The graph
shown in Figure 13.4 tells us that we should have increased the original air
spaces by 0.061 and weakened the crown lens surfaces by 1.24%. These changes
give zero chromatic aberration and Petzval sum = 0.0339.

At this stage we find

LA’ = marginal spherical aberration = 0.1335, X! at 22° = 0.1088
LZA = zonal spherical aberration = 0.0429, X/ at 22° = 0.4216

We desire to have the marginal and zonal spherical aberrations equal and oppo-
site, or LA" + LZA = 0, and we would also like to have X{ = 0 for a flat tan-
gential field. We proceed to accomplish this by bending both crowns and both
flints in such a way as to maintain symmetry.

In the double graph of Figure 13.5, we see that at the start X{ = 0.4216 and
LA + LZA = 0.1764. The aim point is (0, 0). Bending the crowns by Ac; = —
0.02 toward a more nearly equiconvex form gives X{ = 0.1344 and LA’ +
LZA = 0.1742. Then bending the flints by Acz; = +0.02 toward a more nearly
equiconcave form gives X{ = 0.0254 and LA’ + LZA = 0.0494. The graph indi-
cates that we should have used Ac; = -0.0190 and Ac; = +0.0282. These
changes gave X{=-0.0043 and LA’ + LZA = 0.0022, both of which are accept-
able. The Petzval sum for /' = 10 is now 0.0341 and the zonal chromatic aber-
ration is —0.0010; hence both are virtually unaffected by the small bendings that
we have applied to the lenses.
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Figure 13.5 Double graph for spherical aberration and field curvature.

At this point the symmetrical system has the construction

¢ d n

¢ = —cg = 0.6514

0.20 flint
Cy = —C7 = -0.2425

0.1366 air
C3 = —C¢ — -0.4611

0.06 crown
Cq4 = —C5 = 0.3544

0.12 air

(stop)

The four longitudinal aberrations are at the desired values, and we must now
investigate the transverse aberrations to see how well they have been removed
by the lens symmetry.

Tracing the 22° principal rays in C, D, and F light tells us that the distortion
is 0.474% and the transverse chromatic aberration is 0.000362. Since these are
both positive, we can improve both at once by shifting a small amount of power
from the front to the back. Weakening both surfaces of the front crown element
by 2% and strengthening the rear crown surfaces by 2% lowers the distortion to
0.190% and reduces the transverse chromatic aberration to —0.00017, both of
which are now acceptable. However, this change has slightly affected the other
corrections, which are now

focal length = 5.4122
zonal chromatic aberration = —0.00022
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Petzval sum = 0.0341, for /' =10
LA + LZA = —0.0158
X/ =0, X|=0.0304

Since the last change has slightly altered the spherical aberration and the field
curvature, we return to the graph in Figure 13.5 and apply Ac; = —0.0034 and
Acz = —0.0027 to restore these. The system is now as follows:

¢ d np
0.6350
0.2 1.6109
—0.2411
0.1366
—0.4638
0.06 1.6053
0.3517
0.12
0.12
—0.3517
0.06 1.6053
0.4638
0.1366
0.2508
0.2 1.6109
—0.6610

with focal length for half lens = 5.4212, zonal chromatic aberration = 0.00011,
Petzval sum (f' = 10) = 0.0342, LA’ + LZA = —0.0022; for 22°: X = —0.0088,
X{=-0.0005, distortion = 0.189%, lateral color = —0.00017; stop diameter for
f76 = 0.7896. Everything is thus known except coma, which we must now
investigate.

The easiest way to evaluate the coma is to trace several oblique rays and
draw the meridional ray plots at two or three obliquities and look for a para-
bolic trend, although in general this will be mixed with a cubic tendency due
to oblique spherical aberration, and a general slope caused by inward or back-
ward tangential field curvature. If the parabolic trend is not particularly notice-
able, the amount of coma is probably negligible in view of the other aberration
residuals that are unavoidably present. However, if coma is the dominant aberra-
tion it is necessary to reduce it by bending the two crown elements in the same
direction, and not symmetrically about the stop as was done previously to correct
the spherical aberration and field curvature.
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Figure 13.6 Meridional ray plots for dialyte (/' = 5.42).

In the present example, meridional ray fans were traced at the three obliqui-
ties: 10°, 16°, and 22°, as shown in Figure 13.6. The abscissa is the 4 values of
the rays, that is, the height of the incidence of each of the rays at the tangent plane
to the front surface.’ To locate the endpoints of the curves we must decide which
clear aperture we should allow at the front and the rear of the complete lens.

It is customary in a short lens such as this to give all eight lens surfaces the
initial aperture of the marginal beam, which in our case is f/6 or 0.904. The lim-
iting rays at each obliquity are then found by trial such that the lower rim rays
meet r; at a height of —0.452, and the upper rim rays meet rg at a height of
+0.452. These limiting rays are marked 7 in Figure 13.6, their paths being
shown in Figure 13.7. If there were no vignetting, the upper and lower rays
would be limited only by the diaphragm, these rays being marked S in Fig-
ure 13.6. It is clear that the vignetting has proved to be very beneficial, espe-
cially for the lower rays at 22°; these would cause a bad one-sided haze due to
higher order coma if they were not vignetted out in this way.

A glance at this graph reveals that there is a small residual of negative coma,
requiring a small negative bending of the front and rear crowns to remove it.
A Ac of —0.005 was found to be sufficient to make all three curves quite straight.
To gild the lily, trifling bendings were applied to remove small residuals of
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Figure 13.7 An f/6 dialyte objective.

LA and X1, namely, Ac; = —0.0005, and Ac;z = —0.0025. The final lens was then
scaled to a focal length of 10, with the following specification:

c d np
0.34138
0.369 1.6109
—0.13373
0.252
—0.25288
0.111 1.6053
0.18937
Stop 0.221
0.221
—0.18937
0.111 1.6053
0.25288
0.252
0.13357
0.369 1.6109

—0.36091
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with /" = 10.0, I’ = 9.1734, Petzval sum (10) = 0.0342, LA’ (f/6) = 0.0143, LZA
(f78.5) = —0.0193; for 22°: X, = —0.0155, X{ = 0, distortion = 0.218 %, lateral
color = —0.0004; zonal chromatic aberration = 0.0001.

The aberrations of this final system were shown in Figure 13.7. One interest-
ing point here is that after all the changes in powers and bendings that have
been made, radii r, and r; are almost identical. It might be a significant
manufacturing economy to make them identical by a further trifling bending
to one or both of the positive elements.

Lenses of this dialyte type perform admirably and can be designed with aper-
tures up to about f/3.5; the field, however, is limited to about 22° to 24° from
the axis.

13.3 A DOUBLE-GAUSS-TYPE LENS

The mathematician Gauss once suggested that a telescope objective could be
made with two meniscus-shaped elements, the advantage being that such a sys-
tem would be free from spherochromatism. However, this arrangement has
other serious disadvantages and it has not been used in any large telescope.
Alvan G. Clark tried to use it with no success, but with considerable insight
he recognized that two such objectives mounted symmetrically about a central
stop might make a good photographic lens. He patented® the idea in 1888,
and a lens of this type called the Alvan G. Clark lens was offered for sale by
Bausch and Lomb from 1890 to 1898. The same type was also used in the Ross
Homocentric, the Busch Omnar, and the Meyer Aristostigmat. An unsymmetri-
cal version was later used by Kodak in their Wide Field Ektar lenses.

The design is suitable for a low-aperture wide-angle objective, the design pro-
cedure following closely the design of the dialyte just described. However, the
glasses must be much further apart on the ¥ — n chart than before, possible
types being

(a) Dense flint: np = 1.6170, V' = 36.60, np = 1.62904, nc = 1.61218
(b) Dense barium crown: np = 1.6109, V'=57.20, np= 1.61843, nc = 1.60775

Using these glasses, the formulas given in Egs. (13-5) and (13-6) can be solved
for the two lens powers in the rear component, assuming zero L}, and a smaller
Petzval sum such as 0.028 for a focal length of 10. The powers are much smaller
than before and the air space much larger:

¢, = —0.2937, ¢, = —0.4760
¢, =0.3376, ¢, = 0.5526
d = 0.5657
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Since the lens elements are to be meniscus in shape, we can start by selecting
bendings having ¢; = 1.9¢, and ¢3 = -0.17¢;. For a half-system of aperture f/16
we could try thicknesses of 0.1 for the flint element having a diameter of 0.9,
and 0.3 for the crown element of diameter 1.9. (This is actually thicker than neces-
sary, and 0.23 would have been better.) As before, after inserting the thicknesses
we scale each element back to its original power, and we calculate the air space
required to restore the separation between the adjacent principal planes. The stop
is placed conveniently at 0.15 in front of the vertex of the negative element.

Having assembled the double lens, we find that its focal length is 6.255, the
zonal chromatic aberration is —0.00398, and the Petzval sum for a focal length
of 10 is 0.0249. As before, we proceed to correct the chromatic aberration and
Petzval sum by changing the outer spaces and the powers of the positive ele-
ments, maintaining symmetry at all times. The double graph for these changes
is shown in Figure 13.8.
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Figure 13.8 Double graph for chromatic aberration and Petzval sum for f'= 10.

The graph suggests that we should strengthen both crown elements by 1.47%
and decrease the outer spaces by 0.0466. These changes give the following front
half-system (the rear is identical with the stop centered 0.15 from each half):

¢ d np

0.6491

0.3 1.6109
0.0952

0.1860
0.4141

0.10 1.6170
0.9044
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with /" = 6.0810, aperture = f/8, zonal chromatic = 0.00015, Petzval sum (10) =
0.0279. We regard these residuals as acceptable and proceed to correct the
spherical aberration and tangential field curvature by bending the elements in
a symmetrical manner. The aberrations of this system were found to be’

/8 spherical aberration = —0.0652
f/11.3 zonal aberration = —0.0311
LA+ LZA = —0.0963

(32°)X] = 0.1538, X| =0.0937

The results of separately bending the crowns and flints are shown in the dou-
ble graph in Figure 13.9, and a few trials indicate that we should bend the front
crown by 0.0128 and the front flint by 0.0627 to remove both spherical aberra-
tion and tangential field curvature simultaneously. These changes give:

focal length = 5.8951 LA’ = —0.0020, LZA = —0.0003
X! =0.1196, X|=—0.0049

which are acceptable, but now we find that the bendings have upset our previ-
ous corrections for Petzval and chromatic aberration, which have become
Ptz = 0.0271, and zonal chromatic = —0.0067. It is characteristic of meniscus ele-
ments that any change in the lens shape affects all aberrations, an unfortunate
property that makes the design of a Gauss-type lens much more difficult and
time-consuming than the design of a comparable dialyte lens.

To remove the residual Petzval and chromatic aberrations, we return to the
graph in Figure 13.8, which suggests that we should make a further reduction
in the air spaces of 0.037, and strengthen the crowns by 0.191%. These changes

32° Xt
A
02}

ot o Aim
_02 L
-04 |

-0.6 F

Tangential field curvature

-0.8

: : > : > (LA + LZA)
-0.1 ~0.05 0 0.05

Figure 13.9 Double graph for spherical aberration and field curvature.®
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in their turn upset the spherical and field corrections, so we have to make fur-
ther small bendings for these, and so on back and forth until all four aberrations
are corrected. The system then is as follows:

c d np

0.6733

0.3 1.6109
0.1183

0.145 air
0.4768

0.1 1.6170
0.9671

0.15

(symmetrical)

with focal length = 5.9394, Ptz(10) = 0.0278; for 32°: X = 0.0674, X; = -0.0134;
LA =-0.0015, LZA = 0.0000, zonal chromatic aberration = —0.0008.
Finally, we come to the correction of distortion and lateral color:

32° distortion = 1.28%, 32° lateral color = 0.0014

These were reduced by shifting 3% of the power of the front crown element to
the rear crown, giving 0.70% distortion and —0.0001 of lateral color. However,
since this move upset everything, it was necessary to return to the previous
graphs and repeat the whole design process once or twice more. After scaling
up to a focal length of 10.0, the final system is as follows:

c d n
0.38600
0.5083 1.6109
0.06787
0.2355
0.28732
0.1694 1.6170
0.57670
0.2542
0.2542
—0.57670
0.1694 1.6170
—0.28732
0.2355
—0.07201
0.5083 1.6109

—0.40990
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with /" =10.0, /" =8.9971, Ptz(10) = 0.0279, zonal chromatic aberration = 0.00030,
LA (f18) = 0.00046, LZA (f/11) = 0.00225, stop diameter (//8) = 0.5149. The
results are shown in Table 13.1.

Table 13.1

Astigmatism, Distortion, and Lateral Color for Example Double-Gauss Lens

Field (deg) X} X{ Distortion (%) Lateral color
32 0.0617 —0.1303 0.660 —0.00034
25 —0.0529 0.0586 0.266 —0.00086
15 —0.0456 0.0239 0.065 —0.00064

A scale drawing of this lens, together with its aberration graphs, is shown in
Figure 13.10. It is evident that the zonal aberration is of the unusual over-
corrected type and that the crown elements are quite unnecessarily thick.

To complete the work we must determine how much vignetting should
be introduced, mainly to cut off the ends of the curves in Figure 13.11. Our
procedure will be to decide to accept a maximum departure of the graphs from
the principal ray by, say, £0.025, and cut off everything beyond that limit. The
vignetted rays are shown in the lens diagram in Figure 13.10. The limiting rays
are marked V on the ray plots (Figure 13.11), and the extreme unvignetted rays
that just fill the diaphragm are marked S. It will be seen that the 15° beam is
unvignetted. In view of this, the limiting surface apertures shown in Table 13.2
are recommended for this lens. This completes the design.

If a higher aperture than f/8 is desired, it is necessary to thicken the negative
elements considerably, and introduce achromatizing surfaces into them. The pro-
cess for the design of the /72 “Opic” lens of this type has been described by H. W.
Lee.” Using the Buchdahl coefficients a3, a4, 11,9, and p,;, Hopkins'® has shown
that it is possible to calculate the image height, relative to the Gaussian image
height, where the sagittal and tangential field curves intersect one another. This
of course assumes that higher-order astigmatic terms are negligible.

Beyond this intersection height, the two field curves rapidly diverge from one
another, as can be observed in Figures 13.2, 13.7, and 13.10, and is shown in
Figure 13.14 in the next section (page 372). Attempting to use the lens beyond
this image height will be unfruitful. This image height, H, is derived by equating
the linear terms in aperture of Egs. (4-6) and (4-7) through fifth order, such that

(303 + 04)H,, + o Hylp = [(03 + 04)Hy + iy Hylp

203H? + poHy =y H,
3 Mo Hn (13-8)
20‘3

H,=(———
K — Hio
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Figure 13.10 An f/8 Gauss objective.

DESIGNER NOTE

The meridional ray plots in Figure 13.11 indicate that coma is negligible, but there is a
considerable degree of overcorrected oblique spherical aberration, which increases as
the obliquity is increased. This is typical of all meniscus lenses.
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Figure 13.11 Meridional ray plots for f/8 Gauss objective.

Table 13.2

Limiting Surface Apertures for
f/8 Gauss Objective

Surface Clear aperture

1.061
0.890
0.603
0.520
0.515
0.510
0.596
0.859
1.023

0NN LA W~
—
o
o

13.4 DOUBLE-GAUSS LENS WITH CEMENTED
TRIPLETS

Consider now that the two negative elements in Figure 13.10 are replaced
with cemented meniscus triplets (see Section 10.4). In the late 1950s, Altman
and Kingslake developed such a 100-mm focal-length Double-Gauss lens,
shown in Figure 13.12, that could be, for example, used as a 1:1 relay or erector
lens in a sighting telescope.'' In the case to be examined, light in the central air
space is collimated, with each half of the lens operating at f/7.6; the entire lens
therefore operates at f/3.8.
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Figure 13.12 Unity magnification of the Double-Gauss lens with negative cemented meniscus
triplets.

An important objective of their design was to attain highly corrected zonal
spherical aberration and spherochromatism so that the lens gives decisive defini-
tion of a modest field-of-view when used as a process lens. When used as an
erector or relay lens in a telescope, the observer’s eye can move about without
causing the image to shift or flutter as it does in the presence of even slight
spherical aberration. Rather than following the more common approach of
splitting the elements, they replaced the negative lenses with a cemented triplet.
The triplet has a weak meniscus element (1.43 < n < 1.60) cemented between a
biconcave element and a biconvex element, with both having a refractive index
at least 0.08 greater than the weak meniscus element. The thickness of the weak
meniscus can be used to control the zonal spherical aberration, with an increase
in the thickness tending to overcorrect the zonal with respect to the marginal
spherical aberration. They selected glasses for the meniscus and the biconvex
elements that have about the same Abbe number so that the lens designer will
have a chromatically ineffective surface that can be varied without appreciably
affecting the color (see Buried Surface, Section 10.5).

The marginal spherical aberration is primarily controlled by adjusting (1) the
concave surfaces facing the stop, which also strongly affect the Petzval sum, and
(2) the bendings of the positive elements. The longitudinal color is corrected by
adjusting the cemented surface between the biconcave element and the meniscus ele-
ment. By varying the aforementioned chromatically ineffective surface, zonal spher-
ical aberration can be corrected along with adjusting the bendings of the positive
elements to maintain marginal spherical aberration correction. It was observed that
the marginal spherical aberration varies more rapidly than the zonal spherical aber-
ration as the chromatically ineffective surface is changed, with both aberrations
becoming more overcorrected as this surface is strengthened.

In addition, when the marginal spherical aberration is restored by changing
the bendings of the positive elements, both the marginal and zonal spherical
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aberrations change at about the same rate. Thus, the net effect is to change the
zonal spherical aberration toward overcorrection. The field curvature is con-
trolled primarily by varying the central air space while the coma, distortion,
and lateral color are controlled in the usual way by varying the front half of
the objective with respect to its rear half, so the cemented meniscus triplets
are the same while the positive elements differ. It was observed that this lens
structure has good spherochromatism. An example structure is as follows:

r d ng Vd
36.02
3.1 1.517 64.5
418.3
0.7
24.59
7.4 1.611 58.8
—45.33
3.5 1.523 58.6
—44.52
4.3 1.617 36.6
13.42
Stop 6.900
6.900
—13.42
4.3 1.617 36.6
44.52
3.5 1.523 58.6
45.33
7.4 1.611 58.8
—24.59
0.7
—74.42
3.1 1.720 29.3
—32.20

Figure 13.13 shows the longitudinal aberrations while Figure 13.14 presents
the field curvature and distortion. As one would expect, the distortion is small
(0.012%) and the field is quite flat and slightly backward curving. The ray fans
in Figure 13.15a illustrate again that the spherochromatism is well corrected,
although the axial color in C light is slightly overcorrected. The presence of
some lateral color is seen in Figure 13.15b. Linear and higher-order coma and
spheroastigmatism are observable in Figure 13.15b and Figure 13.15c.

This example lens was designed for use as a relay in a sighting scope com-
prising a typical objective lens having two cemented doublets, reticle, a prism
system of light barium crown glass, a relay lens, and an eyepiece. The lens
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Figure 13.15 Ray fans (a) for on-axis and (b) and (c) for 5 mm off-axis. Ordinate scales are
40.1 mm. Solid curves = Flight, short dashed curves = d light, and long dashed curves = C light.

designer is often faced in practice with the design of an entire system rather than
just simply a lens. In the example relay lens given by Altman and Kingslake,
they designed it as part of an overall system. The lateral color of the system
was well corrected for all zones. To accomplish this, the eyepiece was allowed
to have moderately large residual undercorrected lateral color, which was
matched by opposite lateral color in the rest of the system. The objective lens
was well corrected since a color-free image was desired at the reticle.

In this particular system, the prism system needed to be placed between the
reticle and the relay lens, which made correction more difficult than if the prism
system had been placed following the relay lens. To achieve a balance in the lat-
eral color, they found it necessary to make the rear element of the relay lens from
a very-high dispersion dense flint glass and the front lens from a very-low disper-
sion crown glass. It also required the refractive index of these outer lenses to be
markedly different, which caused serious zonal spherical aberration, spherochro-
matism, and coma; however, the novelty of the use of the meniscus elements in
each negative triplet provided a means to achieve excellent correction. Reading
of their patent is encouraged by those interested in further design details.

13.5 DOUBLE-GAUSS LENS WITH AIR-SPACED
NEGATIVE DOUBLETS

The basic Gauss lens that was shown in Figure 13.10 can be improved by
replacing the negative lenses with air-spaced negative doublets and the rear posi-
tive element with a cemented doublet as illustrated in Figure 13.16.'% This
100-mm focal length lens is well corrected at f/2 operating at unity magnification.
The purpose of this lens was for printing on a film that is sensitive to a particular
wavelength of blue light, say 435.8 nm. Consequently, chromatic correction was
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Figure 13.16 Unity-magnification Double-Gauss lens with air-spaced negative doublets.

not of particular importance except that it was desirable to achromatize the lens
for blue and green light where the green light was used for alignment of the
system. A typical structure is as follows:

r d ng Vd
66.300
17.42 1.75510 47.2
—192.96
2.23
46.049
4.7 1.65820 57.2
108.97
2.36
—352.51
10.06 1.69873 30.1
33.510
5.460
Stop 5460
—33.285
12.15 1.61633 31.0
252.60
2.18
—133.01
4.63 1.69680 56.2
—50.695
0.51
138.25
10.95 1.68235 48.2
—37.751
1.41 1.62032 60.3

—79.381
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The principal invention of this lens structure is the use of a pair of negative
doublets, located about a central stop, with each having a strong negative air
lens (see Section 7.4.3). All of the elements in this lens use high refractive index
glasses and large thicknesses to simplify correction of aberrations by using
weaker surfaces. Examination of Figure 13.17 shows that the spherical aberra-
tion is undercorrected and that the axial image quality can benefit by moving
the image plane slightly toward the lens by an amount of 85 um.

The astigmatic field curves in Figure 13.18a show that they intersect at 5,
which implies that this is essentially the limit of the useful field-of-view. These
field curves are also inward curving, which is advantageous to enhance the
off-axis resolution since the axial refocus is inward toward the Iens.
Figure 13.19a presents the axial ray fan after refocus. Inspection of this plot
shows that the spherical aberration contains at least third-, fifth-, seventh-,
and ninth-order spherical aberration.

The off-axis ray fans, when refocused is invoked, are shown in Figure 13.19b
and Figure 13.19c. Figure 13.18b illustrates that the distortion is triflingly
small. The patent suggests that this lens can resolve over 400 lines per mm

-02 -0.1 0 0.1 0.2

Figure 13.17 Longitudinal aberration focused at the paraxial focal point; the abscissa is in
lens units.
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Figure 13.18 Field curvature and distortion. The abscissa for the field curve (a) is in lens units
and distortion (b) is in percentage points.
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Figure 13.19 Ray fans (a) for on-axis and (b) and (c) for 5° off-axis when lens has been
refocused by —0.085 mm with respect to the paraxial focus. Ordinate scales are £0.01 mm.

(200 line-pairs per mm). Figure 13.20 shows the MTF for a diffraction-limited f/
2 lens, the axial MTF, and the MTF for an object 5° off axis. It is evident that
the lens is nearly diffraction-limited on-axis with excellent sagittal off-axis per-
formance and somewhat degraded tangential off-axis performance at the edge
of the field of view.
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Figure 13.20 MTF for the axial and the 5° off-axis objects when lens has been refocused by
—0.085 mm with respect to the paraxial focus.
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The maximum speed of this lens is f/8. The 0.7 zone corresponds to f/11.3.
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of zero is the aim point. The reason for this was explained in Section 13.1.
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Chapter 14

Unsymmetrical Photographic
Objectives

14.1 THE PETZVAL PORTRAIT LENS

This ancient lens was the first photographic objective to be deliberately
designed rather than being put together by an empirical selection of lenses out
of a box. It consists of two fairly thin achromats spaced widely apart with a cen-
tral stop.' It has excellent correction for spherical aberration and coma, but
because the Petzval sum is uncorrected, the angular field is limited by astigma-
tism to about 12° to 15° from the axis. Modified forms of the Petzval lens are
still used, mainly for the projection of 16 and 8 mm movie films and other pro-
jection devices, although if a negative field flattener is added close to the image
plane the lens becomes a true anastigmat, and in this form it has been used as a
long-focal-length lens for aerial reconnaissance purposes.

The front component of the original Petzval design of 1839 was an ordinary
75 telescope doublet. It is possible that Petzval attempted to assemble two iden-
tical lenses symmetrically about a central stop, in order to raise the aperture to
173.5 for use with the slow daguerreotype plates of the time, but the aberrations
were so bad that he had to separate the two elements in the rear component and
bend them independently to correct the spherical aberration and coma. Later, in
1860, J. H. Dallmeyer turned the rear component around,” with the crown ele-
ment leading, and he thus obtained a lens that was better than the Petzval
design near the middle of the field, but the inevitable uncorrected astigmatism
was so great that the two designs are virtually indistinguishable. In 1878
F. von Voigtlinder® found that by suitably bending the front component of
the Dallmeyer type he could cement the rear component also, and it is this last
arrangement that is used today as a small projection lens of high aperture.

Copyright © 2010, Elsevier Inc. All rights reserved. 379
DOI: 10.1016/B978-0-12-374301-5.00018-8



380 Unsymmetrical Photographic Objectives

14.1.1 The Petzval Design

In designing a Petzval portrait lens it is customary to make both doublets of
the same diameter and to mount the stop approximately midway between them.
If the front doublet consists of the familiar form with an equiconvex crown, this
stop position has the effect of making the tangential field of the front compo-
nent somewhat backward-curving, and to correct this requires a positive rear
component somewhat weaker than the front component. To correct the spheri-
cal aberration as well as the OSC and to flatten the tangential field, we find that
we must select glass types having a rather large V' difference; with the refractive
indices used by Petzval, 1.51 and 1.57, a V difference of at least 18 is required.
In the present examples the following Schott glasses are used:

(a) Crown: K-1, n, = 1.51173, ng — nc = 0.00824, V, = 62.10
(b) Flint: LF-6, n, = 1.57046, ng — nc = 0.01325, ¥, = 43.05

The V difference is 19.05.

The Front Component

For the front component we adopt a thin-lens focal length of 10 and a clear
aperture of 1.8. This aperture may have to be adjusted later after the actual
focal length of the system has been determined. For this front lens, the thin-lens
formulas give ¢, = 0.63706 and ¢, = —0.30618. Assuming an equiconvex crown,
our front component is as follows:

c d n
0.31853
0.4 1.51173
—0.31853
0.12 1.57046

(D - d) 0.086680

Assuming an air space of 2.6, the 10° principal ray enters at L,. = 2.054 and
crosses the axis midway between the two lenses.

The Petzval Rear Component

For a Petzval-type rear component, we may start with the arbitrary Setup
that follows:
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c d n

0.25

0.12 1.57046
0.6

0.025516
0.55

0.4 1.51173

(D -d) —0.017292

with f7 = 6.1898, I’ = 3.9286, LA’ (f/3.44) = 0.0005, OSC (f/3.44) = 0.001944.
The focal length and aberration data given here are calculated for the complete
system. The space between the two rear elements was determined so that they
would be in edge contact at a diameter of 1.8. As the design proceeds this sepa-
ration must be recalculated for each Setup to maintain the edge—contact
condition.

The best way to correct the spherical aberration and coma is to bend the two
rear elements separately and plot a double graph as shown in Figure 14.1. The
graph data are

(a) Original Setup A: LA’ = 0.000449, OSC = 0.001944

(b) Bend flint by 0.02 for Setup B: LA’ = 0.024885, OSC = 0.004688

(c) From Setup B, bend crown by 0.02 to obtain Setup C: LA’ = 0.010455,
OSC = 0.001965

OSC
A

0.004

0.002

0O Del

-0.002 . . > > > A
0 0.01 0.02 0.03

Figure 14.1 Double graph for rear component of Petzval portrait lens (/' = 6.2).
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Extrapolating in the usual way, and because the graphs are remarkably straight,
we quickly reach the aplanatic form (Setup D):

c d n
0.27
0.12 1.57046
0.62
0.018802
0.5841
0.40 1.51173

(D—d)  0.0220382

with /' = 6.2206, I’ = 3.9233, LA’ (f/3.46) = -0.0009, OSC ( f/3.46) = —0.00003.
The fields along the computed 10° principal ray were X =-0.0597, X{ =-0.0123.

To move the fields backward, we must weaken the entire rear component. A
few trials indicate that c. should be reduced by 0.025, and after recorrecting the
spherical and chromatic aberrations and the OSC we obtain the following
solution (Setup E):

c d n
0.27
0.12 1.57046
0.595
0.023158
0.5495
0.40 1.51173

(D-d) 0.0287696

with /' = 6.4012, I’ = 4.0408, LA’ (f/3.56) = 0.0030, LZA (f/5) = -0.0021, OSC
(f73.56) = —0.00002, Ptz (10) = 0.0811. The results are shown in Table 14.1.
These aberrations are plotted in Figure 14.2.

The final check on our system is made by drawing a meridional ray plot at 10°
obliquity, which is shown in Figure 14.3a. The abscissas are the height of each ray
at the stop with the height of the marginal ray at the stop being shown on the
graph ordinate. However, because of vignetting at the front and rear surfaces,

Table 14.1
Astigmatism and Distortion for Setup E

Field (deg) X! X/ Distortion (%)

15 —0.1034  0.1551 0.32
10 —0.0571 0.0007 0.11
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Figure 14.2 Aberrations of Setup E (/' = 6.4): (a) longitudinal spherical aberration and (b)
astigmatism.
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Figure 14.3 Ray plots for Petzval objectives at 10°: (a) Ray plot with rear elements in close
contact; (b) Ray plot with air-spaced rear elements.

which are assumed to have a free aperture of 1.8, only a part of the graph is valid.
The upper and lower vignetted rays are indicated by V'V, whereas the limiting
rays through the top and bottom of the stop are marked SS on this graph. It
should be noted particularly that the middle of the curve is straight and level as
a result of the good correction of OSC and the flat tangential field at 10°, but
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the upper end of the curve rises precipitously because of the extremely high values
of the angles of incidence in the rear air space. Furthermore, the tangential field
at 15° becomes rapidly more backward-curving for the same reason.

The best way to improve both these conditions is to increase the air space
between the two rear elements. We will try a fixed air space of 0.15 and repeat
the entire design. Following the same procedure, and plotting the usual graphs,
gives us this final solution for the rear component, using the same front compo-
nent and central air space as before:

c d n
0.25
0.12 1.57046
0.54
0.15
0.468

040  1.51173
(D-d  0.0028107

with f/ = 6.6685, I’ = 4.2468, LA’ (f/3.70) = 0.0012, LZA (f/5.2) = —0.0031,
OSC (f73.70) = 0.00001, Ptz (10) = 0.0804. The results are shown in Table 14.2.

The 10° meridional ray plot for this lens, to the same scale as before, is
shown in Figure 14.3b. It will be seen that this design is much better than the
previous one, and indeed almost all of the Petzval portrait lenses made since
1840 have had a wide space between the two rear elements. A sectional drawing
of this system and its aberration graphs are shown in Figure 14.4. The solid
curve is the sagittal field and the dashed curve is the tangential field.

Table 14.2

Astigmatism and Distortion for the Final Petzval-type Lens Design

Field (deg) X X/ Distortion (%) Lateral color
15 —0.1105 0.0157 —0.95
10 —0.0553 —0.0002 —0.28 —0.00049

14.1.2 The Dallmeyer Design

To design a lens of the Dallmeyer type, we can start by merely turning
around the rear component of the last system, recomputing the last radius by
the D — d method, and tracing enough rays to evaluate the system. The crown
element was made slightly thinner as it appeared to be too thick before.
It was found that the spherical aberration had become decidedly undercorrected
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Figure 14.4 The final Petzval-type lens.
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Figure 14.5 Double graph for the Dallmeyer lens.

and the OSC overcorrected, and so a double graph was plotted by which these
aberrations could be corrected, using suitable bendings of both rear elements.
This graph is shown in Figure 14.5, and it led us to the following rear system:

c d n
0.0722
0.35 1.51173
—0.3930
0.15
—0.4600
0.12 1.57046

(D-d  —0.1408571
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with /" = 6.9991, I’ = 4.3100, LA’ ( f/3.89) = -0.0125, OSC = -0.00006; for 10°:
X! =-0.0703, X{ = -0.0423.

In an attempt to correct the inward-curving tangential field, the third element
was weakened by 0.1, and since this had the effect of reducing the relative aper-
ture of the system, the front clear aperture was increased at the same time from
1.8 to 2.0. This required a recomputation of c¢; for achromatism by the D — d
method. It was found that the same double graph could be used, and a few trials
gave the following rear component:

c d n

—0.0741

0.35 1.51173
—0.4393

0.15
—0.5283

0.12 1.57046

(D -d) —0.2880611

with /" = 7.3340, I’ = 4.6524, LA’ (f73.67) = 0.0018, OSC = zero; for 10°: X =
-0.0481, X{ = 0.0358. Obviously we have gone too far in our weakening of the
rear component, so we decided to strike a compromise and repeat the design.
The final complete system then became as follows:

c d n
0.31853
0.40 1.51173
—0.31853
0.12 1.57046
(D -d) 0.0847414
2.6
0
0.35 1.51173
—0.411
0.15
—0.4884
0.12 1.57046
(D -d) —0.2114208

with ' =7.1831,/' =4.4796, LA’ (f/3.59) =-0.0014, LZA ( f/5.1)=-0.0136, OSC
(f73.59) =-0.00007, Petzval (10) = 0.0774. The results are shown in Table 14.3.
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Table 14.3

Astigmatism, Distortion, and Lateral Color for Dallmeyer-type Portrait Lens

Field (deg) X! X! Distortion (%) Lateral color
15 —0.1278 0.0359 1.54
10 —0.0599 —0.0049 0.18 0.000692
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Figure 14.6 A Dallmeyer-type portrait lens. Plots for spherical aberration and astigmatism
(solid curve is sagittal; dashed curve is tangential).

A section of the lens is shown in Figure 14.6 along with the graphs of the
aberrations. A meridional ray plot is shown in Figure 14.7, where it is seen to
be somewhat flatter than the better of the two preceding Petzval designs. How-
ever, the large astigmatism would swamp this slight improvement. The zonal
spherical aberration, although still small, is about four times as great as for
the Petzval form (recall that the Dallmeyer-type portrait lens is considered to
be of the Petzval form).
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Figure 14.7 Ray plot for Dallmeyer portrait lens at 10°.
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14.2 THE DESIGN OF A TELEPHOTO LENS

A telephoto lens is one in which the “total length” from front vertex to focal
plane is less than the focal length; telephoto lenses are used wherever the length
of the lens is a serious consideration.

Most telephoto objectives contain a positive achromat in front and a negative
achromat behind, the lens powers being calculable when the focal length F, the
total length kF, and the lens separation d are all given (Figure 14.8). The factor
k is known as the telephoto ratio, and its value is ordinarily about 0.8.

In terms of thin lenses, the ratio

Yo fa—d kF—d

Ya Ja F

hence

Fd
ﬁ:Fa—@+d

For lens (b), we have / = f, — d and " = kF — d. Therefore,
1 1
fy kF—d f,—d

from which it follows that

o U= dkF —d)

fu—kF
(@) (b)
ya - \\\\\
! ) _ Yo || TS -
P, d f Fs
Total length = kF
A V

Figure 14.8 Thin-lens layout of a telephoto system with a distant object.
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Figure 14.9 Relation between lens powers and separation when F = 10 and k£ = 0.8.

As an example, if F = 10.0 and & = 0.8, we can plot graphs of the focal
lengths of the two components against the lens separation d (Figure 14.9). It
is clear that as the separation is increased, both the front and rear lenses become
weaker. Indeed, the power of the rear negative component reaches its minimum
value when that lens lies midway between the front positive component and the
focal plane. However, as the separation is increased, the diameters of the lenses
must also be increased to reduce the vignetting.

For our present design we will assume a thin-lens separation d equal to 3.0.
This will require a positive front component with f, = 6.0 and a negative rear
component with focal length f, = —7.5. Since the two chromatic aberrations will
be controlled by a suitable choice of glass dispersions at the end, we adopt
refractive indices such that a range of dispersions is available. The crown index
is therefore set at 1.524, for which there are glasses with 7 values ranging from
about 51 to 65, and the flint at 1.614, for which V" values exist between about
37 and 61.

For a start, let us suppose that the chosen glasses are K-3 and F-3:

(a) K-3: n, = 1.52031, An = ny — ne = 0.00879, ¥, = 59.19
(b) F-3: n, = 1.61685, An = np — ne = 0.01659, V, = 37.18

with the V difference = 22.01. For the front component, then, ¢, = 0.8615, while
for the rear component ¢, = —0.6892. We may assume an equiconvex crown for
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the front and an equiconcave crown in the rear. We assign suitable thicknesses
for a clear aperture of 1.8 (i.e., an aperture of f/5.6), and we consider an angular
semifield of 10°. For every Setup we calculate the last radii of the front and rear
components to yield the desired focal lengths of +6.0 and 7.5, respectively,
and we determine the central air space so that the separation of adjacent princi-
pal points is 3.0. The stop is assumed to be in the middle of the air space. Our
starting system is as follows:

c d n
0.4308
0.50 1.524
—0.4308
0.15 1.614
(for 1) 0.04155
2.517648
—0.3446
0.15 1.524
0.3446
0.50 1.614
(for 1) —0.023990

with f/ = 10.0, I’ = 4.5205, LA’ (f/5.6) = 0.3022, OSC (f75.6) = -0.0260; for
10°: distortion = 2.04%, X = —0.0218.

We now proceed to change the rear component to correct distortion and tan-
gential field curvature, using ¢4 and ¢5 on a double graph, of course maintaining
the thin-lens telephoto conditions by solving for ¢4 and the central air space d3
at all times. It is found that the graph for changes in ¢4 bends back on itself
but the graph for ¢s is quite straight (Figure 14.10). The aim point at distortion
= 0.5% and X{ = 0 is nearly reached by the following Setup:

¢ d n
0.4308
0.50 1.524
(unchanged) —0.4308
0.15 1.614
0.04155
3.058468
—0.7446
0.15 1.524
0.4100
0.50 1.614

—0.310175
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Figure 14.10 Double graph for distortion and field curvature.

with /7 =10, /' = 3.8945, LA’ (f/5.6) = 0.6093, OSC (f/5.6) = -0.0161; for 10°:
distortion = 0.580%, X{ = 0.0022. These changes have led to considerable over-
correction of the spherical aberration, while the OSC is slightly smaller.

We now move to the front and plot a double graph of spherical aberration
and OSC for changes in ¢; and ¢, (Figure 14.11). The closest Setup to the aim
point at LA’ = 0.02 and OSC = 0 is as follows:

c d n
0.4228
0.50 1.524
—0.2888
0.15 1.614
0.0551473
3.062479
—0.7446
0.15 1.524

(unchanged) 0.4100
0.50 1.614
—0.310175

with f/ =10, /" = 3.8945, LA’ (f/5.6) = 0.1017, OSC ( f/5.6) = —0.00003; for 10°:
distortion = 0.878%, X{ = —0.3247.
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Figure 14.11 Double graph for spherical aberration and OSC.

It is clear by now that in this type of lens every change affects every aberra-
tion, and it is not very profitable to go back and forth between the two double
graphs. Instead, therefore, we will resort to the solution of four simultaneous
linear equations in four unknowns, each equation being of the type

Aab = 2(6 ab/dvar)A var

where ab signifies an aberration and var signifies a variable lens parameter (see
Section 17.1.3).

DESIGNER NOTE

As lens constructions become more complicated or have significant cross-correlations
between parameters and aberrations, it becomes highly desirable to utilize the optimi-
zation feature of a lens design program or a computer-based math package. Solving
the system of equations given by Aab; can be simple, difficult, or even impossible. Var-
ious techniques in numerical analysis have been applied to this problem where non-
linearities and singularities are common.

The following illustrates the challenge of solving even this rather minimal problem.
When one has numerous parameters, aberrations, and constraints to consider in
finding a suitable solution to a lens design problem, it is of course necessary to use
some form of computer-aided optimization. Much effort has been expended since the
1950s in developing optimization algorithms that include least squares, steepest
descent, additively damped least squares, multiplicatively damped least squares, full
and pseudo second-derivate damped least squares, orthonormalization, simulated
annealing, and many others. The importance of how the lens designer assigns the
importance of each aberration (or more generally a system defect), constructs the
parameter boundaries, and the design plan followed cannot be overemphasized.
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By design plan, we mean the steps the lens designer will take in the design process,
as the outcome can be profoundly different! As a simple example, consider one design
plan to be just to allow the lens design program to have full control over all of the para-
meters with the expectation that the program will find an acceptable solution if allowed
to run long enough. This is a common approach with many novice lens designers and
frequently yields unsatisfactory results. Another design plan might be to attempt to
control the higher-order aberrations first and then control the lower-order aberrations
since the higher the aberration order, the more stable the abberations are with respect
to lens parameters.*> Mastery of the design methods taught in this book can definitely
help the lens designer in the quest to develop satisfactory lens designs.

Long before Glatzel® and Shafer’ discussed strain in optical systems, Kingslake
often lectured to his students that a well-designed lens will have a pleasing appearance
while those that do not will likely not perform well and/or be difficult to manufacture
and align. The paper by Shafer provides a useful discussion of stain in optical systems.

The 16 coefficients of the type (0 ab/0 var) are found by trial, by applying a
small change, say 0.1, to each variable in turn and finding its effect on each of
the four aberrations. The coefficients were found to be

Aberration 3] ¢ C4 Cs
LA —5.488 —3.180 —0.6211 0.1416
oscC 0.01886 0.11995  —0.03421  —0.00590
Distortion (%)  —3.704 2.357 2.030 —4.021
X{ 2.807 —2.439 —1.121 —1.274

These four simultaneous equations were solved to give the desired changes in
the four aberrations, namely,

ALA" = -0.08 (to yield +0.02)
AOSC = 0 (correct as is)
A distortion = —0.38 (to give 40.5)
AX] = +0.32 (for zero)

The solution of the equations was

Acy = 0.0438, Ac, = —0.0333
Acy = -0.0906, Acs = -0.0111

Applying these changes to our lens, and solving as before for the two focal
lengths and the thin-lens separation, we get the following prescription:
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¢ d n
0.4666
0.50 1.524
—0.3221
0.15 1.614
(f) 0.092643
3.12194
—0.8352
0.15 1.524
0.3989
0.50 1.614
(f) —0.372419

with /" =10, I’ = 3.74711, LA’ (f/5.6) = 0.0248, OSC (f/5.6) = 0.00026; for 10°:
distortion = 0.534%, X{ = 0.0307. These aberrations are almost correct, but a
second solution using the same coefficients gave this final system:

c d n
0.4664
0.50 1.524
—0.3208
0.15 1.614
(f) 0.0926424
3.11078
—0.8273
0.15 1.524
0.4083
0.50 1.614

(f) —0.3660454

with /' = 10.0, I/ = 3.7618, LA’ (f/5.6) = 0.0211, LZA (f/8) = —0.0108,
OSC (f15.6) =—0.00001; for 10°: distortion = 0.50%, X =-0.0012, X = 0.0261.

We next trace a number of oblique rays at 10° obliquity and draw a meridi-
onal ray plot to determine the best stop position (Figure 14.12). The abscissas of
this plot are conveniently the Q of each ray at the front surface. Since the lower
end of this graph sags downward excessively, we must move the stop closer to
the front than the midway position previously assumed. This puts the dia-
phragm at a distance of 0.5 from surface 3 (rear surface of front achromat),
and the limiting upper and lower rays that just fill the stop are shown by SS.
When we set the front surface aperture at the diameter of the entering /5.6 axial
beam, namely, 1.786, the lower limiting ray is that shown at ¥;. However, the
graph indicates that we can safely increase the diameter of the rear aperture
to 1.94, so that the upper limiting ray is located at V5.
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Figure 14.12 Meridional ray plot of telephoto lens at 10° obliquity.

The graph also indicates the presence of a small amount of overcorrected
oblique spherical aberration, which is normal in lenses of this type. The princi-
pal ray now has a starting Q; of —0.2 for the 10° beam, or L, = 1.1518. Keeping
this L, value we can add principal rays at 7° and 12°, giving what is shown in
Table 14.4. These results are plotted in Figure 14.13.

Table 14.4

Astigmatism and Distortion for Telephoto Lens

Field (deg) X! X! Distortion (%)
12 0.0018 —0.1611 0.26
10 0.0322 —0.0241 0.47
7 0.0189 0.0193 0.35
M F /
z L 15
T S
N
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Figure 14.13 Aberrations of a telephoto lens: (a) longitudinal spherical, (b) astigmatism (solid
curve is sagittal; dashed curve is tangential), and (c) distortion.
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Figure 14.14 Final telephoto design showing /5.6 marginal ray and limiting rays at 10°.

The lens in its present configuration is shown in Figure 14.14. The telephoto
ratio is 0.817, and the lens could be used in a focal length of 120 mm or more on
a 35-mm camera. The aperture could be slightly increased, especially if the
angular field were less than 10°.

To complete the design, we must select real glasses for achromatism. The
D — d values along the marginal ray in the four lens elements are given, together
with the products (D — d) An for a first glass selection as shown in Table 14.5.

Adjusting the catalog indices of these glasses for C and F light by the same
amount as the n, was in error and tracing 10° principal rays in C and F gave
the lateral color as Hr — Hi = —0.006525, which was considered excessive. Since
the lateral color takes the same sign as the longitudinal color of the rear compo-
nent and the opposite sign of that of the front component, it is clear that the >
(D — d) An of the rear should be more positive, while that of the front compo-
nent should be more negative.

A second glass selection is shown in Table 14.6. Now the lateral color
is observed to be +0.00088, which is much better. No further improvement
is possible using Schott glasses, and so the design is considered complete
(unless glasses from other manufacturers are investigated). It is, of course,
necessary to repeat the final stages with the actual refractive indices of the
chosen glasses, the procedure being to trace a paraxial ray with the true

Table 14.5
Initial Glass Selection for Telephoto Lens

Lens element a b ¢ d
D-d —0.314961 0.156459 0.073780 —0.045341
Glass type BK-8 F-3 KF-7 F-3
ng—ne=An 0.00818 0.01659 0.01021 0.01659
Product (D —d) An —0.0025764  0.0025957  0.0007533  —0.0007522

0.0000193 0.0000011 >~ =0.0000204
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Table 14.6

Second Glass Selection for Telephoto Lens

Lens element a b c d
Glass type BalLK-3 F-3 K-4 BaF-5
n, 1.52040 1.61685 1.52110 1.61022
V 60.58 37.19 57.58 49.49
An 0.00859 0.01659 0.00905 0.01233
(D —-d) An —0.0027055 0.0025957 0.0006677  —0.0005591
—0.0001098 0.0001086 > =-0.0000012

indices, and to adjust the curvature of each surface to maintain the ray-slope
angle after each surface at its former value. Any small aberration residuals that
appear can be removed by solving the four simultaneous equations again,
assuming that the former 16 rate-of-change coefficients are still valid.

There is, of course, no magic in the initial choice of refractive indices, and it
is possible that a better design could be obtained by a different choice.

14.3 LENSES TO CHANGE MAGNIFICATION
14.3.1 Barlow Lens

In 1834, an English engineer and mathematician named Peter Barlow discov-
ered a means to increase the magnification of a telescope (or a microscope),
often called a telephoto adapter. He accomplished this by placing a negative
power lens between the objective lens and its focal point. Figures 3.19, 5.12,
and 14.8 illustrate conceptual configurations and, as shown in Section 5.7, the
system focal length F’ is given by

11 N 1 d

F'fo fy fuhy
where f) is the objective focal length, f; is the Barlow lens focal length, and d is
their separation. The back focal length of this system was shown in Section 3.4.8

to be given by
fo—d
bﬂ — F/( a
Ja
(or bfl =1' = kF — d as explained in Section 14.2) so the shift in the back focal
length with and without the Barlow lens is

d+bfl —f,.
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In general, Barlow lenses are used to produce a change in magnification
of typically two (2X) but rarely more than four (4X). The lens is frequently
an achromatic doublet where the lens is corrected for aberrations with the
object located to the right of the Barlow lens at a distance of f, —d and an
image distance of bfl also located to the right of the Barlow lens. It should be
evident that the use of a Barlow lens increases the f~number of the system by
the ratio F'/f].

14.3.2 Bravais Lens

Simply put, a Bravais system is a lens or combination of lenses that forms an
image in the same plane in which the object is located. A single Bravais lens is
the aplanatic hemispherical magnifier that provides a magnification of n assum-
ing the magnifier is in air.® It should be noted that the similar Amici aplanatic
hyperhemispherical magnifier is not of the Bravais type since the object and
image planes are not colocated. A more general use of a Bravais lens is to
change the magnification (or focal length) of an existing optical system without
disturbing the original system’s conjugate points. An example is to consider a
commercial photographic printer that has been adjusted for a certain fixed mag-
nification. To allow the capability of producing a different size print from the
same negative, the magnification can be changed by the insertion of a Bravais
lens without the need for refocusing.

Bravais likely was the first to publish that each lens system has two object
positions where the image and object planes are coincident.” These positions
are called the Bravais points. An existing optical system can be either operating
at infinite or finite conjugates to work with a Bravais lens. The existing optical
system’s image plane becomes the virtual object plane of the Bravais lens whose
image plane is at the same location. The Bravais lens can be thought of as a
relay lens having magnification that can be positive or negative, and greater
or less than unity.'® Johnson, Harvey, and Kingslake developed a Bravais lens
having at least one Bravais point outside of the lens and determined formulas
for its position'' which are

Z+ /7% +4Zf"

p= )

where p and p’ are the distances from the Bravais point to the respective princi-
pal points, Z is the distance between the principal points, and f” is the focal
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length of the lens. The powers of the two lens elements comprising the Bravais
lens can be found using the equations in Section 3.4.8 by setting the object-to-
image distance s equal to zero. One of several well-corrected Bravais lenses
(both single and double components) presented in the patent by Johnson et al.
is as follows:

7 d n 4

108.5
25 1.617 54.9

—44.3
4.9 1.689 30.9

—106.4

where the magnification is 0.7, f” = 100, the Bravais point is 17.5 behind r3, and
both principal points are inside the lens (first principal point is 8.085 behind r;
and second principal point is 24.022 in front of r3).

Figure 14.15 shows this lens and the paths of the marginal ray from the exist-
ing optical system with and without the Bravais lens in place, and illustrates that
the image plane remains at the same position when the Bravais lens is used. The
final slope angle increases by about a factor of 1.4 with the Bravais lens, which
means that the f~-number will decrease by a factor of about 0.7 (shorter system
focal length). An apochromatic Bravais lens for Gaussian beams such as used
in printers has been investigated by Griffith.'?

Marginal ray

e

Without Bravais lens

With Bravais lens

/

Image plane

Figure 14.15 Bravais lens having magnification of 0.7.
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DESIGNER NOTE

When using a computer-based lens design program to design such a lens as a Bravais,
an easy method to create a “virtual” object, that is, a converging beam, is to use an
ideal lens focused at the location of the virtual object. Most lens design programs pro-
vide such an ideal lens and may be called an ideal lens, perfect lens, paraxial lens, and
so on. Should your program not include such a feature, you can use either of the
Section 6.1.8 aspheric planoconvex lenses since they are free from spherical aberration
or perhaps a parabolic mirror or elliptical (source at one focus and image at other) mir-
ror. Of course if the lens designer has the objective lens available, that can be included
instead. It should be noted that, in general, the objective optics and Bravais lens are
designed separately since the Bravais lens most often is moved in and out of the system
as needed. Consequently, image quality of the objective optics must be acceptable with-
out the Bravais lens; the Bravais lens must not degrade the image quality.

14.4 THE PROTAR LENS

In 1890 Paul Rudolph of Zeiss'® had the idea of correcting the spherical
aberration of a new-achromat landscape lens by adding a front component
resembling the front component of a Rapid Rectilinear but with very little
power. The thought was that the strong cemented interface in the front compo-
nent could be used to correct the spherical aberration, and that it would have
little effect on field curvature because the principal rays would be almost per-
pendicular to it. The cemented interface in the rear component would be used
to flatten the field as in the new-achromat landscape lens. It is noted that in
the Protar patent, one form of the rear component was a cemented triplet
although the primary component form was a cemented doublet.

This leaves us with four other radii to be determined. The fourth and sixth
radii can be used for Petzval sum and focal length, as in the design of a new ach-
romat, leaving the first and third radii for coma and distortion correction. The
two chromatic aberrations are controlled by the final selection of glass
dispersions.

As an example, we will first select suitable refractive indices. The two doub-
lets comprise four elements that we denote as (a) to (d). For the outer elements
(a) and (d) we may assume that n, = 1.6135. In the Schott catalog we find many
glasses having #n, lying close to this figure, with values of V, = (n, — 1)/(ng— nc)
lying between 37.2 and 59.1. For the inner elements (») and (¢) we choose simi-
larly n, = 1.5146 for which ¥, values are available between 51.2 and 63.6.
Suitable thicknesses are, respectively, 0.25 and 0.4 for the front component
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and 0.1 and 0.4 for the rear component; the center space is set at 0.4 with the
diaphragm midway. We do not use diaphragm position as a degree of freedom
since we have enough degrees of freedom already; it is, however, advisable to
keep the center space small to reduce vignetting.

For a first trial we may choose ¢; = 0.5, ¢c; = 1.2, and ¢5 = 0.5. We solve c3 to
make the front component afocal, and we determine ¢4 and ¢¢ by trial and error
to make the focal length equal to 10 and the Petzval sum 0.025. The Setup A is
as follows:

c d n
0.5
0.25 1.6135
1.2
0.4 1.5146
0.417646
0.2
Stop 02
—0.626156
0.1 1.5146
0.5
0.4 1.6135
—0.572960

with /" = 10, I’ = 9.8120, Ptz = 0.025, trim diameter = 1.5. A scale drawing of
this lens is shown in Figure 14.16. Tracing an f/8 marginal ray from infinity and
a principal ray passing through the center of the stop at a slope of —20° gives
these starting aberrations:

X! = —0.0610

/ — —
LA’ at f/8 = —0.09026, X/ = 40.0169

} at Uy, = —17.90°

Since the main function of radius r, is to control the spherical aberration and
the main function of rs is to flatten the field, we next proceed to vary ¢, and ¢s in
turn by 0.05 and plot a double graph by means of which the spherical aberration
and the tangential field curvature can be corrected. We assume that the desired
values of these aberrations are LA’ = +0.15 and X| = 0. The double graph in
Figure 14.17 indicates that we should make the following changes from the orig-
inal Setup A:

1. Ac; = 0.034. But ¢, was 1.2, so therefore try new ¢, = 1.234.
2. Acs = 0.009. But ¢5s was 0.5, so therefore try new ¢s = 0.509.
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These changes give Setup B, the thicknesses and refractive indices remaining as
before:

c d
0.5
0.25
1.234
0.4
0.410355
0.2
Stop 02
—0.637781
0.1
0.509
0.4
—0.579493

with /" = 10, Ptz = 0.025, LA’ (f/8) = 0.1361, LZA (f/11) = -0.0724; for 17.91°:
X! =-0.0668, X! = -0.0023.

Before making any further changes in LA’ and X{, we must decide whether
the aim point that we have chosen is the best. Certainly the zonal spherical aber-
ration is about right, and so we will maintain our aim for spherical aberration at
+0.15. However, to study the field requirements, it is necessary to trace several
more principal rays at higher obliquities and plot the astigmatism curves. These
rays give the tabulation shown in Table 14.7. A plot of these field curves (Fig-
ure 14.16) indicates at once that a much better aim point for the sag of the tan-
gential field X{ would be at —0.03, and this value will be used from now on
(second aim point in Figure 14.17).

We next proceed to correct the coma and distortion. The OSC of Setup B is
found to be —0.00399 at f/8, and both the coma and distortion are clearly exces-
sive. Our free variables are now ¢; and the power of the front component. By
using y = 1 for the paraxial ray, the power of the front component is given
directly by u5, and any desired value of this angle can be obtained by solving
for ¢;. Assuming for a start that both the OSC and the distortion should be

Table 14.7

Astigmatism and Distortion for Setup B

Field angle at Field angle Distortion

object (deg) in stop (deg) X X{ (%)
—35.00 —40 +0.17590 +0.24096 -2.52
—26.62 =30 —0.05159 +0.10503 —1.25

—17.91 -20 —0.06677 —0.00230 —-0.51
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Figure 14.18 Double graph for coma and distortion.
zero, we plot a second double graph (Figure 14.18), changing ¢; and u4. This
graph indicates that we should make the following changes in the system:

1. Ac; = 0.1227. But ¢; is 0.5, so therefore we should try ¢; = 0.6227.
2. Aus = 0.0117. But u5 is zero, so therefore we should try u5 = 0.0117.

With these changes our lens becomes Setup C:

c d n
0.6227
0.25 1.6135
1.234
0.4 1.5146
0.570553
0.2
Stop 02
—0.473548
0.1 1.5146
0.509
0.4 1.6135
—0.453187

with /7 = 10, Ptz = 0.025, power of front = +0.0117, OSC (f78) = —-0.000402,
distortion (18°) = —0.017%.
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We will assume for the present that zero is a good aim point for the distor-
tion, but we must investigate the coma further. To do this we trace a family
of rays entering the lens at —17.23°, and plot a graph connecting the height of
incidence of each ray at the stop against the height H’ of the ray at the paraxial
focal plane. This graph, Figure 14.19, indicates the presence of some negative
primary coma with an upturn at both ends of the curve due to positive
higher-order coma. Since the ends of the curve will probably be cut off by
vignetting, it might be better to aim at, say, +0.002 of OSC at f/8 instead of
zero. This will represent the aim point for OSC on future double graphs.

The spherical aberration of Setup C is +0.0908 and the field curvature is
given by X{ = +0.1531. Reference to the first double graph, using the new
aim point, indicates these changes:

1. Ac; = 40.026. But ¢, = 1.234, so therefore we should try ¢, = 1.260.
2. Acs = 4+0.0916. But ¢s = 0.509, so therefore we should try ¢s = 0.6006.

These changes give us Setup D:

c

0.6227
1.260
0.564736

—0.466835
0.6006
—0.435009

with /" = 10, Ptz = 0.025, front power = 0.0117, LA’ (f/8) = 0.1422; for 17.24°:
X! =-0.0704, X{ = -0.0331.

H’ | Marginal ray aperture |
~ ™
3.11 Principal ray .
Y /
3.10 \/\_/'/\/
3.09
1 1 1 1 1 1 1 1 1 1 1 1 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Height Y'in stop

Figure 14.19 Meridional ray plot for Setup C (17°).
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The spherical aberration and field curvature of this system are acceptable.
However, we find that the OSC at f/8 has now become —0.00313 and the 17° dis-
tortion —0.009%. Reference to the second double graph enables us to remove
these residuals, and we then return to the first graph for spherical aberration
and field curvature, and so on back and forth several times until all four aberra-
tions are acceptable. The final Setup is E:

c d n,
0.6445
0.25 1.6135
1.2466
0.4 1.5146
0.628369
0.2
Stop 02
—0.383337
0.1 1.5146
0.5856
0.4 1.6135
—0.395628

with /' = 10, Ptz = 0.025, power of front =0, LA’ (f/8) = 0.1529, LZA (f/11) =
—-0.0487, OSC (f/8) = 0.00204. The astigmatism and distortion values are as
shown in Table 14.8.

These aberrations are plotted in Figure 14.20, as well as the 17° meridional
ray plot for the study of coma. It is clear from these graphs that we should have
aimed at about +0.2% of distortion at 17° and about +0.001 of OSC at f/8.
These values should be adopted in any future changes. The field and spherical
aberrations are just about right.

Table 14.8

Astigmatism and Distortion for Setup E

Field at object (deg) Field in stop (deg) X! X! Distortion (%)
—33.63 —40 +0.08847 —0.27048 —0.676
—29.62 -35 —0.02411 —0.07838 —0.311
—25.54 -30 —0.07381 —0.03227 —0.119
—21.39 -25 —0.08298 —0.03218 —0.028

—17.18 —20 —0.06921 —0.03188 -+0.007
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Aberrations of final Protar design.

Our next task is to investigate the correction of the two chromatic aberra-
tions by choice of glass. We first attempt to correct the (D — d) An sum of each
component separately, since this is the proper thin-lens solution to the problem.
For this we use the true An = nyp — nc of each likely glass, ignoring the fact that
the catalog refractive indices are not quite equal to those we have assumed so
far. This gives what is shown in Table 14.9.

No suitable glasses were found by which we could have reduced the negative
(D — d) An sum in the rear component.
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Table 14.9
Axial Chromatic Error for Setup E

Lens Glass N, An D — d for f/8 ray (D —-d) An Sum

1 SK-8 1.61377  0.01095 0.108126 0.00118398 } 10.00003299
2 K-1 1.51173 0.00824 —0.139683 —0.00115099

3 KF-8 1.51354  0.01004 0.151056 0.00151660 } —0.00012649
4 SK-3 1.61128 0.01034 —0.158906 —0.00164309

Total —0.00009350

To calculate the lateral color at 17.18°, we apply the same arithmetic error to
the individual F and C indices as we have assumed for the e indices. This gives
the numbers shown in Table 14.10.

From these data we find that Hy— H¢ = +0.001086. Now the lateral color in
any lens takes the same sign as the longitudinal color of the rear component and
the opposite sign to the longitudinal color of the front component. Hence to
improve both the longitudinal and lateral color aberrations simultaneously we
must make the (D — d) An sum of the front component more positive. To do this
we need a glass in lens (1) having a lower V" number or a glass in lens (2) having
a higher ¥ number. Inspection of the chart enclosed with the glass catalog indi-
cates that the only possible choice is to use BK-1 in place of K-1 in lens (2),
because all other possible glasses have a refractive index differing too much
from the e indices we assumed for the aberration calculations. This glass has
An = 0.00805 giving a value of > (D — d) An equal to +0.00005953 in the
front component, or —0.00006696 for the whole system, and a lateral color of
Hy— H: = +0.000790. We must accept these residuals in the absence of other
more extreme glass types.

Of course, the final stage is to repeat the design using the true n, refractive
indices, and then to adjust the clear apertures to give the desired degree of
vignetting.

Table 14.10
Lateral Chromatic Error for Setup E

Nominal indices

Lens Glass N, ne nr H H, Hj:
1 SK-8 1.6135 1.60758 1.61853
2 K-1 1.5146 1.51012 1.51836
3.090647 3.091227 3.091733
3 KF-8 1.5146 1.50920 1.51924

4 SK-3 1.6135 1.60789 1.61823
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14.5 DESIGN OF A TESSAR LENS

The Tessar'® resembles the Protar in that the rear component is a new-
achromat cemented doublet, but the front component is now an air-spaced
doublet rather than a cemented old-achromat. The cemented interface in the
front component of the Protar was very strong, leading to a large zonal aberra-
tion, but the separated doublet in the Tessar gives so much less zonal aberration
that an aperture of f/4.5 or higher is perfectly feasible. From another point of
view, the Tessar can be regarded as a triplet with a strong collective interface
in the rear element; this interface has a threefold function: It reduces the zonal
aberration, it reduces the overcorrected oblique spherical aberration, and it
brings the sagittal and tangential field curves closer together at intermediate
field angles. Although sometimes it is mentioned that the Tessar was derived
from the Cooke Triplet lens (Section 14.6) invented by Taylor, its actual genesis
is the Protar being that Rudolph invented both the Protar (1890) and Tessar
(1902) as explained in the Tessar patent specification.

14.5.1 Choice of Glass

It is customary to use dense barium crown for the first and fourth elements, a
medium flint for the second, and a light flint for the third element. Possible
starting values are therefore as shown in Table 14.11.

Table 14.11

Initial Selection of Glasses for Tessar Design

Lens Type N, An = ng — nc Ve = (n,— 1)/An
a SK-3 1.61128 0.01034 59.12
b LF-1 1.57628 0.01343 4291
¢ KF-8 1.51354 0.01004 51.15
d SK-3 1.61128 0.01034 59.12

14.5.2 Available Degrees of Freedom

Because of the importance of the cemented interface in the rear component,
it is best to establish it at some particular value, say 0.45, and leave it there
throughout the design. Since there is no symmetry to help us, we must correct
every one of the seven aberrations, and also hold the focal length, by a suitable
choice of the available degrees of freedom; this makes the design decidedly
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laborious, especially if it is performed by hand on a pocket calculator or even by
a computer program.

In the front component we have the two powers, two bendings, and one air
space. The second air space is held constant to reduce vignetting, while in the
rear component we have only the two outer surface curvatures to be deter-
mined. We thus have seven degrees of freedom with which to correct six aberra-
tions and hold the focal length. We must therefore use choice of glass to correct
the seventh aberration.

Many possible ways of utilizing the various degrees of freedom could be
tried. In this chapter we shall assign the available freedoms in the following way:

1. The power of lens (a) and the dispersion of the glass in lens (d) will be
used to control the two chromatic aberrations.

2. The power of lens (b) will be solved to maintain the power of the front
component at, say, —0.05 (a focal length of —20) for distortion correction.

3. The curvature of the last surface, ¢;, will be solved to make the overall
focal length equal to 10.

4. The front air space will in all cases be adjusted to make the Petzval sum
equal to, say, 0.025.

5. The spherical aberration will be corrected in all cases by a suitable choice
of ¢s.

6. This leaves the bendings of lenses (a) and (b) to be used to correct the
OSC and the tangential field curvature X7 .

Our starting System A will be arbitrarily set as follows:

c d n,
0.4
0.40 1.61128
0
0.3518 (Ptz) (air)
-0.2
0.18 1.57628
(uh) 0.406891
Stop % (air)
—0.05
0.18 1.51354
0.45
0.62 1.61128
(uh) —0.247928

with £/ = 10, Ptz = 0.025.
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Table 14.12

Setup A Chromatic Aberration Contributions

Element (a) (b) (o) (d)

(D—-d)yAn —0.00266942  0.00404225  0.00270365  —0.00387980

0.00137283 —0.00117615
>~ =0.00019668

14.5.3 Chromatic Correction

Assuming that this is a reasonable starting system, we next trace an f/4.5
marginal ray in e light and find the (D — d) An contribution of each lens element,
as shown in Table 14.12. We could, of course, adjust the two components to
make both totals separately zero, but it is then found that the lateral color
Hf — Hg, calculated by tracing principal rays at 17°, is strongly positive. Since
lateral color takes the same sign as the longitudinal color of the rear component,
we must have a considerable amount of negative D — d sum in the rear and an
equal positive sum in the front component.

We will therefore try to increase the negative sum in the rear component by
choosing a glass for element (d) with a higher dispersive power, that is, a lower
V number. Such a glass is SK-8 with n, = 1.61377, An = ngp— nc = 0.01095, and
V, = 56.05. The slight alteration in refractive index requires a small adjustment
of the system, giving Setup B:

¢ d ne
0.4
0.4 1.61128
0
0.3421 (air)
—0.2
0.18 1.57628
0.4051605
Stop % (air)
—0.05
0.18 1.51354
0.45
0.62 1.61377

—0.2444831
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with /7 = 10, I’ = 8.851896, Ptz = 0.025. An f/4.5 marginal ray gives LA" =
+0.30981 and the D — d values shown in Table 14.13.

This sum is quite acceptable so far as longitudinal chromatic aberration is
concerned. We must next check for lateral color. Tracing principal rays at 17°
in F and C light tells us that the lateral color is +0.000179, which is also accept-
able, so that now both chromatic aberrations are under control. Fortunately
chromatic errors change so slowly with bendings that our future efforts at cor-
recting spherical aberration, coma, and field curvature by bending the three
components do not greatly affect the chromatic corrections.

Table 14.13

Setup B Chromatic Aberration Contributions

Element (a) (b) (¢) (d)
(D-d)yAn —0.00266942  0.00405667  0.00272259  —0.00411584
0.00138725 —0.00139325

>~ = -0.00000600

14.5.4 Spherical Correction

Because elements (a) and (b) are working at about the minimum aberration
positions, we cannot hope to correct spherical aberration by bending them.
Thus we are obliged to control spherical aberration by bending the rear compo-
nent, that is, by changing cs. This will be done by a series of trials at every Setup
from now on.

We arbitrarily require LA’ to be about +0.098; this will yield a zonal residual
of about half that amount, giving excellent definition when the lens is stopped
down, as it will almost always be in regular use. We then vary ¢; and ¢z to cor-
rect the OSC and X| by means of a double graph (Figure 14.21). The aim point
will be at zero for both these aberrations.

Correcting the spherical aberration of Setup B by adjusting c¢5 gives Setup C,
shown in the following table:
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¢ d ne
0.4
0.4 1.61128
0
0.2949 (air)
—0.2
0.18 1.57628
0.3968783
Stop % (air)
—0.080
0.18 1.51354
0.45
0.62 1.61377
—0.2632877

with /7 =10, I’ = 9.035900, Ptz = 0.02499, LA’ = 0.09724, OSC = -0.01778. A
principal ray traced at 20° through the stop emerges from the front of the lens at
17.3070°, with the following fields:

Angle: 17.31°,  X[: 0.0716 X|: 0.4337, distortion: 0.213%

Aim point

-0.01

-0.02 -

1
I
I
I
1 1 I 1 1 1 - X{ (1 70)
-0.4 -0.2 0 0.2 0.4 0.6

Figure 14.21 This double graph shows the effects of bending the first two elements of a Tessar at
17° field angle. (In each case the Petzval sum and spherical aberration have been corrected first.)

The distortion is negligible, showing that the choice we made of u = —0.05 is
about right, and we will continue with that value in what follows. The negative
OSC is, however, much too large, and the tangential field is much too
backward-curving.
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14.5.5 Correction of Coma and Field

To plot a double graph, we make a trial change of Ac; = —0.05 from System C
and then restore everything to its original value (i.e., Setup D). We then return to
Setup C and now change ¢; by 0.05, which gives Setup E. These changes are
shown in Figure 14.21. Following the usual procedure with a double graph,
and making several small adjustments, we finally come up with Setup F:

c d n,
0.4126
0.40 1.61128
0.013442
0.2927 (air)
—0.1366
0.18 1.57628
0.464462
Stop % (air)
—0.0571
0.18 1.51354
0.45
0.62 1.61377
—0.247746

with /' = 10, /' = 8.9344, LA’ (f/4.5) = 0.0958, LZA (f76.4) = —0.0258, OSC
(f74.5) = 0, Ptz = 0.0250. The results are shown in Table 14.14.

The aberration graphs are shown plotted in Figure 14.22. As a check on the
coma we next trace a number of oblique rays entering parallel to the principal
ray at 17.19° and draw a meridional ray plot (Figure 14.23). It will be seen that
the two ends of this graph sag somewhat, but the middle part of the curve is
straight. This is an indication of the presence of negative higher-order coma,
and it cannot be usefully corrected by the deliberate introduction of positive
OSC. A much better method of removing it is to introduce some vignetting.
If we limit the clear aperture of each surface to the diameter of the entering /4.5
axial beam, we shall cut off the ends of the ray plot in Figure 14.23 to the marks

Table 14.14

Astigmatism and Distortion for Setup F

Field angle (deg) X! X! Distortion (%)
29.74 0.1607 0.1303 -1.42
25.61 0.0102 0.0871 -0.92
21.42 —0.0458 0.0305 —-0.56

17.19 —0.0537 —0.0020 —0.32
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Figure 14.23 Meridional ray plot of Tessar Setup F. Rays SS are through top and bottom of
the stop. Rays V'V represent vignetted limiting rays.

V'V shown, and we shall thus remove almost the entire higher-order coma without
seriously reducing the image illumination. Figure 14.24 shows the lens apertures
so reduced and the path of the limiting oblique rays V'V.

The astigmatic fields shown in Figure 14.22 cross rather too high and the
field is a little backward-curving. We shall therefore return to the double graph
of Figure 14.21 and establish a new aim point at OSC = 0 and X = -0.04,
which is by chance very close to Setup E. After making several small adjust-
ments in ¢; and ¢;, and of course correcting the spherical aberration each time
by ¢5 and the Petzval sum by d5, we arrive at the following solution G:
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¢ d n
0.4065
0.40 1.61128
0.0069273
0.3019 (air)
—0.1421
0.18 1.57628
0.4596089
Stop 8—?; (air)
—0.0579
0.18 1.51354
0.45
0.62 1.61377
—0.2486575

with 7 = 10, I’ = 8.925977, Ptz = 0.025, LA' (f/4.5) = 0.1029, LZA (f/6.4)
= -0.0216, OSC (f/4.5) = 0, > (D — d) An = -0.00001096, lateral color
Hp — H: (17°) = —0.00031. The results are shown in Table 14.15. The fields
and aberration are shown plotted in Figure 14.25.

Marginal

Figure 14.24 Vignetting in Setup F, 17° beam.

Table 14.15
Astigmatism and Distortion for Setup G

Field (deg) X! X! Distortion (%)
29.64 0.1224 —0.0283 —1.18
25.55 —0.0148 —0.0064 —-0.77
21.38 —0.0619 —0.0257 —-0.47

17.16 —0.0635 —0.0430 —0.27
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Figure 14.25 Aberrations of Tessar Setup G.
14.5.6 Final Steps

We must now study the effect of changing the cemented interface c.
This was arbitrarily set at 0.45, and we will next repeat the entire design with
c6 = 0.325. The resulting lens is decidedly different from the previous design,
as shown in the following table:

¢ d n
0.328
0.4 1.61128
—0.0757715
0.347 (air)
-0.24
0.18 1.57628
0.3564288
0.37 (air)
Stop o3
—0.135
0.18 1.51354
0.325
0.62 1.61377
—0.3216593

with /' =10, /" =9.20712, LA’ (f/4.5) = 0.08714, LZA (f/6.4) = -0.03475, OSC
(f14.5) = 0, > (D — d) An = -0.0000707, lateral color (17°) = —0.00121. The
results are shown in Table 14.16.

These aberrations are shown in Figure 14.26. The field is a little narrower than
before but quite satisfactory. It should be noted that both of the color aberrations
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Table 14.16

Astigmatism and Distortion for Second Tessar System

Field (deg) X! X/ Distortion (%)
25.41 0.0408 —0.0905 +0.12
21.38 —0.0244 0.0198 —0.04
17.22 —0.0413 0.0157 —0.06
30°
T. | /S
\
20 | i M+
! /
1
| I
i Zr
10
O 1 1 1 1 1 1 1 1 1 P 1 1 1
-0.5 0 0.5 -01 0 0.1 0.2

Figure 14.26 Aberrations of second Tessar system.

are negative; to rectify this requires a small increase in the ¥ number of the glass
used for the rear crown element, say to SK-1, which has n, = 1.61282 and V, =
56.74, or SK-19 with n, = 1.61597 and V, = 57.51. The lens designer should always
be mindful of the impact glass choice can have on a design.

The chief matter requiring study is the meridional ray plot in Figure 14.27,
which should be compared with the previous graph in Figure 14.23. It is imme-
diately clear that the change from c¢g = 0.325 to 0.45 has had the effect of raising
the lower end of the curve and depressing the upper end. That is, strengthening
¢¢ has introduced some undercorrected oblique spherical aberration to the exist-
ing negative higher-order coma, with an improvement in the overall quality of
the lens. The lower end of the curve needs cutting off more than the upper
end, but obviously we cannot cut it back beyond the marginal ray aperture.

The best way to improve this Tessar is to raise the refractive indices, prefer-
ably above 1.6 in all elements. It is doubtful if changing the thicknesses would
have any significant effect.
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Figure 14.27 Meridional ray plot for Tessar system with ¢ = 0.325 (17°).

14.6 THE COOKE TRIPLET LENS

The English designer H. Dennis Taylor was led to this design'” in 1893 by the
simple consideration that if an objective was to consist of a positive lens and a
negative lens of equal power and the same refractive index, the Petzval sum
would be zero, and the system could be given any desired power by a suitable
separation between the lenses. However, he quickly realized that the extreme
asymmetry of this arrangement would lead to an intolerable amount of lateral
color and distortion, and so he split the positive element into two and mounted
the negative element between them, thus making his famous triplet objective
(Figure 14.28). He also tried the alternative arrangement of dividing the nega-
tive element into two with the positive lens between, but this is much less favor-
able than the classic arrangement.

Marginal

Figure 14.28 The Cooke triplet lens.
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The triplet objective is tricky to design because a change in any surface affects
every aberration, and the design would be impossibly difficult without a prelimi-
nary thin-lens predesign using Seidel aberrations. We assign definite required
residuals for each primary aberration, and then by ray tracing determine the
actual aberrations of the completed thick-lens system. If any aberration is exces-
sive, we adopt a different value for that primary aberration and repeat the entire
predesign. The thin-lens residuals used in the following example are the result of
experience with prior designs that result in the final thick system being satisfac-
tory. Of course, in making a design differing from this in any important respect
such as aperture, field, or glass selection, we would require a different set of Seidel
aberration residuals, which would have to be found by trial.

14.6.1 The Thin-Lens Predesign of the Powers
and Separations

If we place the stop at the negative thin element inside the system, we can
solve for the powers and separations of the three elements to yield specified
values of the overall focal length and primary chromatic aberration, primary
lateral color, Petzval sum, and one other condition that will eventually be used
for distortion control. This last requirement might be the ratio of the two
separations, the ratio of the powers of the outside elements, the ratio of the
power of the combination of elements ¢ and b to the power of the system, or
some other similar criterion. We thus have five variables (three powers and
two separations) with which to solve five conditions, after which we shall have
three bendings to correct for the three remaining aberrations: spherical, coma,
and astigmatism. Without this convenient division of the aberrations into two
groups, those depending only on powers and separations and those depending
also on bendings, the entire design process would be hopelessly complicated
and almost impossible to accomplish.

The first part of the thin-lens predesign can be performed in several ways, the
one employed here having been introduced by K. Schwarzschild around 1904. It
uses the formulas for the contributions of a thin element to power, chromatic
aberration, and Petzval sum, given in Section 11.7.2. These contributions may
be written for each aberration in turn, as follows:

Va)ba + )y + (e)be = (g — i) = ya® if u, =0 (power)
(yi/Va)(pa + (y%/Vb)({bb + (y(Z/VC)(]Sc
(1/na)¢, + (1/np)dy, + (1/n.)

These three equations are linear in the three lens powers, and they can be
easily solved for the powers once we know the three axial-ray heights y,, v,
and y. The first of these, y,, is known when the focal length and f-number

~ L/, uf (chromatic)

Ptz (Petzval)
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are known, but y, and y. must be found by trial to satisfy the remaining two
conditions, namely, the correction of lateral color and the ratio of the two
separations S1/S, = K. Reasonable starting values of the other ray heights are
vy = 0.8y, and y. = 0.9y,,.

As an example, we will proceed to design an objective of focal length 10.0
and aperture f/4.5 covering a field of +£20°. We shall assume that K = 1, and
use the following types of glass:

(a,c) SK-16, np = 1.62031, np — nc = 0.01029, ¥ = 60.28
(b) F-4, np = 1.61644, np — nc = 0.01684, V = 36.61

In our predesign we shall aim at the following set of thin-lens residuals, hoping
that these will give a well-corrected system after suitable thicknesses have been
inserted:

=10 Petzval sum = 0.035

ve = 1111111 chromatic aberration = —0.02
u, =0 lateral color = 0

uy = 0.111111 spherical aberration = —0.08
Upr o = —0.364(tan 20°) comaj = +0.0025
K=25/S=1.0 ast; = -0.09

with y, = L.111111, y, = 0.888888, and y. = 0.999999. Solving the three
Schwarzschild equations for the three powers gives

¢, =0.192227, ¢, = —0.291104, ¢, = 0.156285

The paraxial ray and the paraxial principal ray passing through the middle of
the negative lens have the values shown in Table 14.17. Inspection of this table
shows that, for the paraxial ray,

Ug = 0: Up = Uy + yad’aa Ue = up + yb¢b
St = Wa—yp)up, Sz = (Vp — ye)/ute

Table 14.17
Paraxial Ray Traces for Cooke Triplet Predesign

¢ ba b b
—d -8 =S,
Paraxial ray
Yy Ya Vb Ye
u u, up U, ug,

Paraxial principal ray
JVpr Ypra Yprb = 0 Ypre

Upr Upra Uprp Uprp
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Substituting the numerical values of our example gives

u, =0, u,=0.2135856, u,=-0.0451736
S; = 1.040436, S, = 2.459647

where K = /S, = 0.423002. Now it is found that K varies almost linearly with
¥», and a couple of trials tells us that 9K/0y, = —46.0. Thus retaining the previ-
ous y, = 1.111111 and y. = 0.999999, we find that with y, = 0.876380 we have

¢, = 0.153234, ¢, =-0.296588, ¢, = 0.200775
up = 0.1702602, wu, = —0.0896636
S; = 1.378661, S, =1.378709, K = 0.999965

This is virtually perfect, so we return to the thin-lens ray-trace table and we see
that for the paraxial principal ray

_ Spra o
YVpra = 1_7514561 = —0.636244

Yprb = 07 Ypre= _ypra/K: +0636266

We can now determine the contribution of each element to the lateral color by
the relation

TenC = —yypedp/ Vu6
where
T C, = 0.0161736, T, Cp, =0, ToC.= —0.0190729

with the total lateral color = —0.002899. To correct this, we must change y. and
repeat the whole process.
Omitting all the intermediate steps, we come to the final solution:

ye = L1111, y, = 0861555,  y, = 0.962510
b, = 0.1684127, ¢, = —0.3050578, . = 0.1940862
up = 0.1871252,  u, = —0.0756989

S, =1.333632, S, =1.333639, K = 0.999995

With wup, = —0.364, we find

Ypra = —0.6260542,  yp =0,  ypr. = 0.6260573
where
TenC, = 0.0174910, T4, Cp =0, ToC.= —0.0174616

Hence the thin-lens lateral color is +0.0000294, which is acceptable.
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14.6.2 The Thin-Lens Predesign of the Bendings

The bendings of our three thin-lens elements are defined by ¢, ¢;, and
¢s, respectively. Since the stop is assumed to be in contact with lens (b), the
astigmatism contribution of that element is independent of its bending. Our
procedure, therefore, is to adopt some arbitrary bending of lens («) and ascer-
tain its AC* by the formulas given in Section 11.7.2. We find the AC of lens
(b) by —%hf)z — ¢, and then solve for the bending of lens (c) that will make the
total astigmatism contribution equal to the specified value of —0.09. Having
done this, we go to lens (b) and bend it to give the desired value of the sagittal
coma, namely, 0.0025. This will not affect the astigmatism in any way. Finally,
knowing the bendings of lenses (b) and (c¢), we can calculate the spherical
contributions of all three lens elements, and plot a point on a graph connecting
the spherical aberration with the value of ¢;. Repeating this process several
times with different values of ¢; will enable us to complete the graph and pick
off the final solution for any desired value of the thin-lens primary spherical
aberration.

The contributions of the thin-lens elements to the three aberrations are given
by the formulas in Section 11.7.2 involving the G sums for spherical aberration
and coma. These contributions are quadratics in terms of the bending para-
meters ¢;, ¢3, and ¢s as follows:

Lens (a)
SC* = —23.227833¢7 + 11.968981¢, — 2.011823
CC* = 1.454188¢7 — 1.361274¢; + 0.292417
AC* = —7.374247¢} + 10.006298¢, — 3.442718
Lens (b)
SC* = 15.229687¢3 + 4.686647c5 + 1.436793
CC* = 0.667069¢; + 0.095270
AC* = 2.020947
Lens (c)
SC* = —15.073642¢% + 5.519113¢5 — 0.937665
CC* = -1.089393¢2 — 0.130340¢s + 0.030780
AC* = —6.377286¢% — 3.861014¢s — 0.528703

Collecting these expressions, we find that with a given ¢, we first solve for ¢s by
the quadratic expression

2 +0.6054322¢5 + (1.15633¢7 — 1.569053¢; + 0.2917344) = 0

Only one of the two solutions is useful; the other represents a freakish lens bent
drastically to the left that would exhibit huge zonal residuals; that is, it looks
odd and is quite strained (see Endnote 7).
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Knowing ¢; and c¢s, we can solve for ¢3 for coma correction by
3= —2.179967c% +2.040679¢; + 1.633104c§ +0.1953917¢5 — 0.6235753

Finally, knowing all three parameters c¢;, c¢3, and c¢s, we can calculate the
spherical aberration by
LA = —23.227833¢? 4 11.968981¢; + 15.229687¢3
+ 4.686647¢3 — 15.073642¢2 4 5.519113¢5 — 1.512695
Taking a series of values for ¢; we find what is shown in Table 14.18. Thus all
three lenses are bending to the right together. The spherical sums are plotted

on a graph (Figure 14.29), from which we can pick off the desired ¢; values
for our residual of —0.08. There are obviously two solutions, namely,

¢y =0.2314 and ¢ =0.3780

Table 14.18

Primary Spherical Aberration versus Bendings of a Triplet Lens

¢ c3 cs Primary spherical aberration
0.2 —0.308020  —0.042985 —0.311751
0.25  —0.238049 0.043543 —0.013077
0.3 —0.168838 0.105388 0.044583
0.35  —0.100863 0.152719 0.004574
0.4 —0.060233 0.189738 —0.164065
LA
A
0.1}
0
-0.1r
-0.2F
-0.3r
-0.4+
1 1 1 1 I > C
0.15 0.2 0.25 0.3 0.35 0.4

Figure 14.29 Relation between ¢; and primary spherical aberration, after correcting field by cs
and coma by c3,
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We shall follow up only the left-hand solution since the right-hand solution has
more steeply curved surfaces and is likely to exhibit larger zonal residuals. For
the left-hand solution, then, we have the following thin-lens curvatures:

cp =0.2314 c3 = —0.264746 ¢s = 0.015190
¢y = —0.040098 ¢4 = 0.230124 ¢ = —0.297695

14.6.3 Calculation of Real Aberrations

After selecting suitable thicknesses from a scale drawing, scaling the lenses up
or down to restore their exact thin-lens powers, and calculating the air spaces to
maintain the thin-lens separations between adjacent principal points, we obtain
the following thick-lens system:

¢ d np
0.2326236
0.4 1.62031
—0.04031
1.051018
—0.2617092
0.25 1.61644
0.227485
0.986946
0.0152285
0.45 1.62031
—0.2984403

with /7 = 10.00, /' = 8.649082, LA’ (f/4.5) = 0.01267, LZA ( f/6.3) = -0.01051,
OSC (f74.5) = -0.001302, Ptz = 0.03801 (see Table 14.19).

The lateral color correction is evidently about right. Figure 14.30 shows the
plotted spherochromatism graphs, which show that both the spherical and chro-
matic aberrations are also about right. The astigmatic fields are also plotted in

Table 14.19

Astigmatism, Distortion, and Lateral Color for Final Triplet Lens

Field (deg) X{ X! Distortion (%) Lateral color
24 —0.0386 —0.4338 1.98 0.00195
20 —0.0639 —0.0798 1.09 0.00055

14 —0.0488 +0.0192 0.42 —0.00021
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Figure 14.30 Aberrations of final triplet lens (f/4.5).

Figure 14.30, where it can be seen that a slight change in the thin-lens sagittal
astigmatism in the positive direction might be an improvement.

As far as coma is concerned, we have plotted the graphs of H' against Q; for
sets of oblique rays at three different obliquities in Figure 14.31. The points V'V
on each graph represent the limiting vignetted rays, which enter and leave the lens
at the initial marginal aperture height of 1.1111, assuming that the front and rear
apertures of the lens are limited to that value (Figure 14.32). When the obliquity is
increased the vignetting becomes accentuated, and the graphs become shorter at
the upper (right-hand) ends. The principal ray along which the astigmatism was
calculated is indicated in each case. The slope of the graph at the principal-ray
point is, of course, an indication of the X| for that obliquity. To improve the dis-
tortion, the design could be repeated with a different value of K, say, 0.9 or 1.1.

On the whole, this seems to be a pretty good design, typical of many triplets
using these common types of glass. For a good lens at a higher aperture such as
f72.8, for example, it would be highly desirable to use glasses with much higher
refractive indices, such as a lanthanum crown and a dense flint. A search
through the patent files will reveal many triplet designs for use at various aper-
tures and angular fields.

14.6.4 Triplet Lens Improvements

As we have mentioned, Dennis Taylor created the Cooke triplet lens over a
hundred years ago and you may wonder why we have spent such effort discuss-
ing this lens in this chapter.'® The reason is that this lens type continues to be
of interest for use in various new systems such as low-cost cameras, printers,
copiers, and rifle scopes. As odd as it may seem that such a simple lens



14.6 The Cooke Triplet Lens 427

H/
4.56 -
4
4.55 -
24°
4.54 -
4.53 4
3.69 -
3.68] N 20°
v
v
251
14°
250 |- )/e\/r/
0.01} v
Axis
0 )/"\6—\1._/,\;
Y Z
—0.01 | | | | | | Q1
-1.5 -1.0 -0.5 0 0.5 1.0 1.5
Figure 14.31 Meridional ray plots of triplet lens.
Marginal
ENa———
/4.5 I W A

Figure 14.32 Final triplet design, showing f/4.5 marginal ray and limiting rays of vignetted 20°
beam.
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configuration continues to receive interest by lens designers, it has because
clever lens designers have been able to find solutions that provide better perfor-
mance and lower manufacturing costs that satisfy certain product requirements.
The cost of a lens system includes at least the following considerations:

Number of elements

Diameter of elements

Volume of elements

Cemented elements

Tolerance of radii, thicknesses, decenter, tilt, wedge, and so on
Surface figure and quality

Cost of glasses (higher index typically costs more; higher production
volume glasses typically cost less)

® Mechanical mounting complexity

® Focusing mechanism complexity

® (Coatings

Clearly the lens designer is required to consider far more than just the optical con-
figuration and the performance of the design. It is often said that the optical design
of the lens is less than half of the lens designer’s work in completing a project.

In 1962, Hopkins published a systematic study of a region of triplet solutions
in the midst of the infinite number of third-order solutions.'” His analysis
included both third-order and fifth-order aberrations. Hopkins made a number
of observations, but perhaps the most significant was that he found that raising
the index of the lenses was productive.

Independently in the mid-1950s, Baur and Otzen improved on the triplet
photographic objective lens.'® They pointed out that the known triplet photo-
graphic objectives used the highest possible refractive index material for the
two positive elements and the lowest possible refractive index material for the
negative element in an effort to obtain a low Petzval sum; therefore the field
was flattened to achieve a large and useful image area. Their invention was
finding structures that provided improved performance where the new lens
has greater radii than prior art triplet lenses, requires less glass, and is more eco-
nomic to manufacture. They found that the refractive index for all three lenses
should be in the range of 1.72 to 1.79 for the D spectral line and that the Abbe
number should be about 45 for the positive elements and about 28 for the neg-
ative element. More particularly, the arithmetic mean of the Abbe numbers of
the three elements must obey the relationship,

i+ Vo + Vs

36
< 3

< 41.

Baur and Otzen teach in their patent the other relationships that are required to
achieve the performance they claim. Their example lenses are f/2.8 with field
coverage of 26° half-angle.
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About a decade later, Kingslake'® disclosed a means to produce a triplet cov-
ering a wide field that was remarkably different than that of Baur and Otzen.
Ackroyd and Price® cofiled a patent application also on wide-angle triplets.
Interestingly, their patents were sequentially issued. Kingslake’s goals were to
markedly increase the useful field-of-view to at least 34° half field-angle with
less vignetting than any prior art, to use lower-cost glasses, reduce the size of
elements, and minimize the overall length of the lens.

Up to this time, the maximum half field-angle achieved was about 28° and
the lens tended toward a reverse telephoto lens, which means that the focal
length is shorter than the total length from the front lens vertex to the focal
plane. He was able to reduce refractive indices used to about 1.61 and Abbe
numbers to about 59 for the positive elements and 38 for the negative element.
An f76.3 lens having good performance was designed with 35° half field-angle
and about 0.30 vignetting. The diameter of the front, middle, and rear elements
are greater than 30%, 15%, and 18% of the focal length, respectively. Ackroyd
and Price, who also worked at Kodak with Kingslake, improved on Kingslake’s
design by finding rules for the lens structure that allowed a 34° half field-angle
with 0.58 vignetting at f/6.3; thus, the diameter of the front, middle, and rear
elements are greater than 24%, 16%, and 23% of the focal length, respectively.
However, satisfactory results were claimed if diameters were kept above 20%,
13%, and 20%, respectively.

These lens designers made a dramatic leap forward in developing a smaller,
lower-cost, and wide-field objective lens suitable for volume production. In both
patents, specific and detailed guidance is provided to teach the design procedure
for a lens designer to follow. Figure 14.33 illustrates an example lens from their
patents. The ray fans in Figure 14.34 show acceptable spherical aberration and
chromatic correction on-axis (0°) with some negative coma and slight sagittal
astigmatism appearing at 12°. By 24°, oblique spherical aberration is dominating
in the meridional plane and sagittal astigmatism continues to increase. A small
amount of vignetting of the lower rays can be seen. At the edge of the field
(34°), vignetting of both upper and lower rays is evident and necessary to limit
the image degradation of the quite strong tangential astigmatism. The sagittal
astigmatism has also grown and switched from undercorrected to overcorrected.

The astigmatic field curves in Figure 14.35a show this behavior (see page
432). The tangential astigmatism has been reasonably well controlled to be rel-
atively flat out to about 86% of the field, with the sagittal somewhat less so. At
about 29°, the sagittal and tangential curves intersect and then rapidly separate,
with the tangential astigmatism becoming more undercorrected and the sagittal
astigmatism more overcorrected. This is also another example of using the
higher-order astigmatic aberrations to balance against the lower-order terms
to achieve a wider field. An estimate of this intersection height is given by
Eq. (13-8). The distortion is shown in Figure 14.35b and the 0.25% distortion
is quite acceptable for intended application of this lens.
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/34

24°
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Figure 14.33 Wide-angle triplet lens.

In the early 1990s, Hiroyuki Hirano investigated using the triplet for a low-
cost, broad zoom-range lens for a copying system rather than the more typical
four-element symmetrical lenses.”’ At that time, available copying lenses had a
zooming range of about 0.6X to 1.4X with an f-number of 5.6 and total field
coverage of about 40°. The new triplet copying lens is shown in Figure 14.36
and is the third of the five examples contained in the patent (see page 433). This
lens has a 100-mm focal length, an f-number of 6.7, and total field coverage
of 46°. The structure is as follows:

r d nyg Vd
23.662
8.418 1.58913 61.2
36.430
2.003
—30.805
1.033 1.60342 38.0
30.370
1.686
55.410
3.238 1.69350 53.2

—29.366
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Figure 14.34 Ray fans for wide-angle triplet lens with /= 100 and f76.3. Ordinate is 0.5 lens units. F light is solid curve, d light is short
dashed curve, and C light is long dashed curve.
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Field curves (a) and distortion (b) for wide-angle triplet lens with /= 100 and f76.3. Field curves are in lens units and distortion
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Figure 14.36 Triplet copying lens with f'= 100, f76.7, and 46° total field coverage.

Table 14.20
Alternative Glass Selections for Triplet Copying Lens

Example element Ne V.
1-1 1.51633 64.1
1-2 1.58144 40.7
1-3 1.69100 54.8
2-1 1.49136 57.8
2-2 1.63980 34.5
2-3 1.74400 44.8
3-1 1.58913 61.2
3-2 1.60342 38.0
3-3 1.69350 53.2
4-1 1.58913 61.2
4-2 1.58144 40.7
4-3 1.67790 55.3
5-1 1.51633 64.1
5-2 1.60717 40.3
5-3 1.72916 54.7

433

An important innovation Hirano made was to use lower refractive index
glasses and the minimum number of elements feasible to solve the design goals.
Notice that different crown glasses were used for the two positive elements and
also it is seen that the refractive index of each of the three lenses is remarkably dif-
ferent, in contrast to typical triplet lenses. The e spectral line refractive index and
the Abbe number for each glass used in the five examples are listed in Table 14.20.
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Abbe found that if the condition 0.08 < n3 — n; is met, then additional per-
formance improvement can be realized. In the five examples, n3 — n; is observed
to range from 0.09 to 0.25. Note also the significant thickness of the first ele-
ment, which is utilized to control Petzval and to achieve useful distribution of
surface powers for aberration control.

Figure 14.37 presents the longitudinal spherical aberration. It is evident that
the lens is adequately corrected for spherical aberration and is achromatic
since the ¢ and F curves intersect at the 0.7 zone. The ray fans in Figure 14.38
show the existence of high-order aberrations that are controlled nicely by the
lens designer. Some tangential coma can be seen starting at 16° and sagittal
oblique spherical aberration is marginally acceptable at 23°. Modest vignetting
is employed at 23° to control the strong negative tangential coma.

- 0 1 2

Figure 14.37 Longitudinal spherical aberration for unity magnification of the triplet copying
lens. F light is short dashed curve, d light is solid curve, and e light is long dashed curve. The
ordinate is in lens units with /= 100.



y
T~ / 71~ / —]| :
e Py AT r~ ] Px = p.V 4
0° 8°
&y
]
/
TN, .- i
N | L& AN 4
7 == | py / - _/./' px py ; 7
- | 7
" /
U
|\
16° 23°

Px

Px

Figure 14.38 Ray fans at 1X for triplet copying lens with /= 100 and f76.7. Ordinate is 0.2 lens units. F light is solid curve, d light is

short dashed curve, and e light is long dashed curve.



436 Unsymmetrical Photographic Objectives

23° 23°

0.00 200 -05 0 0.5
(a) (b)

-2.00

Figure 14.39 Field curves (a) and distortion (b) for triplet copying lens at unity magnification
with /= 100 and f/6.7. Field curves are in lens units and distortion is in percent.

An estimate of the intersection height, as given by Eq. (13-8), of the Sand T
curves in Figure 14.39a is about 30°, with the Buchdahl coefficients being

o3 = 0.0691, p,0 = 0.0698, and y,, = —0.0088.

This is significantly greater than the 20° observable in the figure. Examination
of Figure 14.39a shows the clear presence of at least seventh-order tangential
astigmatism, which is used to keep the tangential field reasonably flat and then
begins to become strongly undercorrected at about 20°, which is why the esti-
mate by Eq. (13-8) is excessive. The sagittal curve appears to be primarily third-
and fifth-order astigmatism. This is a good example of a productive use of the
higher-order aberrations to achieve design objectives.
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Chapter 15

Mirror and Catadioptric
Systems

Curved mirrors, concave or convex, have often been used as image-forming
systems, either alone or in combination with lens elements. Historically, most
large astronomical telescopes have used a concave mirror to form the primary
image, which is then relayed and magnified by either a second concave mirror
(Gregorian) or a convex mirror (Cassegrain), although the objectives of small tele-
scopes are generally achromatic lenses. Very small aspheric or spherical mirror
systems have occasionally been used as microscope objectives. A single mirror
used alone must generally be aspheric to correct the spherical aberration, but by
combining two or more mirrors, with perhaps some lens elements also, it is possi-
ble to secure good aberration correction using only spherical surfaces. Summaries
of reflecting and catadioptric systems have been given by Villa' and Gavrilov.?

15.1 COMPARISON OF MIRRORS AND LENSES

Mirrors have many advantages over lenses, principally as follows:

1. A mirror can be made of any size and of any material, even metal, provided
it is capable of a high polish. Since good optical glass blanks cannot generally
be made in diameters greater than about 20 in., all optical systems larger
than that must be mirror systems. Often a mirror is used in conjunction with
lens elements for aberration correction; such systems are called catadioptric.

2. Mirrors have no chromatic aberrations of any kind; hence a mirror can be
focused in the visible and used in any wavelength region in the x-ray, UV
or IR if desired. Also, mirrors exhibit no selective absorption through the
spectrum as lenses do, but it must be noted that it is difficult to form mirror
coatings that reflect well in the extreme ultraviolet.

3. A mirror has only one-quarter the curvature of a lens having the same power;
hence mirrors can have a high relative aperture without the introduction of exces-
sive aberration residuals. The Petzval sum of a concave mirror is actually negative.
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4. By the use of several mirrors in succession, it is often possible to fold up a
system into a very compact space.

On the other hand, mirrors have many features that are disadvantageous by
comparison with lenses:

1. There will generally be an obstruction in the entering beam, causing a loss of
light and a worsening of the diffraction image. This obstruction may be a
secondary mirror or an image receiver, and if the angular field is wide the
obstruction may block off nearly all of the incident light.

2. Since all the power is in one mirror surface, that surface must conform
extremely closely to the desired shape, because even a slight distortion of
the surface by the action of gravity or by temperature variations may cause
a severe loss of definition. Flexure of a lens causes merely a trivial change
in the aberrations, but flexure in a mirror changes the image position and
alters the image quality drastically. The problem of mounting a large mirror
without any flexural distortion is a very difficult one.

3. The angular field of a mirror system is generally quite small. It can be
increased by the addition of one or more lens elements, but then many of
the advantages of a mirror are lost.

4. In most reflective systems it is unfortunately possible for light from an object
to proceed directly to the image without striking the mirrors. This must be
prevented by the use of suitable baffles if the system is to be used in daylight.
No baffles are needed in astronomical instruments since the overall sky
brightness is very low at night.

15.2 RAY TRACING A MIRROR SYSTEM

If an optical system contains spherical mirrors, the standard ray-tracing proce-
dure can be readily modified. The surfaces are listed in the order in which they are
encountered by the light, with the usual sign convention that radii are regarded as
positive if the center of curvature lies to the right of the surface. The separations d,
the refractive indices n, and the dispersions An are entered as positive quantities if
the light is traveling from left to right, but negative if the light is proceeding from
right to left. The system should be oriented in such a way that the final imaging
rays are moving from left to right so that the image-space index is positive. It
may, therefore, be necessary in some cases to regard the object-space index as neg-
ative; if this presents difficulties a fictitious plane mirror can be inserted in front of
the system to reverse the direction of the incident light.

As an example we will trace a paraxial ray and an f/1 marginal ray through a
Gabor system (see Table 15.1). This system has a negative corrector lens in



Table 15.1
Ray Trace through a Catadioptric System

(mirror)

¢ 0.20 0.143 0.1 0.6079 0

—0.35 —4.0 5.286 0.6

n -1.0 —1.545 -1.0 1.0 1.545
Paraxial

¢ —0.1090000 0.0779350 0.2 0.3313066 0

d/n 0.2265372 4.0 5.286 0.3883495

y 2.0 2.049385 2.282510 0.177515 0.000026

nu 0 0.2180000 —0.0582812 —0.3982208 —0.4570327 —0.4570327
Marginal ( f/1)

(0] 2.188 2.298947 2.587155 0.1870214 0.0004700

Q' 2.241196 2.289509 2.463413 0.1945020 0.0004302

1 25.9509 9.4244 10.6206 —18.4788 —18.8679

r 16.4535 14.6544 —10.6206 —11.8382 —29.9757

sin U 0 —0.1650029 —0.0744115 —0.4306454 —0.3233869 —0.4996328

v’ 0 —9.4974 —4.2674 —25.5085 —18.8679 —29.9757

Paraxial 1’ = 0.000057 f" = 4.376054
Marginal L’ = 0.000861 F’ = 4.379217
LA’ = 0.000804
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front, a concave mirror and a positive field flattener, the light entering from
infinity in a right-to-left direction. It should be noted that in the paraxial trace,
the sign of the product nu depends on both the sign of n and the sign of u.

15.3 SINGLE-MIRROR SYSTEMS
15.3.1 A Spherical Mirror

A spherical mirror with an object point at its center of curvature is a perfect
optical system having no aberrations of any kind. If the object point is displaced
from the center of curvature, the paraxial image point moves in the opposite
direction along a straight line joining the object point to the center of curvature
(Figure 15.1). Because the aperture stop is at the mirror, the system is symmet-
rical, and for small object displacements there will be no coma. However, some
astigmatism will be introduced, the sagittal image coinciding with the paraxial
image at the Lagrangian image point while the tangential image is somewhat
backward-curving.

It should be remarked that the focal length of a single spherical mirror is
exactly half the radius of curvature; the principal points coincide at the vertex
of the mirror, while the nodal points coincide at the center of curvature. Because
the refractive indices of the overlapping object and image spaces are equal and
opposite, the two focal lengths have the same sign, and the distance from the
principal point to the nodal point is equal to twice the focal length. This applies
to all reflective and catadioptric systems having an odd number of mirrors.
With an even number of mirrors, the outside refractive indices have the same
sign, and the ordinary rules for a lens system apply.

Figure 15.1 The line joining the object and the image passes through the center of curvature of
a spherical mirror.
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Figure 15.2 The spherical aberration of a spherical mirror.

If a spherical mirror is used with a distant object, undercorrected spherical
aberration and overcorrected OSC appear at the focus. The magnitude of these
aberrations is seen from the ray diagram in Figure 15.2. Here

sin2l = Y/(r— L"), sinl=Y/r

2 (-6

— 2207 - YH)'2F

A few points calculated for a mirror with radius 20 and focal length f” = 10 are
given in Table 15.2.

In this case the standard OSC formula becomes simplified to (F'/L — 1)
because /,, = 0 and /" = f”. It should be noted that the spherical aberration is
purely primary for apertures less than about f/6, and that by f/5 the OSC has

Hence

1/2

From which we find

L =r =r—L

Table 15.2

Spherical Aberration and Coma for a Mirror with Radius = 20

Y L LA =L -1 F=r-L osc Aperture
0.1 9.999875 —0.000125 10.000125 0.000025 1750

0.2 9.999500 —0.000500 10.000500 0.000100 1725

0.5 9.996874 —0.003126 10.003126 0.000625 1710

1.0 9.987477 —0.012523 10.012523 0.002508 VA

2.0 9.949622 —0.050378 10.050378 0.010127 2.5
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already reached Conrady’s tolerance of 0.0025 for telescope objectives. For
apertures under f/10 a single spherical mirror is often as good as a parabolic
mirror and it is, of course, very much less expensive to manufacture.

15.3.2 A Parabolic Mirror

To determine the correct form for a concave mirror to be free from spherical
aberration, we consider a plane wave front reaching the mirror from an axial
object point at infinity (Figure 15.3). In this diagram the entering plane wave
is PP, and while the axial portion of the wave is traveling a distance Z + 1/,
the marginal part of the wave travels a distance F’. Hence

Fl _ X‘i’f’ _ [Y2+(f/ _ 2)2}1/2
where
Y2 =417

This is clearly the equation of a parabola with vertex radius equal to 2f”.

This property of a parabolic mirror has been known for centuries, and it is
the form given to the primary mirror in most reflecting telescopes. However,
this mirror suffers from high OSC. The focal length F’ of a marginal ray is
equal to [Y? + (/' — Z)*]"? and it increases as Y increases in the same manner
as in a spherical mirror with a distant object. The coma corresponding to an
object subtending an angle U, is given by

(F' = f"tan Uy, = {[Af'Z+(f" — X)*]"* — f"} tan Uy, = Z tan Uy,

P <
[ =
Y
V4
= f——x
<—
P

Figure 15.3 Reflection of a plane wave PP by a parabolic mirror.
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Figure 15.4 Cutting three off-axis parabolic mirrors from one large paraboloid.

If the aperture of the mirror is small, we can write Z = ¥*2r,® and the sagittal
coma becomes simply

comay = h'/16(f-number)’ or OSC = 1/16(f-number)?

The same result can be derived from the primary or third-order coma expres-
sion in Section 11.7.2. Thus at the prime focus of the Palomar telescope, for
example, where the f-number is 3.3, the sagittal coma at a point only 20 mm
off-axis has reached a magnitude of 0.115 mm. It will be found that this OSC
is the same whether the mirror is a sphere or a parabola, but of course the
spherical aberration is quite different in the two cases.

If the obstruction caused by the image receiver is undesirable, a so-called off-
axis parabola may be used (Figure 15.4). The only practical way to construct
such a mirror is to make a large on-axis mirror and cut as many off-axis mirrors
from it as are needed. Such mirrors are used in mirror monochromators of the
Wadsworth type, and as Schlieren mirrors for wind tunnel applications.

15.3.3 An Elliptical Mirror

As mentioned in Section 2.7, the equation of a conic section is
Z=cY? {14+ [1-AY* (1=}

where ¢ is the vertex curvature and e the eccentricity. For an ellipse, e lies
between 0 for a circle and 1 for a parabola. If a and b are the major and minor
semiaxes of the ellipse, respectively, then

e=[(@-b)/a"? a=1/c(1-¢), b=1/c(1-e)"*=(ajc)"?

In terms of the two semiaxes, the vertex curvature is ¢ = a/b>.



446 Mirror and Catadioptric Systems

A concave elliptical mirror has the interesting optical property of two “foci,”
which are such that an object point located at one is imaged at the other without
aberration. The two “focal lengths,” that is, the distances from the mirror vertex
to the two foci, are

fi=a(l—e), fr=a(l+e)

Hence

e=(H-M)/(H+h), a=ifi+h), b=(fif)"

All optical paths from one focus to the other via a point on the ellipse are equal,
but the magnification along each path is given by the ratio of the two sections of
the path, and hence it varies greatly from point to point along the curve. This
leads to heavy coma for an off-axis object point.

If the ellipse is turned so that the vertex is at the middle of the long side, we
have an oblate spheroid, and then the conic constant 1 — ¢ is greater than 1.0.
This situation seldom arises, however, since an oblate spheroid is stronger than
a sphere at the margin, and so it has worse spherical aberration.

To manually draw an ellipse, we first construct the two auxiliary circles on the
major and minor axes as shown in Figure 15.5a, and we draw any transversal
through the midpoint. If this crosses the two circles at 4 and B, respectively, then
the point of intersection of a vertical line through 4 and a horizontal line through
Bis a point on the ellipse. By running several such transversals, enough points can
be plotted to enable the ellipse to be filled in by use of a French curve. A simpler
but less accurate procedure is to calculate the two vertex radii #*/a and a*/b and
draw arcs with these radii through the ends of the semiaxes as in Figure 15.5b.
These arcs almost meet, and the small gaps can be readily filled in with a French
curve. A combination of both methods is probably the best procedure. However,
a CAD program can make drawing an ellipse quite easy and accurate.

Figure 15.5 How to draw an ellipse.
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15.3.4 A Hyperbolic Mirror

The eccentricity of a hyperbola is greater than unity, so that the conic con-
stant 1 — % is negative. A hyperbola has two branches, and a hyperbolic mirror
is formed usually by rotating the hyperbola about its longitudinal axis, only one
branch being utilized. This may be either a convex or a concave mirror. If con-
vex, then any ray directed toward the inside “focus” will be reflected through
the outside “focus,” the two focal lengths being

Ni=a(l-e), fr=a(l+e)

where a is the distance along the axis from the mirror vertex to the midpoint of
the complete hyperbola (Figure 15.6). The separation of the vertices of the two
hyperbolic branches is, of course, 2a. The vertex radius is a(l — %), so that f;
and f5 satisfy the ordinary mirror conjugate relation

Vh+1/fa=2/r

A convex hyperbolic mirror is used in the Cassegrain telescope, and a concave
hyperbola is used in the Ritchey-Chrétien arrangement.

~
N 7
/

Figure 15.6 A convex hyperbolic mirror (¢ = 38, r = —12.8, e = 1.156, f; = —5.93, /, = 81.93).

15.4 SINGLE-MIRROR CATADIOPTRIC SYSTEMS

It was suggested by F. E. Ross in 1935 that it might be possible to remove the
coma from a parabolic mirror by inserting an air-spaced doublet lens of approxi-
mately zero power into the imaging light beam at a position fairly close to the
image to keep the lens small. Since the lens was to be a thin achromat of zero
power, the same glass could be used for both elements. Ross found that it is impos-
sible to simultaneously correct all three aberrations, spherical, coma, and field cur-
vature, so he worked to control coma and field, letting the spherical aberration fall
where it would. Alternatively, by greatly increasing the lens powers, it is possible
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to design an aplanat corrected for spherical and coma, but the field is then decid-
edly inward-curving. Examples of both systems will be given here.

15.4.1 A Flat-Field Ross Corrector

Assuming a parabolic mirror of vertex radius 200 and focal length 100, the
spherical aberration is, of course, zero, and the marginal focal length at f/3.33
is found to be 100.5625. The OSC of the mirror is therefore 0.005625 when
the stop is at the mirror so that /;,, = 0. Tracing a principal ray entering the
mirror vertex at 0.5°, we find that Z! = 0 and Z{ = —0.00762. The Petzval
sum is —0.01, giving Zp, = +0.00381. The tangential astigmatism is exactly
three times the sagittal astigmatism at this small obliquity—that is, the distance
from the Petzval surface to the sagittal surface is 0.00381 and the distance to the
tangential surface is 0.01143, the ratio of these distances being 3.

We will follow through the design of a Ross corrector to be inserted at a
distance of 90° from this parabolic mirror. To avoid vignetting at a field
of 0.5° the diameter of the corrector must be about 5.0. The entering data
for the three rays are

Marginal: U = —8.57831°, Q = 1.49161
Paraxial: u = —0.15, y = 1.50
Principal: Uy, = 0.5°, Qp, = 0.7853882

We will start with the following setup. The glass is K-3 with n, = 1.52031 and
V,=59.2:

¢ d n
0
0.3 1.52031
0.1
0.089228
0.07
0.65 1.52031
(D-d) —0.036683

with /' =97.5837,1' =9.17044, LA’ = —0.06648, OSC = 0.00221, Ptz= —0.00771;
for 0.5°: Z, = —0.00024, Z{ = —0.00636, distortion = +0.09%. The curvature of
the first surface (¢; = 0) is arbitrary and was set to zero (plane surface) and will
be retained throughout. The central air space has been calculated to permit the
two lenses to be in edge contact at a diameter of 4.8, and the last radius is calcu-
lated by the D — d method for perfect achromatism. The dispersion of the glass
need not be known since both elements are made of the same material.
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Figure 15.7 Double graph for a flat-field Ross corrector.

The two variables that will be used to achieve coma correction and a flat tan-
gential field are, of course, ¢, and c¢3. Making small changes in these variables
permits us to plot the double graph shown in Figure 15.7. After a few trials,
the final system prescription was as follows:

¢ d n
0
0.3 1.52031
0.1169
0.149348
0.0670
0.65 1.52031
(D —-d) —0.0576113

with /' = 97.4760, I’ = 9.18666, LA’ = —0.11509, OSC = —0.00001, Ptz =
—0.00736; for 0.5°: Z; = 40.00153, Z{ = —0.00056, distortion = +0.19%.
The passage of axial and oblique rays through this system is shown in
Figure 15.8.

The slightly backward-curving sagittal field could probably be corrected by
the use of a somewhat higher refractive index for the negative element, but this
possibility was not explored. The major problem is, of course, the large residual
of spherical aberration, which could be removed only by the use of an aspheric
surface. Some recent workers have managed to correct all three aberrations by
means of three or more elements.
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Figure 15.8 Path of rays through Ross corrector.

15.4.2 An Aplanatic Parabola Corrector

By making both elements considerably stronger, it is possible to correct the
spherical aberration and OSC, and thus design an aplanatic corrector, but only
at the expense of a considerable inward field curvature. The thickness of the
positive element must be increased, and the central air space must be held at
some fixed value because the adjacent surfaces are almost identical.

For a starter we may consider the following setup:

c d n

—0.1
0.3 1.52031

0.1
0.1

0.1
1.1 1.52031

(D-d) —0.1095215
with [/ = 97.5847, I' = 9.33076, LA’ = —0.02649, OSC = 0.00037, Ptz =

—0.00674; for 0.5°: Z, = —0.0139, Z{ = —0.0469, distortion = —0.12%. We will
now hold the second surface curvature arbitrarily at 0.1, and vary the other cur-
vatures ¢; and ¢3 to plot a double graph (Figure 15.9). The graph for changes in
¢; 1s found to be decidedly curved, which is not surprising since changes in ¢
represent both a bending and a power change, whereas changes in ¢z are a pure
bending. A few trials give us the following final setup:
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c d n
—0.13
0.3 1.52031
0.1
0.1
0.10387
1.1 1.52031
(D -d) —0.1322352

with [/ = 98.7691, I' = 9.58664, LA' = 0.00001, OSC = 0.00002, Ptz =
—0.00791; for 0.5°: Z, = —0.0196, Z{ = —0.0654, distortion = —0.21%. This sys-
tem would be extremely heavy if made in a large size, and the inward tangential
field curvature would be obviously undesirable, being about nine times as great
as for the mirror alone. Other values of ¢, could, of course, be tried, but the
result is likely to be similar to this in performance.

osC

A
0.003

0.002

0.001

-0.001
cy= —0.13/

1 1 1 1 - LA'
-0.05 -0.04 -0.03 -0.02 -0.01 0

Figure 15.9 Double graph for aplanatic parabola corrector.

15.4.3 The Mangin Mirror

The French engineer Mangin® in 1876 proposed replacing the parabolic
mirror in a searchlight by a more easily manufactured spherical mirror, with a
thin meniscus-shaped negative lens in contact with the mirror to correct the



452 Mirror and Catadioptric Systems

Figure 15.10 A typical Mangin mirror.

spherical aberration (Figure 15.10). The design procedure is simple since there
is only one degree of freedom, namely, the outside radius of the lens, because
the mirror radius determines the focal length of the system. Using K-4 glass
(n, = 1.52111, V" = 57.64), a few trials give the following setup:

c d n

0.0981
0.3 1.52111
(mirror) 0.06544

with f7 = 10.0155, I’ = 9.82028, LA’ (f/3) = 0.00001, LZA (f/4.2) = —0.00008,
OSC (f73) =0.00307. The OSC is less than half that of a parabolic mirror of the
same focal length and aperture, but the chromatic aberration from F to C is
found to be 0.0564, while the zonal spherical aberration is negligible. The next
step, therefore, is to achromatize the system.

If we replace the simple negative lens with an achromat using the following
glasses:

1. F-4: n, = 1.61164, n, = 1.62058, ny = 1.62848
2. K-4: n, = 1.51620, n, = 1.52111, np = 1.52524

with the flint element adjacent to the mirror, we may start with a plano
interface:

c d n
0.1
0.2 1.52111
0
0.3 1.62058

(mirror) 0.062
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with /7 = 9.8332, I’ = 9.52178, LA’ (f/3) = —0.02094, zonal chromatic aberra-
tion F — C = —0.03326.

To plot a double graph for the simultaneous correction of spherical and zonal
chromatic aberrations, we make trial changes of Ac; = 0.01 and Ac, = 0.01,
respectively. The graph so obtained indicates that we should try ¢; = 0.1021
and ¢, = 0.01625. This is a great improvement, since L4’ = —0.00705 and the
zonal chromatic aberration L., = —0.00560. A few further small adjustments gave
the following final system:

c d n

0.10636
0.21 1.52111
0.01489
0.3 1.62058
(mirror) 0.062

with /" = 10.8324, /" = 10.52127, LA’ = —0.00007, OSC = 0.00215, zonal chro-
matic aberration = 0.00002. By tracing other rays the spherochromatism curves
can be plotted as in Figure 15.11. It can be seen that the aberration residuals are
very small, the chief residual being the ordinary secondary spectrum typical of a
negative achromat. This system is practical if made in small sizes, but for large
systems a parabolic mirror would be preferable.
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Figure 15.11 Spherochromatism of an achromatic Mangin mirror.

15.4.4 The Bouwers—Maksutov System

During World War II, Bouwers® and Maksutov’ independently proposed the
use of a monocentric catadioptric system to cover a wide angular field. This system
consisted of a spherical mirror and a thick corrector plate, all three surfaces having
a common center C located at the middle of the stop. Such a system has no coma
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or astigmatism and the image lies on a spherical surface, also concentric about C.
The corrector lens can be located either in front of or behind the stop, and it may
be thin and strongly curved, or thick and less strongly curved (Figure 15.12). For
any given front radius the thickness can be adjusted to eliminate the marginal
spherical aberration, but the zonal residual abberation will vary with the thickness.

Although the angular field of this monocentric system is theoretically unlim-
ited, the obstruction caused by the receiving surface increases as the field is wid-
ened to the point where eventually no light at all will enter the system. To
reduce this effect the relative aperture must be increased as the field is widened,
unless, of course, the receiver is a narrow strip crossing the middle of the aperture.

Figure 15.13a shows the zonal spherical aberration of four examples of
Maksutov correctors used with a mirror of radius 10.0, the marginal aberration
at f/2.5 being corrected in each case by using a suitable thickness for the correc-
tor. The four cases are as shown in Table 15.3. For the third case, the chromatic
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Figure 15.12 Graphs connecting the marginal spherical aberration with the thickness of the
corrector plate for various values of r; (mirror radius = 10).



15.4 Single-Mirror Catadioptric Systems 455

M -
C D F
Z -
Case 4
p L ) ) ) —-0.002 0 0.002 0.004
—-0.001 0 Chromatic aberration of Case 3
(a) (b)

Figure 15.13 Bouwers-Maksutov systems: (a) spherical aberration for four values of ry;
(b) chromatic aberration of case 3; (c) ray diagram of case 3.

Table 15.3

Corrector Thickness for Maksutov System

Case r Thickness ) Focal length Back focus
1 2.0 0.040 2.04 49172 5.0828
2 2.5 0.121 2.621 4.8463 5.1537
3 3.0 0.320 3.32 4.7386 5.2614
4 3.5 0.950 445 4.5260 5.4740

aberration is shown graphically in Figure 15.13b and a scale drawing of the
system in Figure 15.13c.

The chromatic aberration of the Bouwers—Maksutov system is decidedly
large and could be serious. It can be removed by achromatizing the corrector
lens, but then the system is no longer monocentric, and the angular field imme-
diately becomes limited. However, if only a narrow field is desired, then achro-
matizing the corrector is quite a satisfactory procedure.

15.4.5 The Gabor Lens

In 1941 Dennis Gabor,® the inventor of the hologram, patented a catadiop-
tric system that resembled the Bouwers—Maksutov except that it was not mono-
centric; it was much more compact and covered a narrow field at a high relative
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aperture. Actually, the example shown by Gabor was not achromatic, but the
example to be given here is.

In the absence of a field flattener, if the negative front collector lens has a
zero D — d sum, the system will obviously be achromatic. Thus the only require-
ment for achromatism is that the length D measured along the marginal ray
inside the corrector lens should be equal to the axial thickness of that lens. To
secure this condition it is helpful to make the lens as thick as practical, and to
use a glass of moderately high refractive index such as a barium crown. The
front radius is then chosen for spherical aberration correction when used with
a spherical mirror, and the second radius is found by the ordinary D — d
method. Placing the stop at the front surface, the field is backward-curving,
and the Petzval sum is negative. The following /1.6 system was the result of a
few easy trials:

C d ne
0.25
0.4 1.61282
0.2347439
8.0 (air)

(mirror) 0.06

with 7 = 8.0383, /' = 8.59345, LA’ (f/1.6) = 0.00925, LZA (f72.3) = —0.00420,
OSC (f71.6) = 0.00327, Petzval sum = —0.1258. The fields at an obliquity of 1°
were

Z!=10.00104, Z, =0.00064, distortion = —0.012%

As Gabor indicated in his patent, the negative Petzval sum can be easily
eliminated by the addition of a positive field flattener close to the image plane.
This lens may conveniently be plano-convex, although it may require a slight
bending to flatten the tangential field. A possible starting system with such a
field lens is as follows:

¢ d n, Glass
(as before) {0.25 0.4 1.61282 SK-1
0.2347439
8.0
(mirror) 0.06
8.0

(field flattener) {0.37162 0.1 151173 K-
0
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with /' =7.2231, /' = 0.46712, LA’ (f/1.6) = —0.00651, OSC (f/1.6) = —0.003438,;
for 1°: Z; = 0.00008, Z{ = 0.00024, distortion = 0.025%. This field flattener
has introduced a small amount of negative D — d sum, which is easily
removed by a small change in the radius of the second surface of the correct-
ing lens. The front surface was also strengthened slightly to remove the small
residual of spherical undercorrection caused by the field flattener. The final
system is as follows:

c d n,
0.251
0.4 1.61282
0.2348373
8.0
(mirror) 0.06
8.0
0.37264
0.1 1.51173

0

with /" = 7.1775, ' = 0.49554, LA’ (f/1.6) = 0.00501, LZA ( f/2.3) = —0.00219,
OSC (f11.6) = —0.00468, Ptz = 0; for 1°: Z; = 0.00009, Z{ = 0.00028, distortion
= 0.025%.

To investigate the coma, it is necessary to make a meridional ray plot for the 1°
beam. This is shown in Figure 15.14 above the corresponding plot for the
axial beam. It is clear that there is an excess of negative coma present, which
can be removed by shifting the corrector lens along the axis. As this has very
little effect on the aberrations, it is advisable to make a large shift, say from
8.0 to 6.0. This causes a slight overcorrection of the spherical aberration,

H’
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0.125 \/
0.123
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0 //‘\ /
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1 1 1 1 1 - Y1
-2 -1 0 1 2

Figure 15.14 Meridional ray plot for Gabor lens with space equal to 8.0.
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requiring a weakening of the front surface and a recalculation of the D — d sum.
These changes lead to the following results:

c d e
0.246
0.4 1.61282
0.2303761
6.0
(mirror) 0.06
8.0
0.37264
0.1 1.51173

0

with [/ = 7.2492, I’ = 0.49128, LA’ (f71.6) = 0.00314, LZA ( f/2.3) = —0.00299,
OSC (f/1.6) = —0.00163. Ptz = 0.000204; for 1°: Z{ = 0.00003, Z{ = 0.00009,
distortion = 0.026%. The (D — d)An in the two lenses is +0.0000343. To com-
plete the study, the 1° meridional ray plot was drawn (Figure 15.15). The
improvement over the previous setup is obvious.

Although this system is well corrected, mechanically something must be done
to keep the imaging rays clear of the corrector lens. A possible arrangement is
shown in Figure 15.16, using a hole in the middle of the corrector lens, but this
hole must be quite large for such a high aperture as f/1.6. A plane mirror could
be employed to reflect the beam out sideways, or back through the middle of the
concave mirror to somewhat mitigate this problem.

This Gabor system is unusual in that each of the six degrees of freedom (five
radii and one air space) is almost specific for one particular aberration. The front
surface controls the spherical aberration and the second the chromatic aberration;
the power of the field lens determines the Petzval sum, while its bending controls

H/
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Figure 15.15 Meridional ray plot for Gabor lens with space equal to 6.0.
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1° Upper rim ray

1° Lower rim ray

3

Figure 15.16 Final design of f/1.6 Gabor system covering +1°.

the field curvature; and finally the central air space is used to vary the coma. The
mirror radius, of course, determines the focal length. The two remaining aberra-
tions, lateral color and distortion, are usually negligible at such a narrow field,
but if the lateral color should be significant, it may be necessary to achromatize
the field lens, which would require a further adjustment of the chromatic correc-
tion by ¢,. The aperture of the Gabor system can be high, but the angular field
is small. This is another good example of why a lens designer should study the
lens being optimized to learn how the various parameters affect the several
aberrations. Blindly making adjustments can lead to poor outcomes.

15.4.6 The Schmidt Camera

The Schmidt camera® consists of a concave spherical mirror with a thin
aspheric corrector plate located at the center of curvature of the mirror. By
placing the stop at the corrector plate we automatically eliminate coma and astig-
matism, although at high obliquities some higher-order aberrations appear, but
the useful field of several degrees is much larger than that of most catadioptric sys-
tems. The remaining aberration is spherical, which is corrected by a suitable
aspheric surface on the corrector plate. The chromatic aberration is ignored.

The simplest way to derive an expression for the shape of the aspheric surface
is to select a neutral zone to represent the minimum point on the aspheric
surface, where the plate is momentarily parallel, and let the ray through this
neutral zone define the focal point of the system. Tracing a paraxial ray back-
ward from this focus and performing an angle solve enables us to determine
the vertex radius of the aspheric surface. To determine the thickness of the plate
at the neutral zone we must equalize the optical paths along the paraxial ray and
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the neutral-zone ray. We now have three relationships by which three terms of
the aspheric polynomial can be found, namely, the vertex curvature, the sag
of the neutral zone, and the slope of the surface at the neutral zone, which is
zero. If we need greater precision or if we desire more than three terms in the
polynomial, we can trace several other rays backward from the focus and make
a least-squares solution for as many terms as we need.

The path of the neutral-zone ray is shown in Figure 15.17a. The point C is
the center of curvature of the concave mirror of radius r. The point F is the
focus defined by the intersection of the neutral-zone ray with the axis. The focal
length of the system is FN', and the back focal distance is o. If 0 is the slope of
the neutral-zone ray at the image and Y|, the incidence height of this ray, then

clp _ 1
siny0p = Yo/r, a=r—r/2cos50p
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Figure 15.17 Design of a Schmidt camera: (a) neutral zone and (b) any other zone.
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The path of any other ray traced backward from the focus at a starting angle
0 is shown in Figure 15.17b. The angle of incidence 7 of this ray at the mirror is
given by

sin/ = (r —a)sin0/r

Assuming for simplicity that the plane side of the corrector plate is at the exact
center of curvature of the mirror, the ray path in the air can be calculated by

b=FM'=rsin(0—1I)/sin0
c=M'M =rcos(0—I)/cos(0 — 2I)

The slope of the ray inside the corrector plate is found by
sin U = (1/n)sin(6 — 21)

The line WW in Figure 15.17b represents a plane wave in the object space,
and the optical paths from this wave front to the focus F must be equal along
all rays. Along the axis this optical path is evidently (nt + r + a), and along a
general ray it is [b + ¢ + Z + n(t — Z)/cos U]. Equating these paths gives the
z coordinate of a point on the asphere as

_a+r—>b—c+nt(l —secU)

Z
1 —nsecU

To determine the corresponding height of incidence Y of this ray, we have
Y=MC—(t—Z)tanU, where MC = csinI/cos( —I)
We can apply these formulas to the neutral zone, for which we find

b=r—a, c=rcosilh, U=0

Example

For an f/1 Schmidt with r = 4.0, the focal length is about 2 and the marginal
ray enters at a height ¥ = 1.0. We may set the neutral zone at an incidence
height of 0.85, where sin %00 = 0.2125 and 0y = 24.5378°. The focal length
of the neutral zone is F’ = 0.85/sin 0, = 2.046745 and the back focus is
a = 1.953255. For the neutral-zone ray we have b = 2.046745 and ¢ =
3.908644; hence Z, = 0.004080. The refractive index is 1.523.

We next set the axial thickness of the plate at 0.01, and tracing a paraxial ray
backward from the focus, we solve the vertex curvature of the plate to make the
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paraxial ray emerge parallel to the axis. In this way we find that the vertex
radius should be R = 45.7416. The paraxial focal length is 2.046899.
Assuming a three-term polynomial of the form

Z=AY*+BY*+CY®
we see that 4 = 1/2R = 0.0109310. For the height of the neutral zone we have
Zo = A(0.85)* + B(0.85)* + C(0.85)° = 0.004080
and for the slope of the surface at the neutral zone we have
(dZ)dY), =2AY +4BY? + 6CY>
=24(0.85) + 4B(0.85)° + 6C(0.85)° = 0
Solving these three equations simultaneously gives the three coefficients as
A =0.010931, B=-0.00681084, C = —0.00069561

Calculating Z for several values of Y gives the data needed to plot the shape of
the asphere as shown in Table 15.4. If this curve is plotted, it will be seen that
the central bulge is much larger than the curl-up at the rim, so that it might have
been better to set the neutral zone a little lower, say at 0.80 instead of 0.85 of the
marginal height.

The trivial difference between the zonal and paraxial focal lengths represents
an OSC of only —0.000075, which is obviously negligible. It could be removed
completely by a slight shift of the corrector plate along the axis.

Table 15.4
Shape of Aspheric Corrector Plate for the Schmidt Camera

Y V4 Y zZ Y zZ

0.1 0.000109 0.4 0.001572 0.7 0.003639

0.2 0.000426 0.5 0.002296 0.8 0.004077

0.3 0.000928 0.6 0.003020 0.9 0.004016
1.0 0.003425

15.4.7 Variable Focal-Range Infrared Telescope

Sometimes a telescope is needed that can be used as part of a wide field-of-
view scanning system, particularly in the infrared spectrum. Figure 15.18 shows
such a f/1.1 telescope that can operate in the 8 to 14-um spectrum in conjunction
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Figure 15.18 Infrared telescope having variable focal range capability.

with an object-space scanner with a single infrared detector having dimensions
of about 75 um by 75 um."%!" Since object-space scanning is used, the telescope
only requires a field-of-view needed for the detector. This catadioptric optical
system comprises a hyperbolic primary mirror, a folding mirror, and a relay lens.
The relay lens has two lenses made of germanium and images the detector at the
location of the folding mirror. The folding mirror has a hole in it to allow the
passage of the infrared flux. In this case, the hole is about 4-mm diameter for a
105-mm focal length and a 91-mm diameter primary mirror. The detector image
at the hole is magnified by a factor of 2.3. This telescope can focus at object
distances from about a meter from the primary mirror to infinity; however,
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it was optimized to have diffraction-limited performance at about 2 meters but
still has near diffraction-limited performance over the entire range.

To accomplish this, the primary mirror was made mildly hyperbolic so that
longitudinal spherical aberration is zero when the object is about 3 m from
the primary mirror. As the object distance increases, the spherical aberration
becomes undercorrected and for closer object distances, it becomes overcor-
rected. Since just a single detector is used, it is prudent to design the useful
field-of-view of the telescope to accommodate three to five detectors in order
to ease alignment during manufacture. Since this telescope was intended for
service in the thermal infrared, the refractive elements were made of germanium
since it has very low dispersion in the 8 to 14-um spectrum. This spectral band
was selected rather than the 8 to 12-um spectrum because it was going to be
used typically at short ranges of a few meters, so atmospheric absorption was
not an issue until 14 um is exceeded.

The two lenses comprising the relay lens are elements of a cryogenic dewar.
The first lens serves as the dewar window and is at ambient temperature. In con-
trast, the second lens is mounted on the dewar cold finger along with the infra-
red detector. It is cooled to the temperature of liquid nitrogen. Consequently,
the refractive index of germanium when cooled must be used. Also, the spaces
between the two lenses and before the detector are both vacuum and its refrac-
tive index should be used rather than air. In this particular case. Omitting the
use of vacuum can be compensated by simply adjusting the primary mirror
to relay lens distance; however, lack of using the cryogenic refractive index for
germanium can result in disaster. The structure of this telescope, excluding the
folding mirror, is as follows:

r d n Conic constant
Primary —434.884 —1.49534
See note Mirror
Relay lens A 115.949
—5.2578 Germanium (ambient)
47.14596
—9.17448 Vacuum
Relay lens B —11.96679
—11.2268 Germanium (77K)
—4.388507

—3.8100 Vacuum

Note: This thickness depends on object distance Z and is given by

d = —246.888 — 167924 - 711448
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DESIGNER NOTE

It may appear that a concave hyperbolic mirror is more difficult to make than a spher-
ical or a parabolic mirror, so the lens designer might be hesitant to use this type of
mirror. In this case, the mirror was actually fabricated in production in about 75%
the time it took to make a similar parabolic mirror. As with most aspheric lens or
mirror components, the lens designer should consider how the element will be tested
and the fabrication method. In the case of this hyperbolic mirror, a simple biconvex
lens was constructed and used as a null lens so that the optician could use the common
knife-edge test method.

The lens was made of BK-7 glass having radii of 102.354 in. and —98.232 in., and
thickness of 1.000 in. Separation between the lens and the mirror was 17.000 in. With
collimated monochromatic light input to the lens, the image has a peak-to-peak wave-
front error of 0.16 lambda or a Strehl ratio greater than 0.9. Since the mirror was used
in the 8 to 14-um spectrum, the wavefront error scales by the ratio of the wavelengths.
Consequently, the mirror as used had a Strehl ratio of essentially unity or diffraction-
limited performance.

Also, it is often helpful in designing an optical system to view it from the opposite
direction. In this case, the lens designer can view the object space from the detector
position rather than from object space toward the detector. In a more complicated
system, it is often useful to view in the reverse direction to ensure that unexpected
vignetting or any other problem does not occur.

15.4.8 Broad-Spectrum Afocal Catadioptric Telescope

Lens designers have found it challenging to design high-magnification afocal
telescopes that can operate simultaneously over very broad portions of the visi-
ble and infrared spectrums.'? Such telescopes are frequently used with some
type of scanning sensor and require the pupil of the telescope to be external
to it so that the sensor and telescope pupils can mate. A possible telescope con-
figuration is shown in Figure 15.19 and comprises a concave mirror as the
objective and one-glass-type Schupmann lens (see Section 5.7.2) as the eyepiece
or secondary optics. By locating the focus of the primary mirror (objective
element) coincident with the internal focal point of the Schupmann lens
(eyepiece), the afocal condition is obtained. The aperture stop of the system is
located at the primary mirror while the exit pupil position is established by
the secondary optics, having a Schupmann configuration, imaging the aperture
stop. Since the Schupmann lens has positive optical power, the exit pupil is
a real image of the stop and is located external to the telescope. Generally, a
folding mirror would be used to allow the image-space beam to be accessible
and the resulting obscuration would likely be relatively small.
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Figure 15.19 Basic afocal catadioptric telescope configuration.

Ludwig Schupmann explored designing and building telescopes incorporat-
ing a dialyte objective lens (and other variants) for the purpose of achieving
minimal chromatic aberration over a broad spectrum by constructing an objec-
tive lens comprising only a single glass type.'>'*! It should be noted that the
large air space between the Schupmann lens elements allows rays of different
colors to become somewhat separated at the negative element, resulting in
slightly undercorrected chromatic aberration.'®

The magnification of the telescope is M = —f;/f, where f; is the effective
focal length of the secondary optics. As given in Section 5.7.2, the separation
factor is k = d/f, and the back focal length is L = —(k — 1)f;. The distance
between the primary mirror and the negative lens of the secondary optics is
d, = f, £ L. The separation of the elements comprising the Schupmann lens is

fK
k—1
Particular attention should be given to the sign of each parameter. After some
algebraic manipulations, the pupil relief or distance between the exit pupil and
lens a is found to be given by

po Mok
(k—1)
Using these equations and those in Section 5.7.2, the afocal optical system is now
corrected for axial chromatic aberration. Now we impose the condition that the
Petzval sum equals zero (or whatever value may be desired). Since the Petzval
contribution of the mirror is opposite that of the secondary optics, we can write

_¢a+¢b
n

d=

+ b, =0
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where n is the refractive index of the two lenses. By combining the preceding
equations, we find that

1 (k-2 nM +2
M’?(ﬁ) ork= A1

With the Petzval equal to zero, the exit pupil relief becomes
E=[1—-—M+ (nM+2)(nM + 1)] fs.

Although the telescope is now corrected for primary and secondary axial
chromatic aberrations and Petzval, the system magnification is a function of
the spectral variation of refractive index. It is simple to show that

oM _ 9,00,
on ¢, On
and
¢, ko,

on  (n-Dk-1)
Therefore, the fractional variation in magnification is given by

AM k

M V(k-1)

This equation shows that the telescope will suffer lateral chromatic aberra-
tion and expresses the amount of aberration in object space for a unity principal
ray angle (ntan upin) at the exit pupil. This could set the useful field-of-view of
the telescope; however, if a lens is placed proximate to the positive lens in the
secondary optics, then the lateral chromatic aberration can be reasonably
mitigated.'”18:1

Johnson has presented a detailed design procedure®® that begins with the
specification of the aperture stop diameter, magnification, and exit pupil loca-
tion. The magnification, optical powers, element separations, and refractive
index are parametrically related by the preceding first-order equations such that
the primary and secondary axial color and Petzval are corrected while poten-
tially realizing the desired specifications.

As we mentioned previously, the insertion of finite thicknesses into the thin
lenses often upsets the correction of the system. A commonly used technique
to maintain the first-order behavior is the measure all of the distances from
the principal points of the lens elements. As we have seen, the principal points
will move about spatially as a lens’ bending is changed. One design procedure
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that the lens designer could follow is to select a curvature cj; for the surface
nearest the exit pupil and then select the remaining curvatures. The formula is

!
L+ c(1 =n)(5/n)
where j = [a,b], 1 is the thickness of the jth element, and ¢, is the curvature of

¢y; when t; = 0. The optical power of each thin-lens element, which we already
know from the initial design, is

¢j = (Clj - céj)(” —1).

Now that the curvatures are known, a thick-lens layout can be determined using
the following equations to locate distances from curvature vertices rather than
principal points. In general, this is preferred when inputting data into a lens
design program or manually ray tracing the system. Using paraxial ray trace
methods, the equations can be formulated. The distance from the exit pupil to
the vertex of ¢, is

Caj

tr = E - call =) (2)fa

where 1, is the thickness of lens a. The distance between the vertex of ¢, and the
vertex of ¢y, 18

ti =d — c14(1 — n) (%)fa —cp(l —n) (;—h)f;,

while the distance from the vertex of ¢y, to the primary mirror vertex is

lp=d, —cip(1 —n) (tn—b)fb

where ¢, is the thickness of lens b.

Final correction of the telescope requires perhaps making the primary mirror
slightly conic and bending the lenses to minimize the spherical aberration and
the OSC, and perhaps deviating the spacings slightly to correct any residual
axial chromatic aberration. It should also be recognized from Section 6.1.6 that
either or both of the lenses in the secondary optics can be split to provide addi-
tional aberration correction. The example telescope discussed in the Endnote 20
reference is a 0.5° total object-space field-of-view afocal telescope for the
3 to 12-um spectrum having M = —0.05 (20X), germanium lenses, f, = 100,
aperture stop diameter of 1.0, k = 2.25, and f; = 5. For a thick-lens configura-
tion with the units in inches, the primary mirror is hyperbolic, the lens bendings
are used to correct the aberrations, and a third lens is added for lateral color
correction as previously discussed. Over the entire spectrum, the Strehl ratios
near the axis are near unity and about 0.85 at the edge of the field-of-view.
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15.4.9 Self-Corrected Unit-Magnification Systems

Two very interesting systems have been proposed for 1:1 imagery, which are
automatically corrected for all the primary aberrations. Altman also invented a
unit magnification catadioptric system comprising a concave spherical mirror
and a system of lenses for correction of the mirror aberrations.?'

The Dyson Catadioptric System

This is a monocentric system (Figure 15.20), the object and image lying in the
same plane on opposite sides of the center of curvature C.>?> A marginal ray
from C returns along its own path, thus automatically removing spherical and
chromatic aberrations. The radius of curvature of the lens is set at (n — 1)/n
times the radius of curvature of the mirror, to give a zero Petzval sum. The aper-
ture stop is at the mirror, making a symmetrical system that is automatically
corrected for the three transverse aberrations. The seventh aberration, astigma-
tism, is zero near the middle of the field and the sagittal field is flat, but the tan-
gential field bends somewhat backward at increasing distances out from the
axis. A typical system is the following:

¢ d n
0
3.434012 1.523
0.2912046
6.565988 (air)
(mirror) 0.1

with

I=1'=0, m=-—1
H' =1: Z.=0, Z|=0.01460
H' =15:7.=0, Z,=0.08776

Figure 15.20 The Dyson autocollimating system.
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As can be seen, the system would be telecentric except for the spherical aberra-
tion of the principal ray at the lens surface: the principal ray for H' = 1.5 enters
at a slope angle of almost 4° in air (2.58° in the glass).

Caldwell designed a catadioptric relay system, similar in many respects to
the Dyson system, for use with very compact projection lenses with dual
DMD projectors.>*?* This system is more compact than the Dyson system
and provides near diffraction-limited performance. The references mentioned
in endnotes 23 and 24 contain the optical prescriptions.

The Offner Catadioptric System

This monocentric system® is similar to the Dyson arrangement, except that
a small convex mirror is placed midway between the concave mirror and the
object to give a zero Petzval sum, and the beam is reflected twice at the concave
mirror (Figure 15.21). The aperture stop is at the small convex mirror and the
system is virtually telecentric.

Because the two mirrors are concentric about C, an object point placed
there would be imaged on itself without aberration. However, this is academic
because the entire axial beam is blocked out by the secondary mirror. For
object points lying off-axis, the vignetting becomes progressively less and finally
disappears for object points with H and H' equal to or greater than the diameter
of the convex mirror. The symmetry about the stop ensures that coma and
distortion are absent. There are, of course, no chromatic aberrations of any
kind.

The remaining aberration, astigmatism, is zero for object points near the
axis, and the sagittal field is flat, as for the Dyson case. However, the tangential
field bends slightly backward for extraaxial object points.

M:\+

:—f Region of
c |i vignetting
I

w/ + Object

Figure 15.21 The Offner autocollimating system.

Image
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As an example of this system we may consider the following:

¢ d

Concave 0.1
5

Convex 0.2
5

Concave 0.1

with
[=0I"=100, m=-1
H =1 Z.=0, Z =0.00205
H' =2: Z.=0, Z =0.03519

It is observed that the astigmatism is much smaller than in the Dyson system,
and moreover the long air space between the mirrors and the object plane
permits the insertion of plane mirrors to deflect the beam if desired.

15.5 TWO-MIRROR SYSTEMS

The classical two-mirror systems used in telescopes date from the seventeenth
century. They were either of the Gregorian form, with a concave parabolic
primary mirror and a concave elliptical secondary, or of the Cassegrain form,
with the same parabolic primary but a convex hyperbolic secondary.® The
Gregorian form was popular for a hundred years as a small erecting telescope
for terrestrial observation. Because of the near impossibility of making an accu-
rate convex hyperboloid, the Cassegrain form only gradually came into use as
grinding and polishing techniques were improved. Today Cassegrain telescopes
are found in most astronomical observatory.

15.5.1 Two-Mirror Systems with Aspheric Surfaces

Suppose we lay out a simple Cassegrain system as shown in Figure 15.22.
The primary mirror has a radius of curvature equal to 8.0, a focal length of
4.0, and a clear aperture of 2.0 (f/2). The secondary mirror has a radius of
3.0 with conjugate distances of —1 and +3, forming a final image at the middle
of the primary mirror at a magnification of three times. Thus the overall system
has a focal length of 12.0 and a relative aperture of f/6.
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o |

'secondary Fprimary }

C

primary

Figure 15.22 A simple Cassegrain system.

Starting with two spherical mirrors, we find a large residual of undercor-
rected spherical aberration. This was eliminated in the classical Cassegrain sys-
tem by making the primary mirror parabolic, of eccentricity equal to 1.0, and
the secondary mirror hyperbolic, with an eccentricity of 2.0 in our case. This
served to remove the spherical aberration perfectly, leaving an OSC residual
of 0.001736. The paths of a marginal ray through each of these systems are
shown in Table 15.5. For the OSC calculation, the stop was assumed to be at
the primary mirror, its image being at a distance of /,,, = —1 from the secondary
mirror.

In the late 1920s Ritchey and Chrétien recognized that the cause of the coma
in the classical Cassegrain is that the final U’ of the marginal ray is too small,
making the marginal focal length F’ too long. They therefore suggested depart-
ing from the conventional forms of the two mirrors and using shapes that are
somewhat flattened at the edge. A few trials show that in our example the eccen-
tricity of the primary mirror should be raised from 1.0 to 1.0368 (a weak hyper-
bola) and that of the secondary from 2.0 to 2.2389. These changes completely
remove both the spherical aberration and the OSC, as can be seen in the fourth
ray trace in Table 15.5.

The amateur telescope maker finds it almost impossible to make the mirrors
required for these well-corrected systems, especially the convex hyperboloid of
the classical Cassegrain. He is therefore tempted to use the Dall-Kirkham
design, in which the secondary is a convex sphere while the primary is a concave
ellipse. A few trials reveal the desired eccentricity of this ellipse in any particular
case. For our example the primary ellipse should have an eccentricity of
0.839926, as shown in the fifth ray trace in Table 15.5. It is clear that the real
problem here is coma, which is five times as large as in the classical Cassegrain.
Obviously it is wrong to strengthen the rim of the primary, as in the Dall-
Kirkham, when it should be weakened, as in the Ritchey-Chrétien form.
However, the Dall-Kirkham does have the additional advantage that the
elliptical primary can be tested in the workshop before assembly by the use of
a pinhole source at one focus and a knife-edge at the other. In our example
the two focal lengths are 4.35 and 50.0, respectively.
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Table 15.5

Two-Mirror Telescope Systems

473

¢ —0.125 —0.3333333

d -3 1

n 1 1
Paraxial ray

¢ 0.25 —0.6666666 =120

d/n 3

y 1 0.25 I"'=3.0

nu 0 —0.25 —0.083333
Spherical surfaces

0 1.0 0.2401960 F' = 11.522999

Q' 0.9843135 0.2435727 L' = 2.806690

U 0 14.36151 —4.97856

Y 1.0 0.2453707 LA = —0.19331

VA —0.0627461 —0.0100513 0SC = 0.009013
Classical Cassegrain

e 1.0 2.0

0 1.0 0.2461538 F’ =12.020833

Q' 0.9846154 0.2495667 L'=3.0

U 0 14.25003 —4.77189

Y 1.0 0.251309 LA =0

z —0.0625 —0.0104710 0SC = 0.001736
Ritchey—Chrétien

e 1.0368 2.2389

0 1.0 0.2465948 F' = 12.0000

Q' 0.9846376 0.2500017 L' = 3.0000

U 14.24178 —4.78019

Y 1.0 0.2517515 LA =0

VA —0.062482 —0.0104896 osC=0
Dall-Kirkham

e 0.839926 0

[0k 1.0 0.2444135 F' = 12.104064

0 0.9845275 0.2478498 L' = 3.0000

U 0 14.28260 —4.73900

Y 1.0 0.2495620 LA =0

VA —0.0625721 —0.0103982 0SC = 0.008672

15.5.2 A Maksutov Cassegrain System

Many Cassegrain systems have been constructed using only spherical mirrors,
the spherical aberration being corrected by means of a meniscus corrector lens
placed in the entering beam. The secondary mirror can be conveniently formed
by depositing an aluminized reflecting disk on the rear surface of the corrector.
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Table 15.6

A Classical Cassegrain System

Concave Convex
c -0.1 -04
d —4 1
n 1 -1
¢ 0.2 -0.8
dm 4
y 1 0.2 I'=150
nu 0 -0.2 —0.04 f'=250

As an example, suppose that before adding the corrector lens we have two
mirrors separated by a distance of 4.0, the concave primary placing its image
at 1.0 units behind the secondary mirror, which in turn projects the final image
to a point 1.0 behind the primary mirror, through a hole. The focal length of the
primary is 5.0, and the secondary mirror magnifies this by five times, thereby
giving an overall focal length of 25. The paraxial ray trace is shown in
Table 15.6. It will be seen that the /’ after the concave mirror is —5.0, and this
value must be maintained after adding a corrector lens in order for the final
image to remain at a distance of 1.0 behind the primary mirror. This is achieved
by recalculating the curvature of the primary mirror each time a change is made
in the system.

To design the correcting lens, we start with some guessed value of ¢, retain
the radius of the secondary mirror ¢, = ¢4 = —0.4, trace a paraxial ray to solve
for ¢; (primary mirror) to give the desired back focus, and then add a marginal
ray at f710. This gives us the spherical aberration and also the (D — d) An value
arising at the lens. After tracing a paraxial principal ray through the front lens
vertex, we find /j,, and so determine the OSC. Our trials yielded the following:

(8] C3 LA f/
-0.5 —0.117763 +14.7 20.5666
—0.42 —0.101396 —0.4475 23.8626
-0.43 —0.103723 -+0.5673 23.3938

(Setup A) —0.425 —0.102571 -+0.0397 23.6259

Taking this last case for further study, we find that the zonal spherical aberration
is —0.0170, the (D — d) An value is —0.0000009 (insignificant), and /},, = —1.204,
giving OSC = —0.00226.
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Figure 15.23 Meridional ray plot of Setup A.

To investigate the seriousness of this OSC residual we next make a meridio-
nal ray plot at an angular field of, say, —1.5° (Figure 15.23). This is a very
small field angle, but it serves to determine the size of the hole in the primary
mirror, and if the field is too wide there will be very little mirror left for
image formation. The paths of the upper and lower limiting rays are shown
in Figure 15.24, where it will be seen that the hole in the primary mirror is
the factor that determines which rays get through and which do not. A front
view of the system, looking upwards along the 1.5° beam is shown in
Figure 15.25.

There are two branches to the meridional ray plot, the left-hand branch con-
taining those rays that strike the primary mirror below the hole and the right-
hand branch containing those above the hole. There is obviously a large amount
of negative coma in this system and there is some degree of inward-curving field,
although the Coddington fields are meaningless here since the principal ray is
blocked out by the secondary mirror. The Petzval sum, arising mainly at the sec-
ondary mirror, is very large (0.5863).

The most effective way to improve this system is to increase the central air
space. We will therefore increase this to 5.0, and to maintain the focal length
at 25.0 we repeat the paraxial layout (Table 15.7).

After adding the corrector lens, we must determine the curvature of the
primary mirror, at such a value that the /5 = —6.978947 in order to place
the image once more at 1.0 behind the hole in the primary mirror. Utilizing
the previous procedure we end up with the following system (Setup B):
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c d N, Glass
—0.249
0.25 1.52111 K-4
—0.233333
5.0
(concave) —0.0786549
5.0

(convex) —0.233333

with f’ = 23.82816, I’ = 6.0000, LA' = 0.00272, LZA = —0.00383, OSC =
0.00014, Ptz = 0.3046.

Figure 15.24 Ray diagram of Setup A.

Rim of primary mirror

Front aperture

\ Secondary mirror

7))

Hole in primary

Figure 15.25 Front view of system, looking upward at 1.5° obliquity.
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Table 15.7

A Cassegrain with Increased Separation

¢ ~0.076 —0.233333
d -5
n 1 -1 1
¢ 0.152 —0.466666
dm 5
y 1 0.24 I'=6.0
o0 —0.152 —0.04  f'=250
H/
A
0.628  d
\,\0
0.626 - T 15
—e-_ _ b
0.624 - T
0.002 F
Axis
ofp —mM8M8Mm  ————6 — — — — — -
_0002 C 1 1 1 1 1 1 1 1 1 1 1 1 1 . 01
-12  -08 -04 0 0.4 0.8 1.2

Figure 15.26 Meridional ray plot for the longer Setup B.

The meridional ray plot is shown in Figure 15.26, and the lens will be seen to
be almost perfect except for a strongly inward-curving field. To remove the
Petzval sum entirely requires that the two mirrors have the same radius; this
occurs when the central air space is about 9.0. At an even longer space, at
12.0, the secondary mirror becomes a plane and all the power is in the primary.
At these increased lengths the coma correction becomes a problem.

In an effort to reduce the Petzval sum with a reasonably short system, we
can insert a negative field flattener in the hole in the primary mirror. We must
then redetermine the radius of the primary to restore the back focus at 1.0
beyond the field flattener. The addition of this negative lens increases the
focal length (the system is now an extreme telephoto), and it makes both the
spherical aberration and the OSC more positive. The spherical aberration can
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be corrected by an adjustment of ¢, giving Setup C, as shown in the following
table:

c d n
Corrector lens { —0.24865 0.25 1.52111
—0.233333

5.0
Primary mirror —0.0786009

5.0
Secondary mirror —0.233333

5.13
Field flattener { -0.5 0.1 1.52111

0

with /' = 30.325, I’ = 0.099991, LA’ = 0.01809, LZA = —0.01401, OSC =
0.00090, Ptz = 0.1329.

The 1.5° meridional ray plot of this lens is shown in Figure 15.27 alongside
that of the axial image. The zonal aberration has become much larger and the
positive coma is decidedly serious. The coma can be reduced by slightly reduc-
ing the central air space, as illustrated in the following system (Setup D):

¢ d n
—0.28192 } 0.25 1.52111
—0.265446

4.74
—0.0837446
4.74
—0.265446
4.84
-0.5 0.1 1.52111
o)

with /' = 30.0756, I’ = 1.00001, LA" = 0.03100, LZA = —0.02070, OSC =
0.00047, Ptz = 0.1865. We have evidently not gone quite far enough since the
OSC is still positive. This final system is illustrated in Figure 15.28 and its
meridional ray plot at 1.5° is shown in Figure 15.29. It will be seen that
shortening the system has indeed reduced the coma, but it has greatly increased
the zonal spherical aberration, which causes the ends of the 1.5° graph to depart
quickly from the desired form.
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Figure 15.27 Meridional ray plot of Setup C.

Figure 15.28 Ray diagram of final Setup D. [For the sake of clarity the limiting rays (b) and
(¢) have not been drawn in this figure.]
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Figure 15.29 Meridional ray plot of the final Setup D.
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Systems of this general type have been used frequently in the longer focal
lengths for 35-mm SLR cameras. The field angles can be readily found since
the picture diagonal is 43 mm:

Focal length (mm) Semifield (deg)
500 2.5
750 1.6
1000 1.2

It must be remembered that these reflecting systems need very careful and
complete internal baffling to prevent light from going straight to the film with-
out being reflected by the mirrors. Also, it is almost impossible to introduce an
iris diaphragm to vary the lens aperture, so all the exposure control must be
made by varying the shutter speed.

15.5.3 A Schwarzschild Microscope Objective

It was discovered by Karl Schwarzschild in about 1904 that a two-mirror sys-
tem of the reversed telephoto type—that is, one in which the entering parallel
light first encounters the convex mirror from which it is reflected over to the
large concave secondary mirror—has the remarkable property that if both
mirrors are spherical and have a common center C, then the primary spherical
aberration, coma, and astigmatism are all automatically zero provided the ratio
of the mirror radii is equal to (v/5 +1)/(v/5 — 1) = 2.618034.%” This conclusion
can be easily verified for primary aberrations by use of the stop-shift formulas
given in Section 11.7.2.

At finite aperture this system suffers from a very small spherical overcorrec-
tion, an example being as follows:

(convex) 1.0
1.618034
(concave) 0.381966

with /" = 0.809017, I’ = 3.427051, LA’ (f/1) = 0.00137, OSC (/1) = 0.00129,
LA (f/2) = 0.00008, OSC (f/2) = 0.00007. For the OSC calculation it was
assumed that the stop is at the concave mirror, making /,, = 0, hence
oSC = (F'I'/f'L’) — 1.

However, when this system is intended for use as a microscope objective, the
object must be at such a finite distance as to give the desired magnification.
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To correct the spherical aberration and coma it is then necessary to weaken the
concave mirror appropriately, the two mirrors remaining concentric about the
common center C. The separation is, of course, equal to r; — r,. A few trials tell
us quickly what separation should be used. The following is an example of a
10x objective of this type:

c d

(convex) 1.0
2.07787
(concave) 0.3249

with
L=1[=-7.14694, sin U = u = —0.05
' =3.89256, m = —0.1
NA =0.5: LA = —-0.000002, OSC = —0.000003
NA =0.35: LA = -0.000394, OSC = —0.000382

There is a small zonal residual of spherical aberration, decidedly less than the
zonal tolerance of 6/sin® U/, given in Section 6.5.2, which in this case amounts
to 0.00052, assuming that the unit of length is the inch. A scale drawing of the
system is shown in Figure 15.30. It will be seen that the diameter of the convex
mirror must be 0.72 to catch the marginal ray at NA = 0.5, and this blocks out
the middle of the beam so that the lowest ray has an NA of 0.193. The diameter
of the hole in the concave mirror must be about 0.56, but this is not a limiting
aperture and it can be made somewhat larger. However, if it is too large it will

L 1=3.078

Figure 15.30 A Schwarzschild microscope objective.
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pass unwanted light, which is undesirable. The obstruction is not large enough
to cause a serious degradation of the definition.

15.5.4 Three-Mirror System

An interesting modification of the classical Gregorian reflecting system has
been suggested by Shafer,?® in which the marginal ray is reflected twice at the
primary mirror, at equal distances on opposite sides of the axis, and once at
the concave secondary mirror, the final image being formed at the center of
the secondary mirror. The paraxial layout is shown in Figure 15.31. If the
mirror radii are respectively 10 and 7.5, the separation is 7.5 and the focal
length is —7.5. A few trials indicate that for the simultaneous correction of
spherical aberration and OSC with a semiaperture of 1.0 (i.e., an f/3.75 sys-
tem), the primary must be a concave ellipse with eccentricity 0.63782 and
the secondary a concave hyperboloid with eccentricity 2.44. The aperture stop
and both the pupils are at the primary mirror. Since the middle half of the
entering beam is blocked out by the secondary mirror, the image receiver
can cover the middle half of the secondary mirror without introducing any
further obstruction. The angular field of our f/3.75 system is therefore
+1.9°. If the aperture is doubled, the angular field will also be doubled
to £3.8°.

Figure 15.31 A three-reflection aplanatic system.

15.6 MULTIPLE-MIRROR ZOOM SYSTEMS

In the past several decades, there has been some interesting work on multiple
mirror systems that often have a zooming capability. There are two general
types, namely, obscured and unobscured pupils. In this section, both types will
be discussed with some being fixed focused and other being zoom capable.
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15.6.1 Aberrations of Off-Centered Entrance
Pupil Optical Systems

When the entrance pupil is decentered with respect to the optical axis of
the optical system of an otherwise rotationally symmetric system, it breaks the
normal symmetry and the system becomes known as a plane-symmetric system.
The aberrations no longer appear as they do for a rotationally symmetric
system and other new aberration coefficients appear in the aberration expansion
equation. We will not discuss this expansion, but will now look at the general
behavior of the aberrations. Both the terms decentered and off-centered are used
interchangeably in the literature.

Figure 15.32 shows the distortion behavior for an off-centered optical system
having zero, positive and negative aberration values for distortion, coma, astig-
matism, and Petzval.>® When the pupil is centered, the coma, astigmatism, and
Petzval do not affect the distortion of the image. Spherical aberration for an f/2
optical system with a centered pupil having a diameter of 5 is shown in the
center of Figure 15.33. A close-up view of the focal region is shown at the top
of the figure and five focus positions are included at the bottom. These are what
we are accustomed to viewing. Now consider an off-centered entrance pupil
system having a focal length of 10 and operating at f7/5.

Figure 15.34 presents the spherical aberration for three pupil offset displace-
ments of 2, 3, and 4 as well as for four defocus positions. In the zero defocus
position, the spot diagram rather appears to have a comatic shape while the
defocused positions appear to be a combination of astigmatism and coma;
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Figure 15.32 Distortion for optical systems having an off-centered entrance pupil.
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Figure 15.33 Spherical aberration for a centered-pupil optical system showing spot diagrams
for several defocused positions.

Pupil offset = 4

Pupil offset = 3

I :‘“ S i kil
Pupil offset = 2
V. A i il
1_ ¥ -=L|$-- e
—0.15000 —0.07500 0.00000 0.07500 0.15000
Defocus
0.0500 Inch

Figure 15.34 Spherical aberration for an off-centered entrance pupil optical system showing
spot diagrams for several defocused and entrance pupil offset positions.

however, they have their own unique shapes. Coma for the decentered pupil
condition appears much like the centered pupil situation. Figure 15.35 illustrates
the behavior for the f'= 10, f/5 optical system with the source 1° off-axis and the
pupil decentered by 2. In the lower right corner of the figure, the coma for the
same system with a centered pupil is shown and is scaled up by a factor of 2.
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Centered pupil
(image magnified by 2)

Figure 15.35 Coma spot diagrams for an off-centered entrance pupil optical system compared
with the spot diagram for the same system having a centered entrance pupil.

In the following examples, the spot diagrams presented will be seen to contain
what will appear as perhaps oddly shaped distributions but are consistent with
the introduction just presented.

15.6.2 All-Reflective Zoom Optical Systems

Woehl published the first paper on all-reflective zoom systems.*® The princi-
pal purpose was to provide a means for beam shaping and image manipulation.
The unobscured, off-axis six-mirror configuration had two fixed mirrors for
input focusing and output reimaging, and two pairs of dual moving mirrors
to affect zooming. The zoom range was 30:1 with the field-of-view limited by
aberrations.
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The first patent for an all-reflective zoom optical system was filed by Pinson
in 1986.%! This system has a centered and obscured entrance pupil with no
field-of-view offset. The patent covers a variety of configurations having two
or more mirrors with examples for two to six mirrors. Practical designs require
more than two mirrors due to aberration control, with four being a compro-
mise. The generic form of the optics is back-to-back Cassegrain-type optics.
The pupil shape is unusual and varies as a function of field angle and zoom
ratio. Reasonably good resolution can be realized for f~numbers less than four.
The system is uncompensated; that is, the images move as the optical system
zooms. Two proof-of-concept four-mirror prototypes have been built.>

The first-generation unit was made from spherical and conic surfaces with a
primary mirror diameter of about four inches. The zoom range was 4:1 with a
field-of-view range of 1.5° to 6° and f/3.5. Remarkably, the overall length of
the telescope varied from 13.5-15.5 inches while the focal length varied from
2.5 to 10 inches. The second-generation unit’s mirrors were all conics with
higher-order aspherics on the secondary and tertiary mirrors. With an f/3.3
and a zoom ratio of 4:1, the primary mirror diameter was 4.9 inches and the
overall length of the unit was about one inch less than the first generation.
On-axis performance was diffraction limited and suffered some coma off-axis.

In 1989, Rah and Lee published a description of a four-mirror zoom tele-
scope that maintained the aplanatic condition throughout the zoom range.** This
obscured-pupil, uncompensated design used spherical mirrors in a cascaded
Cassegrain—Cassegrain configuration>* By this is meant the order of surfaces is
first primary mirror, first secondary mirror, second primary mirror, and second
secondary mirror, in contrast to the Pinson configuration of first primary mirror,
first secondary mirror, second secondary mirror, and second primary mirror.
With the 2:1 zoom range, the f~-number varied from 4 to 8 and the field of view
(FOV) was maintained at a constant one degree throughout the zoom range.
The FOV is limited by astigmatism; however, Rah and Lee observed that conic
mirrors could be used to correct this aberration. It should be noted that the
overall length of this structure changes quite dramatically with zoom.

In early 1991, Cook was awarded a patent for an all-reflective continuous
zoom optical system.*® This obscured entrance pupil configuration comprises
three mirrors arranged to form an anastigmat. The primary and secondary
mirrors form a Cassegrain, with the tertiary mirror moving to affect the zoom-
ing function, basically serving as a relay mirror. The image is uncompensated
and the line-of-sight changes with zoom in some realizations. This telescope
was designed for a scanning system and has a narrow along-scan field-of-view
and a wide cross-scan field-of-view. The image surface is flat and has a constant
offset from the optical axis while the intermediate image has a varying offset.
The basic design shown was a 2:1 zoom with the f-number varying from
f75.14 to f710.2, focal length of 154.2 to 305.5, entrance pupil diameter of 30,
and FOV offset of 3° to 1.5°. The structure of this system is as shown in
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Table 15.8
All-Reflective Continuous 2:1 Optical System Patented by Cook

Surface Radius Conic const. Thickness Zoom position
Primary —104.067 —0.92298 —39.4831
Secondary —32.8640 —1.9639 100.005 A: 3°
91.329 B: 2.25°
86.351 C: 1.5°
Tertiary —38.6032 1.0489 —32.847 A: 3°
A6 = 0.32497-107° —39.065 B: 2.25°
A8 = 0.36639-107° —46.062AA C: 1.5°
Image Flat

Table 15.8, where A6 and A8 are the sixth- and eigth-order aspheric deforma-
tion coefficients.

The following year, Kebo received a patent for another all-reflective zoom
optical system which taught afocal telescopes with object-space FOVs of
up to a couple of degrees and zoom ranges of 2:1 (1.7x-3.6x) and 4:1
(0.125%x-0.5%).% The 2:1 design is a reasonably compact four-mirror unobs-
cured-pupil configuration, having a common optical axis, that uses off-axis sec-
tions of rotationally symmetric mirrors for a FOV coverage of 0.95° to 2°.
Unlike the prior systems by Cook, the FOV is centered on the optical axis in
angular coordinates (but spatially translated). The basic mirror shapes are par-
abolic primary, hyperbolic secondary, and spherical tertiary and quaternary
mirrors. To achieve the zoom function, it is required to move the final three mir-
rors. An intermediate image is formed by the primary and secondary mirrors
at the location of the tertiary mirror. An interesting aspect of this design is that
the exit pupil remains fixed with respect to the primary mirror and optical axis
while the entrance pupil, lying prior to the primary mirror, utilizes different
portions of the primary mirror with zoom. The on-axis 80% geometric blur
diameters are 0.36 mrad (1.7x) and 0.09 mrad (3.6x).

The second of Kebo’s designs uses a three-mirror unobscured-pupil configu-
ration with the primary mirror being the stationary mirror. It has a 4:1 (0.25°-1°
object space) zoom range, and the remotely located entrance pupil in front of
the primary mirror is fixed with respect to the tertiary mirror and the optical
axis. The primary and secondary mirrors are ellipsoidal, and the tertiary mirror
is hyperbolic, all having a common optical axis and being off-axis sections.
In this case the output beam moves over the tertiary mirror with zoom. Also,
this design is not compact and the tertiary mirror is much greater in size with
respect to the primary mirror. The on-axis 80% geometric blur diameters are
0.084 mrad (0.125x) and 0.15 mrad (0.5x).

Also in 1992, Korsch investigated a dynamic three-mirror obscured-pupil
zoom telescope for potential use in planetary observations.?” This design had
a 4:1 (0.125°-0.5°) zoom range operating at f/3.3 at a FOV of 0.5°. The image
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and the tertiary mirror remain fixed with respect to one another during zoom.
Both the primary and secondary mirrors move during zoom. An unusual aspect
of Korsch’s design was the incorporation of a dynamically deformable primary
mirror to correct for both aberrations and focus during zoom. The telescope has
a flat image field, essentially no distortion, and excellent resolution.

An unobscured-pupil five-mirror all-spherical mirrors zoom telescope was
designed by Shafer in 1993.%® The stop is located remotely in front of the
primary mirror and remains fixed with respect to the primary mirror while
the other mirrors and image move about during zoom. The FOV range is
8° to 3.2° (diameter) with the corresponding f~number range being 3.5 to 8.75.
The geometric resolution over the entire FOV and zoom range is 100 urad.
Maintaining alignment during zoom can be challenging.

Many of these mirror systems are designed to have an accessible entrance
pupil location so that they can mate with another optical system such as a
camera or other sensor. The afocal type can be used to change the FOV of a
sensor while the focal type may be used as a collimator or projector for coupling
efficiently with a sensor under test or calibration.

15.6.3 Off-Centered Entrance Pupil
Reflective Optical Systems

In 1994, Johnson investigated a variety of three-mirror unobscured-pupil
zoom telescopes for planetary science missions.*” Since the 1970s, a variety of
fixed-focused, three-mirror, unobscured-pupil, anastigmatic optical systems
have been developed and are often used in specialized space-based sensors and
custom collimators for testing infrared sensors.*’*' Although the image is
uncompensated, the configuration shown in Figure 15.36 required as small a
volume as possible while providing a zoom range of 1.5° to 3° (square) and
operating at f/3 at FOV = 3°, and needed a flat image field. The aperture stop
(entrance pupil) of diameter 152 mm is located at about a constant 1.5 m from
the primary mirror. A decentered entrance pupil is used with all of the mirrors
having a common optical axis. The mirrors are all segments of rotational
symmetric forms, which are conic with aspheric deformations up to tenth order.
The FOV center is offset from the optical axis by 5°, which means that all
of the useful FOV is located at an off-axis portion of the image field of the
telescope—that is, the actual image area is located no closer than 2° to the
optical axis.

This technique allows the use of different portions of aspherized secondary
and tertiary mirrors to be used in aberration control during zoom as shown in
the Figure 15.36. The image is flat field, less than 1% distortion, and has little
anamorphic error. This telescope also forms an intermediate image and a real
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Figure 15.36 Three-mirror unobscured-pupil zoom telescope with 2:1 zoom range.

exit pupil. It was found that the angular offset of the FOV is critical in achieving
good optical performance over wide zoom ranges of up to 6:1 at relatively low
f-numbers. Also, care must be given in selecting parameters since the size of the
tertiary mirror and motion of the mirrors can become unacceptably large.

An example of an actual system used as an infrared collimator is shown in
Figure 15.37. This configuration has a well-formed intermediate image formed

Figure 15.37 Three-mirror unobscured-pupil f/4 telescope having a common optical axis and
remote entrance pupil.
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by the primary and secondary mirrors which is relayed to the image plane by the
tertiary mirror. A real and accessible exit pupil is also formed by the system.
The total field-of-view of this system is 4.4° by 4.4° with a focal length of
600 mm operating at f/4, and the image field is flat. The central beam in the
input FOV is +4° with respect to the optical axis of the telescope.

In Figure 15.37, this beam is horizontal and it can be seen that the optical
system is tilted by 4 clockwise (notice the image plane). The structure of the sys-
tem is given by

Surface r t K CA radius Decenter
Stop 630.428 75 —176.350
Primary —487.148 —0.818 110 210
—206.191
Secondary —153.290 —4.676 40 60
326.819
Tertiary —283.223 —0.233 90 -30
—319.240
Image Infinite 35 —40

and the sixth- through the twelfth-order aspheric deformation coefficients are
shown in Table 15.9. The active object-space FOV is located at 1.8° to 6.2° in
elevation (y-axis) and +2.2° in azimuth (x-axis). Defining the structure of such a
non-rotationally symmetric optical system is more complicated than the typical
rotationally symmetric optical system. This is also true of optimizing such systems.

Figure 15.38 presents the geometric spot diagram for this telescope and also
shows the Airy disk diameter for flux at 10 um. As should be expected, the
shape of the images over the FOV varies significantly yet has symmetry about
the meridional plane. Achieving the relatively large FOV was accomplished by
using different portions of the secondary and tertiary mirrors in the image for-
mation as the FOV angles change. The beam footprint on the secondary mirror
is about 30% of the total active area of this mirror and, in a like manner, is
about 40% for the tertiary mirror.

Table 15.9
Aspheric Coefficients for Optical System Shown in Figure 15.37

Aspheric coefficient Primary Secondary Tertiary

A6 3.647-1071¢ 8273107  —6.127-1071
A8 —3.812.107% —1.206-1071¢ 6.422:1071%
A10 2.452.1072¢ 5.437.107% 3.647-1071°

Al2 —2.657-107%2 0.000 0.000
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Figure 15.38 Spot diagram for collimation shown in Figure 15.37. Scale is 100 um on a side. Circles indicate the Airy disk
diameter for a wavelength of 10 um.
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This design is actually for a 2:1 zoom telescope, but only the fixed-focus
design for the wide FOV is given. For the infrared spectrum, this type of
telescope can be manufactured using diamond turning technology with excellent
results.

Another example of a compact three-mirror unobscured-pupil telescope with
an accessible entrance pupil is illustrated in Figure 15.39. This configuration
has an accessible intermediate image formed by the primary and secondary mir-
rors and folded upward by a flat mirror. The field stop is located at this image,
which is relayed to the image plane by the tertiary mirror. A real exit pupil is
also formed by the system, but is not accessible. Although very compact, this
configuration can provide excellent stray-light suppression by the inclusion of
baffles and the field stop at the intermediate image, which is tilted at about
20° with respect to the optical axis. The total field-of-view of this system is
1° by 1° with a focal length of 1000 mm operating at f/4. The central beam in
the input FOV is +1.5° with respect to the optical axis of the telescope, that is,
the meridional FOV is +1° to +2° (positive slope angle).

Tertiary

Y ' "“ ' "T'J mirror

l i
W

Aperture
stop

Y\ Primary

F|eld stop
location

Secondary
mirror

Folding
mirror

1t
Image

Figure 15.39 Compact f/4 three-mirror unobscured-pupil telescope.
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In Figure 15.39, this central beam is horizontal and the optical system is
tilted by 1.5 degrees clockwise. The structure of the system is given by

Surface r d K CA radius Decenter
Stop Infinite 630.428 0.000 75 -201.6
Primary —705.888 —0.801 116.9 209.206
—289.364
Secondary —221.581 —3.704 26.9 48.15
101.448
Fold Mirror with 45° tilt  Infinite 10.3 x 129y 34.83
—359.333
Tertiary 340.844 —0.176
373.439
Image Infinite 9.35 —25.7

and the sixth- through the fourteenth-order aspheric deformation coefficients
are shown in Table 15.10.

The active object-space FOV is located at 1.0° to 2.0° in elevation (y-axis)
and +0.5° in azimuth (x-axis). Defining the structure of such a folded non-
rotationally symmetric optical system is more complicated than the typical
rotationally symmetric optical system. As mentioned before, this is also true
of optimizing such systems.

Figure 15.40 presents the geometric spot diagram for this telescope and also
shows the Airy disk diameter for flux at 10 um. As seen in the prior example, the
shape of the images over the FOV varies significantly yet has symmetry about
the meridional plane. Unlike the prior example, most of the area of each of the three
powered mirrors is utilized in image formation as the FOV angles change.

Rodgers developed a folded four-mirror zoom collimator that can be either
focal or afocal.****** Notice that this telescope utilizes the fold mirror in the
prior two optical systems as a powered element; however, these optical systems
were independently developed. Two examples are presented in this discussion.
The first is illustrated in Figure 15.41 on page 496 and provides a 2:1 zoom

Table 15.10
Aspheric Coefficients for Optical System Shown in Figure 15.39

Aspheric coefficient Primary Secondary Tertiary

A6 6.880-107'°  —6.019-107"*  —8.347-.107"°
A8 —1.065-107%° 4.016-107'° 2.154-.107 18
A10 8.875.1072¢  —1.079-107*  —1.187.107%
Al2 —3.389-1073! 1.369-107% 9.898.102¢

Al4 3.895.107%7  —6.771-107% 2.363-1073!
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capability with an FOV range of 1.5° to 3° (square) and a corresponding f~-num-
ber range of f/4.3 to f/8.6. The internal negative power mirror is used to control
field curvature of the extended FOV. The specific novelty of this design is that
the “folding mirror” has a weakly powered, highly aspheric, and highly tilted
surface located near the internally formed image. This mirror serves as a field
element and provides control of field aberrations. The tilt of this mirror is about
30° with respect to the beam incident upon it, which allows the fourth mirror to
be located above the optical system and the image formed below it. The image is
uncompensated with zoom.

The second optical system is presented in Figure 15.42. It follows the design
methodology of the preceding telescope. Since this system is being used as a col-
limator, the exit pupil is located in front of the primary mirror, as illustrated in
the figure. The zoom ratio is 2:1 with an FOV range of 1.5° to 3° (square) and a
corresponding f-number range of f/4.3 to f/8.6. The exit pupil diameter is fixed
at 100 mm with a pupil relief of more that 1200 mm. The folding mirror is

\ /

—

(a)

Figure 15.40 Eleven point images are shown in (a) with the blowup of each image shown in
(b). The scale on each side of the grid in (b) is 200 um. Circles indicate the Airy disk diameter
for a wavelength of 10 um.
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Figure 15.42 Compact four-mirror unobscured-pupil zoom telescope that has a very remote
entrance pupil and accessible exit pupil.
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similar to that shown in Figure 15.41. The rms wavefront error is < 0.37 1 for
A =1 pm and the distortion is less than 1.5%. Although the entrance pupil is
accessible (located near the source/image plane), the internally formed image
is not. The source/image plane is uncompensated and is observed to move a
significant distance with zoom.

15.7 SUMMARY

In this chapter we presented a broad range of mirror and catadioptric sys-
tems having rotational or plane-symmetric symmetry, with obscured and unobs-
cured pupils. In many systems, the field-of-view is centered on the optical axis
while in others the entire field-of-view is remote from the optical axis. This
seemingly peculiar location of the FOV is actually necessary to achieve the
desired optical performance. Although this chapter was rather comprehensive,
there are many more such systems that have been conceived and often built.
Such systems include the afocal telescope designs by Marin Mersenne in about
1636 that uses coaxial parabolas,* tilted component telescopes,*® and complex
multiple-mirror telescopes such as those used at the six-mirror MMT Observa-
tory from 1979 through 1998.*7 Wilson describes the MMT and many other
telescopes in his excellent books.**

There are many other examples in the literature and patent files, such as
a compact four-mirror afocal telescope with dual exit pupils as described by
Rodgers.*” The use of mirror and catadioptric systems is common in infrared
systems®® and astronomical and scientific instrumentation.’'->> With the ability
to make highly aspherized reflective surfaces that can be rotationally symmetric
or not (off-axis section), or even be free-form, the lens designer has the oppor-
tunity to invent additional mirror and catadioptric systems.

ENDNOTES

' . Villa, “Catadioptric lenses,” Opt. Spectra., 1:57(Mar.—Apr.), 49(May-June) (1968).

2 D. V. Gavrilov, “Optical systems using meniscus lens mirrors,” Sov. J. Opt. Technol. (Engl.

transl.), 34(May-June):392 (1967).
* This same formula is a useful approximation for a spherical mirror near its optical axis; see
Eq. (2-2) in Section 2.4.1.
F. E. Ross, “Lens systems for correcting coma of mirrors,” Astrophys. J., 81:156 (1935).
> A. Mangin, “Mémorial de I'officier du génie” (Paris), 25(2):10, 211 (1876).
A. Bouwers, Achievements in Optics, Elsevier, New York (1946).
D. D. Maksutov, “New catadioptric meniscus systems,” J. Opt. Soc. Am., 34:270 (1944).
8 D. Gabor, British Patent 544,694, filed January (1941).



498 Mirror and Catadioptric Systems

9
10

)

23

24

25
26

27

28

29

30

3

32

33

34

35

B. Schmidt, Mitt. Hamburg Sternw. Bergedorf, 7:15 (1932).

R. Barry Johnson, “A high spatial and thermal resolution infrared camera for the 8-14
micrometer spectrum,” Proc. EO Sys. Des. Conf., 221+ pages (1970).

Ralph B. Johnson, “Target-Scanning Camera Comprising a Constant Temperature Source
for Providing a Calibration Signal,” U.S. Patent 3,631,248 (1971).

T. H. Jamieson, “Ultrawide waveband optics,” Opt. Engr., 23(2):111-116 (1984).

L. Schupmann, Die Medial-Fernrohre, Druck and Verlag von B. G. Teubner, Leipzig (1899).
L. Schupmann, U.S. Patent 620,978 (1899).

J. A. Daley, Amateur Construction of Schupmann Medial Telescopes, Daley, New Ipswich
(1984).

The power of the negative element generally requires a slight adjustment from the power
determined by the first-order equations in order to optimize the chromatic aberration
performance.

R. D. Sigler, “All-spherical catadioptric telescope with small corrector lenses,” Appl. Opt.,
21(2):2804-2808 (1982).

T. L. Clarke, “A new flat field eyepiece,” Telescope Making, 21:14-19 (1983).

T. L. Clarke, “Simple flat-field eyepiece,” Appl. Opt., 22(12):1807-1811 (1983).

R. Barry Johnson, “Very-broad spectrum afocal telescope,” International Optical Design
Conference, SPIE, 3482:711-717 (1998).

Fred E. Altman, U.S. Patent 2,742,817 (1956).

J. Dyson, “Unit magnification optical system without Seidel aberrations,” J. Opt. Soc. Am.,
49:713 (1959).

J. Brain Caldwell, “Catadioptric relay for dual DMD projectors,” in International Optical
Design Conference 1998, Leo. R. Gardner and Kevin P. Thompson (Eds.), SPIE,
3482:278-281 (1998).

J. Brain Caldwell, “Compact, wide angle LCD projection lens,” in International Optical
Design Conference 1998, Leo. R. Gardner and Kevin P. Thompson (Eds.), SPIE,
3482:269-273 (1998).

A. Offner, “New concepts in projection mask aligners,” Opt. Eng., 14:131 (1975).

H. P. Brueggemann, Conic Mirrors, Focal Press, London (1968).

P. Erdos, “Mirror anastigmat with two concentric spherical surfaces,” J. Opt. Soc. Am.,
49:877 (1959).

D. R. Shafer, “New types of anastigmatic two-mirror telescopes,” J. Opt. Soc. Am., 66:1114,
Abs. ThE-17 (1976).

Dietrich Korsch, Reflective Optics, Chap. 6, Academic Press, New York (1991).

Walter E. Woehl, “An all-reflective zoom optical system for the infrared,” Opt. Engr., 20(3):
450-459 (1981).

George T. Pinson, U.S. Patent 4,812,030 (1989).

R. Barry Johnson, James B. Hadaway, Tom Burleson, Bob Watts, and Ernest D. Parks,
“All-reflective four-element zoom telescope: design and analysis,” Proc. SPIE, 1354:669—
675 (1990).

Seung Yu Rah and Sang Soo Lee, “Four-spherical-mirror zoom telescope continuously
satisfying the aplanatic condition,” Opt. Engr., 28(9):1014-1018 (1989).

Perhaps Schwarzschild should be used rather than Cassegrain since spherical mirrors are
used.

Lacy. G. Cook, U.S. Patent 4,993,818 (1991).

>



Endnotes 499

36

37

38

39

40

41

43

44

45
46

47
48

49

5C

51

52

Reynold S. Kebo, U.S. Patent 5,144,476 (1992).

D. Korsch, “Study of new wide-field, medium resolution telescope designs with zoom capa-
bility for planetary observations,” SBIR Phase I Final Report, Korsch Optics, Inc., NASA
Contract NAS7-1188 (December 1992).

Allen Mann, “Infrared zoom lenses in the 1990s,” Opt. Engr., 33(1):109-115, Figure 9 (1994);
private communication with David R. Shafer.

R. Barry Johnson, “Unobscured three-mirror zoom telescopes for planetary sciences
missions,” NASA SBIR Phase I Final Report, Optical E.T.C., Inc., NAS7-1268 (July 1994).
Lacy G. Cook, “The last three-mirror anastigmat (TMA)?” SPIE CR41, Lens Design, pp.
310-323 (1992). This paper includes a chronology of reflective optical forms and an excellent
summary of TMA studies and patents.

Allen Mann and R. Barry Johnson, “Design and analysis of a compact, wide field, unobs-
cured zoom mirror system,” Proc. SPIE, 3129:97-107 (1997).

J. Michael Rodgers, U.S. Patent 5,309,276 (1994).

J. Michael Rodgers, “Design of a compact four-mirror system,” ORA News Supplement,
Winter (1995).

Private communications. Drawing and data provided courtesy of J. Michael Rodgers and
included with permission.

Henry C. King, The History of the Telescope, pp. 48-49, Dover, New York (1979).
Richard A. Buchroeder, “Tilted component telescopes. Part I: Theory,” Appl. Opt., 9:
2169-2171 (1970).

Daniel J. Schroeder, Astronomical Optics, Chapter 17, Academic Press, San Diego (1987).
R. N. Wilson, Reflective Telescope Optics, Second Edition, Vols. I and 11, Springler-Verlag,
Berlin (2004).

J. M. Rodgers, “Four-mirror compact afocal telescope with dual exit pupil,” Proc. SPIE,
6342:63421J (20006).

R. Barry Johnson and Chen Feng, “A history of infrared optics,” SPIE Critical Reviews of
Optical Science and Technology, Vol. CR38, pp. 3-18, Bellingham (1991).

Lloyd Jones, “Reflective and catadioptric objectives,” in Handbook of Optics, Second Edi-
tion, Vol. 11, Chapter 18, Michael Bass (Ed.), McGraw-Hill, New York (1995).

Richard A. Buchroeder, “Application of aspherics for weight reduction in selected catadiop-
tric lenses,” NTIC, AD-750 758 (1971).



This page intentionally left blank



Chapter 16
Eyepiece Design

An eyepiece differs fundamentally from a photographic objective in that the
entrance and exit pupils are outside the system. The lens itself must therefore
have a large diameter, which is determined far more by the angular field to be
covered than by the relative aperture. The latter is set by the objective lens
and has little relation to the structure of the eyepiece itself.

So far as aberration correction is concerned, the axial spherical and chro-
matic are usually unimportant, and they can be corrected in the objective if nec-
essary. On the other hand, lateral color and coma must be corrected as well as
possible. Most eyepieces have a large Petzval sum, which leads to a large
amount of astigmatism at the edge of the field. Because the observer naturally
prefers to relax his accommodation on axis and accommodate as much as nec-
essary when viewing at the edges of the field, it is customary to aim at a flat sag-
ittal field and a backward-curving tangential field, including the objective, relay
(if any), prisms, and so on, in the computation. An attempt to reduce the astig-
matism by making the tangential field less backward-curving generally leads to
an inward-curving sagittal field, which is unpleasant to the observer. Of course,
the situation is much improved if some way can be found to reduce the Petzval
sum of the entire system, but this is difficult because the eyepiece has a short
focal length and therefore a large Petzval sum, while the objective has a longer
focal length and a smaller Petzval sum.

For ease of use, the eyepoint, where the emerging principal ray crosses the
axis, should be at least 20 mm from the last lens surface. This is difficult to
achieve in a high-power eyepiece, and often requires a deep concavity close to
the internal image plane. There may also be a serious amount of spherical aber-
ration of the exit pupil. This causes the principal rays of oblique beams to cross
the axis at points that become progressively closer to the rear lens surface at
increasing obliquities, so that the eye must be moved forward to view the edges
of the field. The eye is then not in the best position to view the intermediate
parts of the field, resulting in a “kidney-bean” shadow, which moves about as
the eye is moved. One way to correct this is to include a parabolic surface
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somewhere in the eyepiece, or to insert an aspheric plate in the focal plane to
make the extreme principal rays diverge before entering the eyepiece.

All eyepieces suffer from some degree of distortion typically of the pincush-
ion type as seen by the eye. This is often of such an amount that the oblique
magnifying power is given more by the ratio of the emerging and entering
angles themselves than by the ratio of their tangents. When this is the case the
distortion amounts to about 6% at an apparent field of 24° and perhaps 10%
at 35°. However, because of the circular shape of the eyepiece field these large
distortions are seldom bothersome to the observer.

The design procedures for a number of the simpler types of eyepiece have
been described by Conrady. (The following page numbers refer to Conrady’s
book.) These include the Huygenian (p. 484), the Ramsden (p. 497), the Kellner,
or achromatized Ramsden (p. 503), the simple achromatic (p. 761), and the var-
ious cemented or air-spaced triplet types (p. 768). Other more complicated eye-
pieces have been described by Rosin.! In this chapter we will discuss the design
of an eyepiece of the excellent so-called military type, consisting of two cemen-
ted doublets mounted close together, and also one of the Erfle type commonly
used in wide-angle binoculars. In the preceding chapter (Section 15.4.8), a
Schupmann eyepiece was discussed as the secondary or collimating optics for
an afocal telescope having a remote exit pupil, which also can be viewed as
the eyepoint for a visible version of the telescope. Clarke has presented signifi-
cant information on using this single glass-type eyepiece with astronomical tele-
scopes (Chapter 15, refs. 18 and 19).

16.1 DESIGN OF A MILITARY-TYPE EYEPIECE

As an example of the design of an eyepiece of this type, we will assume
a focal length of 1 in. and a clear aperture of just over 1 in., for use with a
10-in. telescope doublet objective having a clear aperture of 2 in. (f/5). The true
field will be 2.4° at the objective, giving an apparent field at the eye of about
25°. It should be noted that in the absence of distortion the apparent field
would be given by the tangent ratio being equal to the focal-length ratio, or
tan Up, = 10 tan 2.4°, where U}, = 22.7°. The actual emerging ray slope is more
likely to be about 25°, with about 10% distortion.

16.1.1 The Objective Lens

For the objective lens, we will take the f/5 aplanatic doublet described in Sec-
tion 10.3, scaled down to f/ = 10.0 in e light:
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c d n,

0.1554
032  1.56606 SK-11

~0.2313
0.5 167158 SF-19

(D—d) —-0.0549164

with /7 = 9.99963, I’ = 9.76247, LA'(f/5) = 0.00048, LZA(f/7) = —0.00168,
OSC(f75) = 0.00011. The upper and lower rim rays at 2.4° are next traced with
Y, = £ 1.0 at the front vertex, and also the principal ray midway between them.
By Coddington’s equations traced along the principal ray we find

H;r =0.419107, X.=-0.01455 X;=—0.03154

16.1.2 Eyepiece Layout

To lay out the eyepiece, we may decide to use the same glasses as for the
objective, and keep the outside surfaces plane. As a start we can make all the
other surfaces of the same curvature, which for the prescribed focal length of
1.0 is 1.0337. Tentative thicknesses are set at 0.4 for the crowns and 0.1 for
the flints with a separation of 0.05. As a check on these thicknesses we trace the
lower rim ray entering the objective at 2.4°, and we find that it intersects
the six surfaces of the eyepiece at these heights:

Field lens Eye lens
0.5175 0.4877
0.5400 0.4362
0.5490 0.3854

A scale drawing (Figure 16.1) indicates that the thicknesses of the crown ele-
ments should be changed to 0.5 and 0.35, respectively. Having done this, we
restore the focal length by changing ¢4 to 1.0237.

Lateral Color

Our first task is to calculate the angular lateral color U, — U(. at the eye by
tracing principal rays in C and F light through the entire system including the
objective lens. It is best to do this at two obliquities so that a nice balance can
be obtained. This is shown in Table 16.1.
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Figure 16.1 Aberrations of a military-type eyepiece. (a) Lateral color (arcmin), (b) equivalent
OSC, (c) distortion (percent), and (d) astigmatism (diopters).

Table 16.1
Lateral Color of Military Eyepiece in Figure 16.1

Field angle (deg) U, - U/ (deg) Minutes of arc
2.4 -0.0505 -3.03
1.5 +0.0241 +1.44

This might well be considered an excellent balance since it favors the interme-
diate parts of the field and lets the extreme edge go. However, we can slightly
reduce the lateral color at 2.4° by weakening ¢s to —1.0 and holding the focal
length of the eyepiece by changing ¢, to 1.0226. This brings the lateral color
at 2.4° to —2.30 minutes of arc, which we will accept.

Coma

We must now direct attention to the coma. This is found by tracing the
upper and lower rim rays through the whole system, and then calculating their
point of intersection by the formulas given in Eq. (8-3a); see also Section 4.3.4.
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Table 16.2
Coma of the Military Eyepiece
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Field angle (deg) L, H), Hy, Coma, Equivalent OSC
24 -9.6221 4.6920 4.7415 -0.0496 -0.00348
1.5 -147.927 40.2579 40.3045 —-0.0466 -0.00039

The vertical distance of this point above or below the principal ray is a direct
measure of the tangential coma; we get the “equivalent OSC” by dividing the
coma, by 3 and by H,. Once again it is best to calculate this at two obliquities
and try to secure the best balance between them, letting the extreme value go
somewhat in order to favor the intermediate fields. Our present system has

the characteristics shown in Table 16.2.

We must obviously try to make the coma more positive. We can do this by
weakening the field lens, say by 5%, and then repeating the correction of the
lateral color and focal length. These changes yield the following system:

¢ d e
0
0.1 1.67158
Field lens 0.982
0.5 1.56606
-0.982
0.05
1.07227
0.35 1.56606
Eye lens -1.03
0.1 1.67158
0

with /' = 1.0000, / = -0.59779; lateral color: 2.4° = -2.43 arcmin, 1.5° = + 1.79
arcmin; distortion: 2.4° = 8.23%, 1.5° = 3.13%. For the coma, Table 16.3 shows

what we find.

Table 16.3
Coma of Modified Military Eyepiece

Field angle Uy Equivalent
(deg) (deg L, H), H, Coma, osc
24 24.4 -9.7363 4.6896 4.7282 -0.0385 -0.00271
1.5 15.1 -410.79 111.275 111.1386  +0.1263 +0.00114
Paraxial: +0.00156
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The paraxial OSC is assumed to be equal and opposite to the OSC at the
internal image, found by tracing a marginal ray back into the eyepiece from
the exit pupil. Since these corrections appear to be reasonable, we next turn to
the astigmatism.

Astigmatism

The astigmatism of the system is found by calculating Coddington’s equa-
tions along the traced principal rays, including the objective lens as well as the
eyepiece. The closing formulas give the oblique distances s’ and ¢’ from the eye-
point, which is here assumed to be at a distance of 0.7 beyond the rear surface.
It is more meaningful to convert the final s’ and ¢’ values to diopters of accom-
modation at the eye; this is done by dividing the calculated values into 39.37, the
number of inches in a meter, and reversing the sign. Table 16.4 shows what we
have for our last system.

Table 16.4
Astigmatism of Modified Eyepiece in Figure 16.1

Diopters at eye Eye relief

Field angle (deg) s’ t s’ t' L, (in.)
2.4 34.054 -12.076 -1.16 +3.26 0.69
1.5 62.94 -136.19 —-0.63 +0.29 0.76
Paraxial: 0.81

In this table, a positive diopter value represents a backward-curving field that
the observer can readily accommodate; a negative sign indicates an inward field,
which requires the observer to accommodate beyond infinity, an almost impos-
sible requirement for most people. Thus the negative values should be kept as
small as possible, and certainly less than one diopter. The various aberrations
of this final system are shown graphically in Figure 16.1.

16.2 DESIGN OF AN ERFLE EYEPIECE

When it is desired to provide an apparent angular field approaching £35°, it
is necessary to weaken the inner convex surfaces of the two-doublet “military”
eyepiece and insert a biconvex element between them. This type of eyepiece
was patented in 1921 by H. Erfle.
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Figure 16.2 Aberrations of an Erfle eyepiece. (a) Lateral color (arcmin), (b) equivalent OSC,
(c) distortion (percent), and (d) astigmatism (diopters).

0°

Because of the great length of the eyepiece, and because the clear aperture
must be considerably greater than the focal length, it is usual to weaken the field
lens and provide a deep concave surface close to the internal image plane, so as
to keep the eye relief as long as possible. The concave surface near the image
also helps reduce the Petzval sum (Figure 16.2).

In view of these considerations, we will assign a power of 0.1 to the field lens
and 0.4 to the middle lens; the eyelens will then come out to have a power of
about 0.36 for an overall focal length of 1.0. This is an entirely arbitrary division
of power and some other distribution might be better. We will use the same
glasses as for the military eyepiece, with BK-7 for the middle lens. Since we have
more degrees of freedom than we need to correct three aberrations, we can make

some of the positive elements equiconvex for economy in manufacture. The start-
ing system, to be used with the same objective lens as before, will be as follows:
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c d N,
-0.6
0.1 1.67158
Field lens ¢ = 0.1 0.6
0.6 1.56606
-0.833563
0.05
0.3949
Middle lens ¢p = 0.4 0.35 1.51871
-0.3949
0.05
0.8175
0.6 1.56606
Eye lens -0.8175
0.1 1.67158
0.05

with /7 = 1.0, / = —0.34460, 2.5° lateral color = 8.38 arcmin.

Clearly, our first task must be to reduce the lateral color; to do this we
strengthen ¢; and solve for the overall focal length by ¢s. The chosen thicknesses
are just sufficient to clear the 3.5° beam from the objective. Our second setup is

as follows:

¢ d
-0.6
0.1 1.67158
0.6
0.6 1.56606
-0.833563
0.05
0.3949
0.35 1.51871
-0.3949
0.05
0.83321
0.6 1.56606
-0.96
0.1 1.67158
0.05

with f"=1.0, [=-0.34987; lateral color:

+5.58 arcmin; equivalent OSC: 3.5° = -0.00301, 2.5°

Eyepiece Design

3.5° =-5.67 arcmin, 2.5° =

—0.00049, 1.5° = 0.00057,

axis = —0.00096. This lateral color is probably satisfactory, although an increase
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in the negative value at 3.5° would be advantageous since it would tend to reduce the
lateral color at the intermediate fields. As before, the so-called equivalent OSC was
found by tracing upper, principal, and lower rays at each obliquity and finding the
intersection of the upper and lower rays in relation to the principal-ray height. The
coma, found was divided by 3H' as before to give the equivalent OSC. For the axial
OSC, amarginal ray was traced backwards, entering the eye-lens parallel to the axis
at a height of Y7 = 0.1, and finding the ordinary OSC at the internal image. The
equivalent OSC at the eye was then taken as being equal and opposite to the true
OSC at the internal image.

It is clear that we must reduce the negative OSC at the 3.5° obliquity. The
simplest way to do this is to strengthen the interface ¢, in the field lens and re-
adjust the interface in the eye lens to restore the lateral color correction, always
holding the focal length by c¢g. It is also advantageous to deepen cg slightly and
to reduce the two air spaces between the elements. With all these changes we get
the following:

¢ d e
-0.6
0.1 1.67158
Field lens ¢ = 0.1 0.7
0.6 1.56606
-0.846516
0.03
Middle lens ¢ = 0.4 0.3949
0.35 1.51871
-0.3949
0.03
0.83941
0.6 1.56606
Eye lens -0.85
0.1 1.67158

0.1

with /' = 1.0, [ = -0.37806; at the internal image: L4 = +0.00612 (under-
correction), OSC = -0.00099 (overcorrection). The results are shown in
Table 16.5.

The properties of this eyepiece were shown graphically in Figure 16.2. There
is a good balance in the lateral color and also in the equivalent OSC. The tan-
gential field is decidedly backward-curving, which is desirable, especially since
the sagittal field is flat. The only sure way to change the field curvature is to
redesign the entire eyepiece with other glasses, chosen to have a smaller index
difference across the internal surfaces, but keeping a large V" difference for the
sake of lateral color correction.



510 Eyepiece Design

Table 16.5

Performance of Erfle Eyepiece

Lateral Diopters

Field U color Equivalent Distortion —

(deg) (deg)  (arcmin) b osc (%) s’ t Pl
3.5 33.9 -9.57 -2.32 -0.00150 9.50 -0.09 +11.04 0.57
2.5 24.7 +4.90 -8.93 -0.00012 5.75 -0.51 +3.88  0.64
1.5 14.9 +5.78 -54.20 +0.00068 2.17 -0.27 +091  0.69

Paraxial: ~ 40.00099 Paraxial:  0.72

16.3 DESIGN OF A GALILEAN VIEWFINDER

The common eye-level viewfinder used on many cameras is a reversed
Galilean telescope, with a large negative lens in front and a small positive lens
near the eye. The rim of the front lens serves as a mask to delimit the viewfinder
field, but of course since it is not in the plane of the internal image, there will be
some mask parallax and the mask will appear to shift relative to the image if the
observer should happen to move his eye sideways.

To design such a viewfinder, it is necessary to specify the size of the negative
lens, the length of the finder, and the angular field to be covered in the object
space. It is usual to assume that the eye will be located about 20 mm behind
the eye lens. The magnifying power of the system follows from the given dimen-
sions. The axial magnifying power is given by the ratio of the focal length of
the negative lens to the focal length of the eyelens, which is the ratio y/y4 for
a paraxial ray entering and leaving parallel to the lens axis. The oblique
magnifying power is given by tan Up/tan U, and generally varies across the
field. It can be made equal to the axial magnifying power, to eliminate distor-
tion (see Section 4.3.5), by the use of an aspheric surface on the rear of the front
lens; a concave ellipsoid is a useful form for this aspheric.

As an example, we will design a Galilean viewfinder having a front negative
lens about 30 mm diagonal to cover a +24° field, a central lens separation of
40 mm, and an eyepoint distance of about 20 mm. We start by guessing at a
possible front negative element. A paraxial ray is traced through it, entering
parallel to the axis, and by a few trials we ascertain the radii of a small equicon-
vex eye lens to make the system afocal. A 24° principal ray is then traced with a
starting Q; equal to 15mm, and the oblique magnifying power and L}, are
found. The distortion is also calculated by MPpiique — M Paial-
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A concave ellipse is then substituted for the second spherical surface, of
course with the same vertex curvature so as not to upset the paraxial ray, and
by experimentally varying its eccentricity the distortion can be eliminated.
If the L[, is then about 20 mm the problem is solved. If not, then it is necessary
to change ¢, and repeat the whole process.

The following design resulted from the procedure just outlined (all dimen-
sions in centimeters):

c d n
Ellipse with ¢ = 0.5916 0.1
0.30 1.523
(1-¢% =0.65 0.38
4.00 (air)
0.089698
0.25 1.523
~0.089698

with L, = 2.043; magnifying power: 24° = 0.6250, 15.8° = 0.6247, axis =
0.6249; focal length: front lens = —6.686, rear lens = 10.699. After tracing the
corner-principal ray at 24° to locate the eyepoint, other principal rays can be
traced right-to-left through this eyepoint out into the object space. It will be
seen that this particular elliptical surface has completely eliminated the distor-
tion. A diagram of the system is given in Figure 16.3. In practice, of course,
the front lens is cut into a square or rectangular shape to match the format of
the camera, and to match its vertical and horizontal angular fields. For safety,
the viewfinder is often constructed to indicate a field slightly narrower than that
of the camera itself.

Eye point

Virtuallimage
[—

Figure 16.3 A Galilean eye-level viewfinder.
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ENDNOTES
''S. Rosin, “Eyepieces and magnifiers,” in Applied Optics and Optical Engineering,
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2 H. Erfle, U.S. Patent 1,478,704, filed in August 1921.



Chapter 17

Automatic Lens Improvement
Programs

Many of the methods of lens design outlined in this book were the only pro-
cedures available up to about 1956, when electronic computers that had suffi-
cient speed to be used for lens design became available. Many people in
several countries then began work on the problem of how to use a high-speed
computer, not only to trace sufficient rays to evaluate a system but to make
changes in the system so as to improve the image quality. A brief history of this
evolution is presented in Section 17.7. It is our purpose in this chapter to indi-
cate how such a computer program is organized and how some “boundary con-
ditions” are handled.'~

When using this type of program, a starting system is entered into the pro-
gram, and the computer then proceeds to make changes that will reduce a cal-
culated “merit function” to its lowest possible value. The starting system need
not be a particularly good lens, and often a very rough approximation to the
desired system can be used. Indeed, some designers have even submitted a set
of parallel glass plates to the computer, leaving it up to the program to intro-
duce curved surfaces where necessary. Lenses designed in this way are not likely
to be as good as those in which the initial starting system is already fairly well
corrected. To gain further knowledge in the use of any of the automatic lens
design programs, we suggest that the reader consult the user manual for the pro-
gram of interest and consult the books cited in Section 17.8.2.

Mastery of the material contained in this treatise can serve the lens designer
well by providing a solid foundation of the fundamentals of lens design. Blind
use of a lens design program can and has at times provided useful results; how-
ever, the resulting design may be difficult to manufacture or align, or it may have
marginal performance. Application of lens design fundamentals will almost
always result in a preferable design and also provide guidance for the lens
designer to control/redirect the optimization path being taken by the lens design
program. For example, in Chapter 7 we showed there can be four solutions for a
spherically corrected achromat. Which of the solutions is best for a particular
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optical system design project will be difficult for almost any lens design program
to select because it doesn’t “know” there are multiple solutions. The designer can
interject his knowledge and assist the program to follow a better path.

Perhaps in the future, knowledge engineering and artificial intelligence will
achieve adequate capability that can be integrated with a lens design program
to produce acceptable designs from the engineer/designer providing just the
desired detailed requirements.® Even with methodologies to search merit-
function space to find the global minimum, the resulting design achieved by
one designer may be quite different from that of another designer if they should
have, as is often the case, different merit functions. Arguably, the skill, experi-
ence, and creativity of the lens designer will be important in lens design for
the foreseeable future.

17.1 FINDING A LENS DESIGN SOLUTION

The basic lens design optimization program includes modules for ray tracing,
aberration generation, constraints, merit function, and optimization. Programs
also include a variety of analysis modules to aid the lens designer in assessing
progress other than by the merit function. In this section, we will present a basic
understanding of optimization methods, generation of a merit function, and
constraints. The lens designer should carefully study the user manual for the
lens design and evaluation software being used. A certain commonality in struc-
ture, terms, parameters, optimization, and so forth, exists between the various
programs, but often subtle and significant differences are present and must be
understood by the lens designer for successful utilization.

17.1.1 The Case of as Many Aberrations as There
Are Degrees of Freedom

We will consider first the simple case of a lens having the same number of
degrees of freedom, N, as there are aberrations to be corrected. By degrees of
freedom, or variables, in a lens we refer to the surface curvatures, air spaces,
and sometimes lens thicknesses, although thickness changes do not generally
help very much.

We first evaluate all the aberrations of our starting system. Next, small
experimental changes in each of the N variables are made in turn, and we eval-
uate the change in each aberration resulting from this small change in each
variable. (This procedure was followed in the design of a telephoto lens in
Section 14.2.)
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To remove all the aberrations we must now solve N equations of the form

Aaby = (%) Av; + (%> Avy + (%) Avs + ...

vy v, ov3
Ay = (2922 poy + (2922 pvy + (2922 pws
v, vy Ov3

where ab represents an aberration and v represents a variable, or degree of free-
dom, in the lens. There are, of course, N equations in N unknowns, with N?
coefficients that we must evaluate by making small experimental changes.

Provided the variables have been chosen to be effective in changing the
particular aberrations so that the equations are well conditioned, then the N equa-
tions can be solved simultaneously. If everything were linear, the solution would
tell us how much each variable should be changed to yield the desired changes in
the aberrations. Unfortunately, a lens is about as nonlinear as anything in physics,
and it will probably happen that at least some of the calculated changes are far too
large to be used, and well out of the linear range. Consequently, we take a fraction
of the changes, say 20% to 40%, and apply these to the lens parameters. This
should yield an improved system, but nowhere near the desired solution. Then
we repeat the process, and we must now reevaluate the N° coefficients because
the changes that we have introduced will alter the path of all the traced rays and
hence all the subsequent coefficients. In the next iteration we shall be closer to
the solution and the changes will be smaller, so we can take a much larger fraction,
say 50% to 80%. After a third iteration we should be so close to the solution that
the whole of the calculated changes can be applied. This process can be manually
applied, but becomes challenging when N is very large.

17.1.2 The Case of More Aberrations Than
Free Variables

Suppose we have M aberrations and only N variables, where M is greater
than N. Then our procedure will yield M equations in N unknowns, and
a unique solution is impossible. The equations to be solved can be written in
simple form:

Y1 =a1X) +axx; +asxz + ...

ya=bix1 +byxo+b3xs+ ...

where the y are the desired changes in the aberrations and the x are the changes
in the variables. The quantities @, b, ... are the coefficients determined by
making small experimental changes in the variables.
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Although an exact solution is now impossible, we can ascertain a set of
changes x that will minimize the sum of the squares of the aberration residuals
R, where

Ry =aix1 +ax; +azxs+...—y;

Ry =bix1 +byxy +b3x3+... )

Obviously the Rs are in the nature of aberrations. Our problem is to find the set
of x values that will minimize the sum

¢=R+R,+R+...

there being as many R as there are aberrations and as many x as there are vari-
ables. The sum ¢ is called a merit function, and our aim is to reduce its value as
far as possible.

There are two reasons that we sum the squares of the residuals instead of
the residuals themselves. One is that all squares are positive, and of course
we do not wish to have one negative aberration compensating some other posi-
tive aberration. Another reason is that any large residual will be greatly
increased on squaring so that it will receive most of the correcting effort of
the program, while a small residual when squared becomes smaller still and is
ignored by the program. Eventually all the residuals end up at about the same
value and the image of a point source will then be as small as it can become.
However, the values of the quantities a, b, ... can vary many orders of magni-
tude, which can cause computation problems, and the solution obtained may
not actually yield the best image performance achievable for that lens
configuration.

17.1.3 What Is an Aberration?

“What is an aberration?” may seem like an odd question to ask, but actually
it is rather important to an understanding of the optimization problem. Perhaps
a better term for aberration would be defect. Throughout this treatise we have
discussed many image aberrations and measures of image quality. We could
use the conventional aberrations, provided they are all expressed in some com-
parable terms such as their transverse measure, but this will often be found to be
inadequate in achieving an acceptable solution.

Almost always, it is desirable to have significantly more defects than para-
metric variables, as will be explained in the following section. It has been found
useful to trace a number of rays and regard as an aberration the departure of
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each ray from its desired location in the image plane. In a like manner, the opti-
cal path difference (OPD) for each ray can be computed and used, but it should
be recalled that the OPD and transverse ray error are related. The OPD states
the departures of the wavefront from the ideal spherical form while the trans-
verse ray error uses the slope of the wavefront, the second being the derivative
of the first. One can also use various forms of chromatic errors, differential
ray traces,* aberration coefficients, Strehl ratio, MTF, encircled energy, and so
on, for image defects. Combining the image defects into the merit function must
be done with care since the magnitude of the errors can be dramatically differ-
ent. For example, the Strehl ratio and MTF for a well-corrected system are
somewhat less than unity while the wavefront error will be a fraction of a wave-
length.” To compensate for the numerical disparities of the constituents of the
merit function and relative importance to the lens designer, an appropriate
weight is assigned to each defect.

17.1.4 Solution of the Equations

For the merit function ¢ to be a mathematical minimum, we must solve a set
of equations of the form

9y 0,

Ox) T 0xy T Ox3

with there being as many of these equations as there are variables in the lens.
Differentiating our expression for ¢, we get the appropriate set of equations

o . (OR OR; OR; B

fori=1,2,...,N.
Entering the successive derivatives of the R with respect to x; for the first
equation gives
s
2 8x1 o

aix) + axx, + azxz +...)a1 + (b1x1 +b2x2+...)b1 +...=0

or
xl(a%—i—bf—}—...)—|—x2(a1a2+b1b2+...)+...—(a1y1+b1y2+...):0

Carrying out this differentiation in turn for each of the N variables, we obtain
the so-called normal equations. They are simultaneous linear equations and
have a unique solution. This is the well-known least-squares procedure invented
by Legendre in 1805.
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17.2 OPTIMIZATION PRINCIPLES

In the early stages of the optimization process it is common to find the pro-
gram demanding large changes in some of the variables, which are then reversed
at the next iteration. To prevent this kind of oscillation it was suggested by
Levenberg® and others’® that the merit function should be modified to include
the sum of the squares of the changes in the variables x so that

o= R+p) .~
The “damping factor” p is made large at first to control the oscillations, but of
course when it is large the improvement in the lens is very slow.

For each iteration thereafter, the value of p is gradually reduced until the
procedure finally becomes an almost perfect least-squares solution with no
damping. This process replaces the use of fractions of the calculated changes
suggested in Section 17.1.1. Typically, the damping factor is reduced until the
merit function begins to increase again. The last three values are used to esti-
mate the best value of p generally by a parabolic interpolation.

Lens design is an extremely nonlinear optimization problem which is linear-
ized to the best degree practicable to allow rational constructional changes. A
number of schemes have been explored by researchers over the past decades to
provide the mathematical method for lens design optimization.” The results of
these efforts indicated, most strongly, that a least-squares or minimum-variance
formulation is preferable.

The overall quality of a lens system has, for the purpose of design, been
found to be best described by a single-value merit function. The typical merit
function used in practice includes not only image quality factors but numerous
constructional parametrics. If f; denotes the ith defect of the lens system, then
potential merit functions (¢) include the following:

. M
i ¢= ;fi

o

(i) ¢= ; /il

L

(iii) ¢ = Zl f?

In general, defects can be expressed as

f,‘ = wi(e,- — li)

where w; is a weighting factor, ¢; is the actual value of the ith defect, and ¢; is
the target value of the ith defect. The functions, f;, have as design variables
xj, which are the constructional parameters of the system. In the following
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discussion, M defects and N variables are assumed. For best results, it is desired
that the number of defects exceed the number of variables. ,,

The most common merit function has the form ¢ =Y /2. In matrix
notation, i=1

¢ =FTF

where F is a column vector. Expanding each f; in a Taylor series and ignoring
terms higher than the first derivative terms yields

2
fih‘i‘Z ij :|

0:"’22 [fonAz/ - Xoj)

N N
+ Z 3> Aydi(x; — xo)) (xi — Xox)

i1 j=1 k=1

a3
2

M

where 4;; = —(‘;{(‘ The term Y_ /¢ is a constant and is therefore ignored. Combin-
J
ing the remaining terms in matrix form yields

¢ = (X —Xo)TATA(X — Xy).

Now,

Ji = foi JFZAU xO})

=
or
F =Fo+ AX - Xy).

The change vector, assuming a linear system, that would yield F = 0 is given
by

(X — Xo) = —A'F,.

Since the lens design problem is highly nonlinear, this solution is very unlikely
to be acceptable.

Rather than requiring each f; to equal zero, the nonlinear nature of the prob-
lem implies that it is more realistic to minimize the residuals of the f/s. Hence,

o M
99 _ N 214, —
o ;:1 JSiAix =0

and then

Z

f6’+ZAU X()j:|A,'](_O
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or
ATA(X — Xo) + ATFy = 0.

Therefore, the appropriate predicted change vector is
(X = Xo) = —(ATA) 'ATF,.

This result typically provides improved prediction, but changes are undamped.
Without some form of damping, ill-conditioning (ATA close to singularity)
and nonlinearities in F will cause the new value of the merit function to be
worse, in general, than the starting system.

To overcome these problems, a number of damping schemes have been tried.
The basic formulation is to add the damping term to the merit function to form
a new merit function. Thus,

N
2
dnew = borp +1° Z (% — x07) "
J=1
If % = 0 as before, then the change vector for additive damped least squares
becomes

(X = Xo) = —(ATA + 1) ' A"F,.

It is evident that the change vector components are attenuated as the value of
p increases. Furthermore, p affects each element of the change vector in a like
manner.

An improved damping method is known as multiplicative damping and is
given by

(X —Xo) = —(ATA +p?Q) 'ATF,

where Q is a diagonal matrix with elements

M
2 _ 2
qj—z lAij
p=

This has the effect of damping variables that cause ¢ to change rapidly.
Although this often seems to work very well, it is not justifiable on theoretical
grounds since the ¢; values should be based on the second derivatives.'’

Buchele'' discussed an improved method of damping the least-squares pro-
cess. Basically, it is much the same as multiplicative damping except that the
damping uses a damping matrix:

0*f;

dj =
cr)sz
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which means the diagonal terms are the second derivatives and the off-diagonal
terms are the partial derivatives. Although this method should be rather robust
and maintain control over the merit function oscillations, the amount of effort
to compute all N2 second derivative terms can be unreasonable. An alternative
pseudo—second-derivative matrix approach by Dilworth has demonstrated in
actual practice both a reasonable level of computation and very impressive
performance.'?

The problems of ill-conditioning and nonlinearity mentioned above can
actually limit the ability of the optimization routine to find the “optimum”
solution. Ill-conditioning shows up in damped least squares as a short solution
vector which limits the size of the parametric changes. To overcome these dif-
ficulties, Grey'*'* developed a methodology that orthogonalizes the solution
vectors by creating a set of orthogonal parameters (curvatures, thicknesses,
refractive indices, etc.) from the original set of parameters. These orthogonal
parameters can be considered as a linear combination of the original set of
parameters. When the solution is found, ill-conditioning still shows up as short
vectors. Since these solution vectors are orthogonal, unlike the highly corre-
lated solution vectors in the conventional damped least-squares approaches,
they are simply set to zero. Each of the remaining vectors is then scaled until
nonlinearities are observed. The Grey orthonormalization process is very
powerful particularly when used with the Grey merit function; however, it
has been observed that use of the conventional damped least-squares method
is best when “roughing-in” the lens and then switching over to the Grey
method once the design is in its final stages. An interpretation of Grey’s merit
function was made by Seppala and clearly explains the process of aberration
balancing."

A variety of other techniques have been applied to the lens optimization
problem including the so-called direct search, steepest descent, and conjugate
gradients. None of these have been shown to be generally superior to damped
least squares or orthonormalization. Glatzel and Wilson'® developed an adap-
tive approach for aberration correction. Basically the weights and targets of
the various aberrations are dynamically adjusted during the optimization pro-
cess while attempting to keep the solution vector within the linear region.
As was discussed in Chapter 4 and elsewhere, higher-order aberrations are
more stable with respect to changes in constructional parameters than are the
lower-order aberrations. The Glatzel and Wilson process attempted to gain
control of the higher-order aberrations first and then correct the next lower
order and so on. They and others have realized many successful designs using
this adaptive method.'”

It should be evident that these methods all are looking for a minimum value
of the merit function in a local region of the solution space rather than the abso-
lute minimum value in all of the solution space, that is, a global minimum. Most
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likely the first such effort to find the global minimum was by Brixner.'®!* His
lens design program essentially started with a series of flat plates that the pro-
gram manipulated to achieve the lowest merit function value.”* By running
the program multiple times with the program trying different potential regions
of the solution space, it was thought that the global minimum could be found.
In the 1990s as great computing power became readily available at low cost, meth-
ods for allowing the computer program to search for a global solution became a
seriously investigated topic involving simulated annealing, genetic and evolution-
ary algorithms, artificial intelligence, and expert systems,>!+2%23:24:25.26.27.28

Although impressive results are often obtained, the lens designer still needs to
be involved to guide and select alternative paths for the program to follow. It is
noted that, at times, these solution space search methods have found new con-
figurations that were totally unexpected. New manufacturing methods have
allowed the fabrication of diffractive optics, highly aspherized surfaces, and
free-formed surfaces. Each of these advances adds to the complexity and capa-
bility of the programs. Only in recent years have polarization issues been
addressed in some lens design programs.”

One may ponder the question “Will a lens design program ultimately be able
to design, without human intervention, an optical system meeting a user’s
requirements?” Perhaps so, but it will be at a far distant time. The lens designer
provides an insight and system overview that is difficult to imagine a computer
achieving. One should remember that designing the lens is only a part of the
engineering activities necessary to manufacture an optical system. Tolerancing,
manufacturing methods to be used, mechanical and thermal considerations,
antireflective coatings, and so on, are complex factors to be included in the total
design of an optical system.

17.3 WEIGHTS AND BALANCING ABERRATIONS

The optimization program has no way to know which aberration is more
important than another; it only can tell the contribution the aberration makes
to the merit function. The lens designer needs to assign weights to the aberra-
tions/defects such that the contribution of each is appropriately balanced to
achieve the desired correction of the lens system. For example, consider an axial
monochromatic image and that a sharp image core with some flare is accept-
able, as was discussed in an earlier chapter. In this case, the weighting of each
meridional ray should decrease toward the marginal ray. The relative weighting
can influence the amount of flare.

Many lens design programs have default merit functions that include a vari-
ety of image defect terms and associated weights. Often these can take a crude
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lens design and make significant progress toward an acceptable design. As the
design activity progresses, the lens designer most often needs to adjust the
weights and mix of aberrations to guide the program to achieve the goal.
For example, in the early stages of a design, the use of transverse ray aberra-
tions may be fruitful. As the design progresses, the use of wavefront errors or
OPDs may be appropriate.® In some cases, final tweaking of the design may
be best done using MTF, encircled energy, or Strehl ratio. And, of course, some
clever combination of these may be necessary.

The lens designer should also be careful not to try to control aberrations that
are uncorrectable. Consider, for example, the aplanatic doublets discussed in
Chapter 10. We taught that one may correct axial chromatic aberration, spheri-
cal aberration, and OSC (coma). Attempting to control astigmatism would be
imprudent in this case.

In Chapter 4, we discussed balancing aberrations. Recall that in Chapter 6
(Figures 6.3 and 6.18) we discussed how defocus was used to compensate for
the residual spherical aberration. It was also demonstrated how third-order
and fifth-order spherical aberration and defocus could be balanced to achieve
several different outcomes depending on the lens designer’s requirements.

17.4 CONTROL OF BOUNDARY CONDITIONS

In addition to the reduction of the merit function to improve the image qual-
ity, a computer optimization program must be able to control several so-called
boundary conditions, for otherwise the lens may not be producible. The princi-
pal boundary conditions that must be controlled are axial thicknesses, edge
thicknesses, length of lens, vignetting, focal length, f~number, back focal length,
and overall length. At times it is important to control pupil locations, stop posi-
tion, nodal points, internal image locations, and so forth. There are various
ways to accomplish control of these boundary conditions.

One approach is the use of Lagrange multipliers, which are a method to con-
strain the solution of the least-squares optimization in such a way that the con-
straints are met. This approach has been successfully used and also has met with
failure in the hands of an inexperienced lens designer. Should the lens designer
specify a set of constraints where two or more are in conflict, the optimization
program will generally abort.

Rather than attempting to demand that the program satisfy the specified
constraints, it is often preferable to include them in some manner in the merit
function in the form of a defect. Consider, for example, controlling the axial
thickness of a lens element where the lens designer wants to keep the lens
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thickness of the jth surface at least 1.5 units, an edge thickness of 0.1 unit, and a
maximum axial thickness of 5 units. The defects could be written as follows:

Ji = w;(thickness; —1.5) or (= 0 if positive)
Jfir1 = wiyi(edge thickness; —0.1) or (= 0 if positive)

fi+2 = wipo(thickness; —5) or (=0 if negative)

so that no contribution is made to the merit function when the constraint is
satisfied. Although this approach generally works fine, it can create boundary
noise that can foul the optimization process somewhat if the derivative isn’t
handled correctly. By making the transition softer at the boundary, the problem
of discontinuity of the first derivative is typically alleviated.

One of the most common and perhaps important constraints is the focal
length. As we have explained in this treatise, there are multiple ways to deter-
mine the focal length. Perhaps the most obvious way is to define it as a defect.
This can work well, but at times this approach degrades the performance of the
optimization. Setting the image height of a principal ray (at say 10% of the
FOV) as a defect can be used to define the focal length. The reason for using
a fractional image height is to avoid distortion which can cause an error in
computing the focal length. A third, and often preferred, approach is to use a
curvature solve (see Sections 2.4.5, 3.1.4, and 3.1.8) on the last surface of the lens
to achieve the desired marginal ray slope angle.

The lens designer has the responsibility to adjust the weights on the multitude
of defects so that the lens can achieve the desired performance. It is generally a
good rule to minimize the number of defects used to those really needed to con-
trol the progress of the lens design. The reason is simple; the more defects that
are present in the merit function, the less impact any given defect will have on
the merit function. If the lens design program you are using offers an option to
view the derivatives of the defects with respect to the design parameters, then it
can be very instructive to study them as an aid to deciding if more or fewer defects
would be helpful, and to provide guidance in changing the defect weights.

17.5 TOLERANCES

Closely related to the design optimization process is determination of the tol-
erances for the design. Establishing the tolerances for a lens system can be a
major portion of the entire lens design project.>' All of the major lens design
programs provide extensive tools for establishing manufacturing tolerances
including attempting to utilize existing test plates. Using existing test plates
can necessitate tweaking the design to maintain performance. Some programs



17.7 Lens Design Computing Development 525

allow the lens designer to include tolerances in the merit function such that they
are desensitized. Even for a rotationally symmetric optical system, aberrations
that are caused by lens element decentration, tilt, and wedge must be given
consideration,3>33:3435.36

It has been mentioned that Glatzel and Shafer have each written about
reducing the strain in an optical design as a means to lower the tolerancing
requirements.®’ The principle basically is to minimize the angle of incidence of
rays at element surfaces, which aids in not generating high-order aberrations
rather than attempting to mitigate these aberrations. (See Section 6.1.6 also.)

17.6 PROGRAM LIMITATIONS

Optimization programs are generally written so that it is impossible to make
a change in a lens that will increase the merit function, even though the next
iteration will effect a large improvement. Also, in general no program will tell
the designer that he should add another element or move the stop into a differ-
ent air space. However, if an intelligent lens designer stops the program after a
small number of iterations to see what is happening, he will quickly realize that
an element should be divided into two, that the stop should be shifted, or that
he should eliminate a lens element that is becoming so weak as to be insignifi-
cant. He may also decide to hold certain radii at values for which test glasses
are available, letting the program work on only a few variables to effect the final
solution.

It is also essential to remember that a computer optimization program will
only improve the system that is given to it, so that if there are two or more solu-
tions, as in a cemented doublet or a Lister-type microscope objective, the pro-
gram will proceed to the closest solution and ignore the possibility of there
being a much better solution elsewhere. It is this limitation that makes it very
necessary for the operator to know how many possible solutions exist and which
is the best starting point to work from.

17.7 LENS DESIGN COMPUTING DEVELOPMENT

The early computers used for lens design were humans performing manual
calculations for a meridional ray at speeds up to perhaps 40 seconds per ray-
surface.®® In 1914, C. W. Frederick was hired by Eastman Kodak to establish
a lens-design facility within the company. Although he stated he knew nothing
about lens design, he was responsible for developing lens design methods and
formulas adequate for lens production.
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In 1937, it was recognized that Frederick (age 67) would soon retire. Rudolf
Kingslake, an associate professor at The Institute of Optics, was invited to join
Frederick’s group with the intent that Kingslake would succeed Frederick,
which occurred in 1939.% Kingslake retained a close relationship with The
Institute of Optics for many decades thereafter. During World War II,
Kingslake’s group designed many lenses important for the war effort using
human computers with Marchant calculators. During this same period, Robert
Hopkins and Donald Feder were the principal lens designers at The Institute
of Optics and also made important contributions. After the war, a few compu-
ters became available and Feder moved to the National Bureau of Standards
(NBS). %

By 1950, ray-tracing programs had been written but the issue of automatic
design was found to be quite difficult. Nevertheless, by 1954 work on automatic
design programs was progressing at Harvard, University of Manchester, and
the National Bureau of Standards. From 1954 to 1956, Feder explored at
NBS various methods of optimizing lenses and achieved promising results.
He approached Kingslake for a job at that time and soon developed an auto-
matic design program for the new Bendix G-15 digital computer, which evolved
into the LEAD (Lens Evaluation and Design) program, beginning use in 1962.*!
Manual skew-ray tracing through a single spherical surface in 1950 required
over eight minutes and just one second on the G-15. By 1970, the time dropped
to 50 us on a CDC 6600 computer.

As mentioned earlier, in the 1950s digital computers of very modest capabil-
ity became available (although costly) and the age of digital computer-aided lens
design was born. In 1955, Gordon Black wrote about ultra-high-speed skew-ray
tracing in Nature, where he stated that several digital computers in Britain and
the United States were achieving 1 to 2 seconds per ray surface, with the fastest
being about ' second per ray surface.*?

During the late 1950s and throughout the 1960s, groups around the world
spent significant effort in developing lens design and evaluation software. Some
of the activity occurred at universities while others were performed within com-
panies for their own proprietary use. Pioneering work was performed at Impe-
rial College London, The Institute of Optics, Eastman Kodak, Bell & Howell,
Texas Instruments, PerkinElmer, and others. In Britain, SLAMS (Successive
Linear Approximation at Maximum Steps) was developed by Nunn and
Wynne.** Donald Feder** developed LEAD at Eastman Kodak. At The Insti-
tute of Optics, ORDEALS (Optical Routines for Design and Analysis of Opti-
cal Systems) was developed under the leadership of Robert Hopkins, and
Gordon Spencer wrote the code for ALEC (Automatic Lens Correction) as part
of his Ph.D. dissertation, which evolved into FLAIR,* POSD (Program for
Optical System Design),*® and ACCOS (Automatic Correction of Centered
Optical Systems).*’
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In 1963, after ten years at Bell & Howell, Thomas Harris started Optical
Research Associates and was joined by Daryl Gustafson a couple of years later.
They developed their own software, which became known as CODE V, to sup-
port their consulting business and made it available commercially in the mid-
1970s. CODE V rapidly became widely accepted in industry and government
and has continued to remain one of the principal programs used today. Donald
Dilworth also began development of SYNOPSYS (SYNthesis of OPtical
SYStems) in the 1960s and made it available commercially in 1976.

The 1960s were an exciting period in the development of optical design soft-
ware in part because computers were becoming available to designers and the
computing power seemed to be growing exponentially year by year! It should
be pointed out that computing time was rather expensive, input was by key-
punch into paper cards, and turnaround time when using a mainframe was
often days. In 1965, IBM introduced the IBM 1130 Computing System, which
was a mini-computer about the size of an office desk. Spencer and his group
developed POSD, an extension of ALEC, for the IBM 1130 which became avail-
able in 1966.

At Texas Instruments, we had an IBM 1130 dedicated for lens design and the
proprietary OPTIK program written by Howard Kennedy for use on the main-
frame. Even with the slow skew-ray tracing speed of 10 ray surfaces per second
for POSD compared to the seemingly blazing speed of the IBM 360 running
OPTIK (about 5000 ray surfaces per second), the humble IBM 1130 frequently
allowed design work to proceed in an orderly manner while the use of the main-
frame turnaround was often days or longer if a keypunch error had been made.

Around 1970, Control Data Corporation (CDC) had public data terminals
called Cybernet which were tied into a network of CDC 7600 computers scat-
tered around the United States, fortunately with one being in Dallas, Texas.
The advantage of this was that turnaround was now measured in minutes rather
than days. Also, optical design software was available on the CDC computers
that could be used for a quite reasonable fee. Programs included ACCOS,
GENIL* and David Grey’s COP programs (FOVLY, MOVLY, and COVLY).
Soon thereafter, a local CDC terminal was installed within the work area of the
Texas Instruments lens design group and the improvement in productivity was
nothing short of dramatic. This CDC capability made some of the best optical
design software available to anyone and arguably changed the dynamics of opti-
cal design from just the few companies to any company being able to participate
in the optics business.

Another important event in the evolution of optical design tools occurred in
1972 when Hewlett Packard introduced the HP 9830A, which looked like a
desktop calculator but actually blurred the distinction between calculators and
traditional computers. The programming language was BASIC and it had under
8K words of RAM and 31K words of ROM. A critical aspect of its power
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was the special plug-in Matrix Operations ROM that made possible the devel-
opment of a lens design program for it.

Teledyne Brown Engineering (TBE) purchased an HP 9830A for our group
in early 1973 for about $10,000 (about $40,000 equivalent in 2009 dollars).
In short order, I wrote ALDP (A Lens Design Program) for it for the initial
purpose of using it as a training tool for those in our group desiring to learn
how to design and evaluate lenses. The aberrations were based primarily on
those presented in Chapter 4, with tolerance control following the method
developed by William Peck for GENII. Optimization choices included additive
damped least squares, multiplicative damped least squares, and orthonormaliza-
tion. Remarkably, many of the designers used the program for actual design
work rather than just for training. Again, mainframe turnaround lag time was
a consideration in this utilization. TBE considered ALDP a proprietary pro-
gram and rejected any request even for publication of a technical paper. Soon
thereafter, Douglas Sinclair independently began developing lens design
software for the HP 9800 series that resulted in the formation of Sinclair
Optics in 1976. This program was known as OSLO (Optical System and Lens
Optimization) and became quite widely used.

In the 1980s, personal computers (PCs) became more available and affordable,
although serious computing power really became available in the late 1990s and
thereafter continued impressively increasing. During this period, ACCOS,
OSLO,* GENII (with option for Grey’s programs),”>>! SYNOPSYS,>>
CODE V,> SIGMA,** EIKONAL,” and others were ported to the PC.

Some others developed code specifically for the PC, most notably Kenneth
Moore’s ZEMAX (after his Samoyed named Max), which was introduced in
the early 1990s and has arguably become the most widely used optical design
program. At the writing of this book, a PC system can be purchased for a few
thousand dollars that provides ray tracing speed of tens of millions of ray sur-
faces per second, which is millions of times faster than the humble IBM 1130
of 40 years ago.

Another point often overlooked is that the PC cost per run and turnaround
time are insignificant compared to running on a mainframe. Also, the capability
of these PC-based programs has rapidly expanded to handle almost any imagin-
able optical configuration including those containing diffractive surfaces, non-
imaging systems, nonsequential systems, free-form surfaces, polarization,
birefringent materials, and so on. Also, these codes have evolved over the past
30 years to meet the ever increasing performance demands of microlithographic
lenses, which are difficult to design, fabricate, and align.’® Extraordinary analysis
capability is contained in these programs that give the designer the tools often
necessary to understand and explain the behavior of a lens and how it may per-
form in an actual system. As optical technology evolves, it is clear that the code
developers will enhance their software to model the technological innovations.
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17.8 PROGRAMS AND BOOKS USEFUL
FOR AUTOMATIC LENS DESIGN

The following lists of lens design programs and books are intended to pro-
vide additional material that may be helpful to the lens designer using any of
the various software packages. It should be noted that there are additional soft-
ware packages that have specialized applications and limited capabilities, and
are no longer commercially available which have not been included. No attempt
was made to be all-inclusive. No representation of suitability, quality, capabil-
ity, accuracy, and so on, is made by the author whether or not a software pack-
age or a book is included or excluded from the following lists. Some of the
books cited are focused on the use of a specific lens design program; however,
much can be still be learned by reading the material even if you are using a
different program.

17.8.1 Automatic Lens Design Programs

The following are some of the automatic lens design programs available,
including information about where to obtain them.

CODE V - Optical Research Associates, 3280 East Foothill Boulevard,
Suite 300, Pasadena, CA 91107-3103

OSLO - Lambda Research Corporation, 25 Porter Road, Littleton, MA 01460

SYNOPSYS — Optical Systems Design, Inc., P.O. Box 247, East Boothbay,
ME 04544

ZEMAX - ZEMAX Development Corporation, 3001 112th Avenue NE,
Suite 202, Bellevue, WA 98004-8017

17.8.2 Lens Design Books

For further information about the subject, refer to the following books as
needed.

Michael Bass (Ed.), Handbook of Optics, Third Edition, McGraw-Hill,
New York (2009) [contains numerous related chapters].

H. P. Brueggemann, Conic Mirrors, Focal Press, London (1968).

Arthur Cox, A4 System of Optical Design, Focal Press, London (1964).

Robert E. Fischer, Biljana Tadic-Galeb, and Paul R. Yoder, Optical System
Design, Second Edition, McGraw-Hill, New York (2008).

Joseph M. Geary, Introduction to Lens Design, Willmann-Bell, Richmond, VA
(2002).
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Herbert Gross (Ed.), Handbook of Optical Systems: Vol. 3, Aberration Theory
and Correction of Optical Systems, Wiley-VCH, Weinheim (2007).

Michael J. Kidger, Fundamental Optical Design, SPIE Press, Bellingham
(2002).

Michael J. Kidger, Intermediate Optical Design, SPIE Press, Bellingham
(2004).

Rudolf Kingslake (Ed.), Applied Optics and Optical Engineering, Vol. 3,
Academic Press, New York (1965). [Chapters regarding eyepieces, photo-
graphic objectives, and lens design.]

Rudolf Kingslake, Optical System Design, Academic Press, Orlando (1983).

Rudolf Kingslake, A4 History of the Photographic Lens, Academic Press,
San Diego (1989).

Rudolf Kingslake, Optics in Photography, SPIE Press, Bellingham (1992).

Dietrich Korsch, Reflective Optics, Academic Press, San Diego (1991).

Milton Laikin, Lens Design, Fourth Edition, Taylor & Francis, New York
(2006).

Daniel Malacara and Zacarias Malacara, Handbook of Lens Design, Marcel
Dekker, New York (1994).

Virendra N. Mahajan, Optical Imaging and Aberrations, Part I, SPIE Press,
Bellingham (1998).

Virendra N. Mahajan, Optical Imaging and Aberrations, Part II, SPIE Press,
Bellingham (2001).

Pantazis Mouroulis and John Macdonald, Geometrical Optics and Optical
Design, Oxford Press, New York (1997).

Sidney F. Ray, The Photographic Lens, Focal Press, Oxford (1979).

Sidney F. Ray, Applied Photographic Optics, Second Edition, Focal Press,
Oxford (1994).

Harrie Rutten and Martin van Venrooij, Telescope Optics: Evaluation and
Design, Willmann-Bell, Richmond (1988).

Robert R. Shannon, The Art and Science of Optical Design, Cambridge Univer-
sity Press, Cambridge (1997).

Robert R. Shannon and James C. Wyant (Eds.), Applied Optics and Optical
Engineering, Vol. 8, Academic Press, New York (1980). [Chapters regarding
aspheric surfaces, photographic lenses, automated lens design, and image
quality.]

Robert R. Shannon and James C. Wyant (Eds.), Applied Optics and Optical
Engineering, Vol. 10, Academic Press, New York (1987). [Chapters regarding
afocal lenses and Zernike polynomials.]

Gregory H. Smith, Practical Computer-Aided Lens Design, Willmann-Bell,
Richmond, VA (1998).

Gregory H. Smith, Camera Lenses from Box Camera to Digital, SPIE Press,
Bellingham (2006).
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Warren J. Smith, Modern Lens Design, Second Edition, McGraw-Hill,
New York (2005).

Warren J. Smith, Modern Optical Engineering, Fourth Edition, McGraw-Hill,
New York (2008).

W. T. Welford, Aberrations of Optical Systems, Adam Hilger, Bristol (1986).

R. N. Wilson, Reflecting Telescope Optics I, Second Edition, Springer-Verlag,
Berlin (2004).
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A
Abbe, E.K., 256, 257, 305, 434
Abbe number of glass, 145, 154, 170, 279,
370, 428, 433
Abbe sine condition, 229, 256-258
Aberration
astigmatism, 108, 469470
asymmetric, 105-106, 114
chromatic, 137-170, 183, 209-212, 221,
224-225, 258, 269, 281, 314-315,
330, 355, 358-360, 363-366, 411,
420421, 452-453, 455, 458-459,
466-468, 498, 523
coma, 41, 111, 120, 126, 413, 480
decomposition map, 111, 112
defocus, 114-115, 174-175
distortion, 1, 123-124, 289, 302, 306-310,
324, 400, 420, 429
field curvature, 101, 128, 138, 183, 236,
245, 252, 289, 298, 300, 302-305,
324-325, 331, 333, 336, 348,
359-360, 365, 371-372, 376,
390-391, 400, 402, 405-406, 410,
412, 447, 450-451, 459, 493, 507
lateral color, 137-138, 170, 206, 229, 281,
289, 302-303, 305, 313-317, 319,
327, 331, 355, 360, 363, 366-367,
371, 373, 384, 387, 396, 408, 411,
416-417, 419-422, 425, 459, 468,
499, 501-503, 505-508
off-centered pupil, 483-485
Petzval sum, 21, 110, 299-305, 327-328,
330, 333-334, 336-338, 342,
344, 348, 351-360, 363-365,
400401, 410, 412, 416, 419-421,
439, 448, 456, 458, 469470, 475,
477, 499, 505
polynomial expansion, Buchdahl, 108-110,
113, 128-132
primary, 194, 197-198, 206, 238, 318,
419-420, 469, 480
ray intercept error, 108

Seidel, 109, 128-134, 269, 305, 318-319,
325, 337, 419-420, 498
spherical, 111, 115-119, 133, 143, 164165,
173-208, 236-237, 257, 262, 296,
325. See also Spherical
symmetric, 105
zonal, 125, 140, 194
Achromat
air-spaced doublet (dialyte), 156-162, 301,
355-363, 367, 373-377, 466
cemented doublet, 6, 41-42, 45, 52-53,
139-140, 144, 152, 160, 167, 199,
211, 218, 220, 242, 269, 273-275,
280, 294, 306-309, 371, 373,
409, 525
compared to single lens, 79, 81, 83,
148, 151, 162-163, 183-184,
189, 199, 202, 216, 258, 300,
325, 398
of one glass, 5, 159-162, 465
with one glass, 89
paraxial, 149-152
Achromatic landscape lenses, 334-339
Achromatism
by (D — d) method, 163
at finite aperture, 163-166
with one glass, 5, 159-162, 465
paraxial, 145-148
Ackroyd, Muriel D., 429
Air equivalent, of parallel plate, 205
Airgap. See Air space
Air lens, 5, 223-226, 304-305, 375
Air space
preferred thickness of, 5, 29, 64, 152, 214,
220, 271, 286, 339, 468, 524
use of, to reduce zonal aberration, 219
Airy disk, 25, 265-266, 490-491, 493-494
Altman, Fred E., 369, 373, 469
Anastigmat, 423, 460
symmetrical, 353-377
Angle-solve method, 55, 81, 183, 459
Antireflection coatings, 5

Note: Bold numbers indicate the pages on which important information can be found.
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Aperture, maximum for aplanatic lens, 138,
181, 186, 264, 281
Aplanat (Rapid Rectilinear) lens, 336,
339-342, 345-347
Aplanat, 138-139, 257
broken-contact type, 269-270
with buried surface, 21, 279-280, 335, 370
cemented doublet, 6, 41-42, 44-45, 52-53,
139-140, 144, 152, 160, 167, 199,
211, 220, 242, 273-275, 280, 294,
306-309, 371, 373, 409, 525
cemented triplet, 221, 275-276, 369-373
design by matching principle, 21,
281-286
design of, 269-286
parallel-air-space type, 1-2, 5-6, 16, 20-21,
94, 369, 371, 373-377
Aplanatic case
astigmatism in, 229, 258, 299-300,
306, 423
coma in, 121, 317, 346-347, 472, 475
Aplanatic hemispherical magnifier, 140,
180, 398
Aplanatic lens, maximum aperture of, 140,
142, 148, 152, 163-166, 281-282
Aplanatic parabola corrector, 450451
Aplanatic points, of a surface, 179-182,
258, 296
Aplanatic single element, 181
Apochromat
with air lens, 223-226
design of triple, 220-223
predesign of triple, 152-156
Aspheric plano-convex lenses, 188-193, 400
Aspheric surface, 2-3, 27, 31, 45-47, 49, 57,
188, 272, 292, 320-321, 459,
471-473, 508
corrections to Seidel aberration formulas,
128-135
equation of, 33, 48, 52-53, 66, 239, 292,
392, 444-445, 517
by injection molding, 3
paraxial rays at, 57
ray tracing formulas for, 27, 197
in two-mirror telescope, 473, 498
Aspheric versus spherical surfaces, 2-3
Astigmatic calculation along principal ray,
292-294
Astigmatic, defined, 111, 117
Astigmatic focal lines, 290
Astigmatism, 313, 423, 460
Coddington’s equations for, 501

Index

and coma arising at a surface, 298,
302-303, 305-306, 315-317, 320,
325, 327, 331, 334-336, 340, 342,
346, 360, 367, 371, 373, 379, 381,
400, 403-404, 415, 420-421, 423,
429, 434-435, 448-449, 451, 453,
470, 472, 475, 478-479, 483-484,
499, 502-503, 523

in eyepieces, 3, 20, 137, 260, 499-500

graphical determination of, 294-296

higher-order, 126-128

illustration of, 306

numerical example, 179

when object is at center of curvature, 179,
296, 319

relation to Petzval surface, 120, 299,
319, 337

sagittal oblique spherical, 127, 245, 434

Seidel formulas for, 109, 128-135, 318, 325,
337, 419-420

at a single-lens zone, 4, 79, 81, 83, 148, 151,
162-163, 189, 199, 202, 216, 258,
300, 325, 398

tangential oblique spherical, 127, 129,
245, 312

at three cases of zero spherical aberration,
194, 212, 257-258, 262, 275, 296, 302

at tilted surface, 42-45, 296-297, 493

Young’s construction for, 295

zonal, 125-126

Automatic lens-improvement programs,
513-529
Auxiliary axis, 228-229, 255-256, 291,

294-295, 298

B
Back focus, 68, 78, 82, 91, 93-96, 138, 455,
461, 474, 477
Barlow lens, 397-398
Barlow, Peter, 397
Barrel distortion, 124, 309
Baur, Carl, 428
Bausch and Lomb formula for refractive
index, 18, 363
Bending a lens
effect on OSC, 123, 258-264, 269-271,
273-275, 277-285, 296, 313-314,
325, 346, 380-386, 390-394,
403-406, 410, 412-417, 425,
443-445, 448-453, 457, 462, 468,
472-475, 478-482, 501-508, 523
effect on spherical aberration, 269



Index

thick lens, 61, 75-76, 78, 81-82, 84, 183,

221, 273, 420, 425, 468

Bouwers, A., 453

Bouwers—Maksutov system, 455

Bow-Sutton condition, 317

Bravais lens, 398-400

Broken-contact aplanat, 270

Buchdahl, Hans A., 108-110, 129-132

Buried surface in triple aplanat, 279-280

C
(¢g, ¢p) formulas for achromat, 148, 151-152,
156-157, 159-162, 164-165, 209,
216, 221, 269, 274-275, 286,
334-339, 342, 355, 388, 400, 409,
447, 452-453, 513
(¢a» Cp, ¢.) formulas for apochromat, 153-156,
221, 226
Caldwell, James Brian, 470
Cardinal points, 67, 76
Cassegrain telescope, 447, 471-480, 486
Catadioptric systems, 20, 23, 441, 465-469,
497-498
ray tracing through, 440442
Cauchy formula, for refractive index, 16
CDM (chromatic difference of magnifi-
cation), 314-315
Cemented doublet
achromat, 148, 151-152, 156-157, 159-162,
164-165, 209, 216, 221, 269,
274-275, 286, 334-339, 342, 388,
400, 409, 447, 452-453, 513
aplanat, 21, 186, 257, 269-270,
270-274, 277, 279-280, 336, 339,
347, 448
apochromat, 153-156, 221, 226
example objective, 41
Cemented triplet
aplanat, 21, 186, 257, 269-270,
270-274, 277, 279-280, 336, 339,
347, 448
apochromat, 153-156, 221, 226
Cementing lenses, 5
Characteristic focal line, 299
Chevalier landscape lens, 334-336
Chief ray, 230, 304
Chord (PA), expressions for, 178
Chromatic aberration
of cemented doublet, 6, 41-42, 44-45,
52-53, 139-140, 144, 152, 160, 167,
199, 211, 218, 220, 242, 273-275,
280, 294, 306-309, 371, 373,
409, 525
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by (D — d) method, 18, 21, 163-167, 217,
222, 226, 270, 273-274, 2717,
281-282, 315-316, 334, 338, 340,
342-343, 384, 386, 448, 456

at finite aperture, 163, 170, 263, 480

of oblique pencils, 110, 231, 237, 315-316

orders of, 139, 144, 153, 498

over- and undercorrection, 163, 178,
185-187, 207, 224, 237, 325-326,
340, 457

of separated doublet, 157, 409

surface contribution to, 130, 133, 144,
176-178, 260-261, 312, 318-320

thin-element contribution to, 80, 82-83,
145-149, 169-170, 199, 301, 319,
357, 420

tolerances, 6-8, 19, 139, 162-163, 166-167,
170, 206-208, 259, 278-279, 285,
310, 428, 444, 481, 524-525, 528

variation with aperture, 115

Chromatic difference of magnification
(CDM), 314
Chromatic variation of spherical aberration,
140-141, 143, 313, 315
Clark, Alvan G., 363
Cleartran, 13
Coating, antireflection, 5
Coddington, H., 289
Coddington equations for astigmatism, 229,
289, 291, 296, 324
Color of glass in lenses, 12
Coma, 227-228. See also OSC
and astigmatism
arising at a surface, 120-123, 209
at a single-lens zone, 252

in astronomical telescope, 152

cubic, 108-109

effect of bending on, 80-82, 148, 182-183,
200, 420

elliptical, 111

in eyepieces, 3, 20, 137, 160, 260, 296, 346,
371, 373, 465, 498-510

G-sum, 199, 211, 263, 277

illustration of, 266-268

introduced by a tilted surface, 4245,
296-297, 493

linear, 109, 111, 121, 123, 127, 132, 266-267

meridional, 236-237. See also Coma,
tangential

nonlinear, 111-112, 127-128

orders of, 121, 123, 126, 179, 254, 263, 266,
302, 371, 415, 418
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Coma ( Continued)
primary, 237, 263, 405, 445
quintic,108-109
sagittal, 120, 122-123, 128, 228, 245, 252,
259, 267,302,305, 318, 346, 423, 445
Seidel formulas for, 109, 128-134, 318, 325,
329, 337, 355
and sine condition, 123, 229, 255-268
and spherical aberration, relation of, 158
surface contribution to primary, 130, 133,
144, 176-178, 197, 260-262,
318-320
tangential, 120123, 127-128, 228, 252,
267, 325, 346, 434, 503
thin-lens contribution to primary,
319-321
zonal, 125-126
Component, 1-2, 5, 107
“Concentric” lens design, 348-349
Conic constant, 46-47, 190-193, 205, 322,
446-447, 464
Conic sections
equation of, 46, 189, 190, 446-447
lens surfaces, 188-193, 226
mirror surfaces, 264, 440
Conjugate distance relationships, 71-72
Conrady, A.E., 16, 110, 138, 163, 164, 166,
199, 206, 207, 252, 259, 278, 283,
292, 318, 502
(D — d) method, 18, 21, 163-167, 217, 222,
226, 270, 273-274, 277, 281-282,
315-316, 334, 338, 340, 342-343,
384, 386, 448, 456
formula for refractive index, 37-38
matching principle, 21, 281-286
OPD), formula, 170, 206-208, 517, 523
Contribution of a surface to distortion,
311-313
lens power, 70
0SC, 260-262
paraxial chromatic aberration, 143-144
primary spherical aberration, 197-198
Seidel aberrations, 318-319
spherical aberration, 176-178
Contribution of a thin lens to
chromatic aberration, 145-148
Seidel aberrations, 319-320
spherical aberration, 198-204
Cook, Lacy G., 486, 487
Cooke triplet lens, 419-426
Crossed lens, 187, 199-200
Cox, Arthur, 529
Crown glass, 146, 305, 335-356

Index

Crown-in-front cemented doublet, 211-214,
336, 345, 347

Curved field, distortion at, 313

Curvature of field, 102-104, 117, 236, 245, 252,
298, 300-305, 324, 365, 371, 390, 400,
406, 412, 493

Cuvillier, R.H.R., 90

D
(D — d) method of achromatization, 163-166
application to oblique pencils, 315
(D — d) sum, 166-169, 274, 315, 456-458
paraxial, 169-171
relation to zonal chromatic aberration,
168, 170
tolerance, 19, 166167
Dagor lens, design of, 351-355
Dall-Kirkham telescope, 472-473
Dallmeyer, J.H., 379
Dallmeyer portrait lens, 387
Damped least-squares method, 392,
520-521, 528
Decentered lens, ray tracing through, 7, 44
Decentering tolerances, 7-8, 524-525
Defocus, with spherical
third-order, 175
third- and fifth-order, 196
Degrees of freedom (DOF), 1, 229, 273, 276,
278, 281-282, 327, 355, 400,
409-410, 458, 505, 514-515
Design procedure for
achromatic landscape lenses, 334-336
achromats, 98, 281, 305, 337, 348, 379
air lens, 226
Alvin G. Clark lens. See double-Gauss lens
aplanats, 138-139
apochromatic triplet, 220-221
with air lens, 223
Barlow lens, 397-398
Bouwers-Maksutov system, 453-455
Bravias lens, 398-400
broken-contact aplanat, 269-271
Celor, 355
cemented doublet aplanat, 275-277
Chevalier-type landscape lens, 334-336
Cooke triplet lens, 418-420, 426, 437
crown-in-front achromat, 211-214, 336,
345, 347
Dagor lens, 351-355
Dallmeyer portrait lens, 387
dialyte-type photographic objective,
355-363
Double Anastigmat Goerz, 355
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double-Gauss lens, 6, 21, 219, 363-377
with air-spaced negative doublets,
373-377
with cemented triplets, 369-373

Dyson 1:1 system, 469-471

Erfle-type eyepiece, 502, 506-510, 512

eyepieces, 465, 501-511

flint-in-front achromat, 214-216, 334,
342-348

flint-in-front symmetrical double objective,
342-346

four-lens minimum aberration system,
186188

front landscape lens, 329-330

Gabor catadioptric system, 440442,
455-459, 497

Galilean viewfinder, 508-510

Lister-type microscope objective, 282-288,
525

long telescope relay, 346-348

low-power microscope objective, 278

Maksutov—Bouwers system, 453455

Maksutov Cassegrain system, 473-480

Mangin mirror, 451-453

military-type eyepiece, 502-506

new achromat landscape lens, 400

new achromat symmetrical objective,
342-346

Offner 1:1 system, 470471

Pan-Cinor, 90, 99

parabola corrector, aplanatic, 450451

parallel-air-space aplanat, 272-275

periscopic lens, 331-333

Petzval portrait lens, 301, 379-384

Protar lens, 296-297, 400408

rapid rectilinear lens, 336, 339-342,
345-347, 353, 400

rear landscape lens, 327-329

Ritchey—Chrétien telescope, 447, 472-473

Ross “Concentric” lens, 348-349

Ross corrector lens, 448-450

Schmidt camera, 459-462

Schwarzschild microscope objective, 480-482

single lens with minimum spherical
aberration, 183-185, 200-204

spherically corrected achromat, 209-226,
269, 286, 342, 513

symmetrical dialyte objective, 363, 365

symmetrical Gauss lens, 67-68

symmetrical photographic objectives,
20-21, 140, 219, 305

telephoto lens, 156, 160, 388-397, 429, 514

Tessar lens, 409-420

541

triple apochromat, 220
triple cemented aplanat, 277-280
triplet lenses improvements, 426-436
two-lens minimum aberration system,
184-187
two-mirror system, 471-473
unsymmetrical photographic objectives,
379-437
Design procedure
in general, 8-9
methods for, 21, 214, 303, 336, 340, 429,
452, 467, 500
Dialyte lens, 156-162
design of symmetrical, 363, 365
secondary spectrum of, 158-159
Diapoint, 28, 227, 238, 242-243, 252-253
calculation of, 238-239
Diapoint locus, for a single lens zone,
252-253
Differential solution, for telephoto lens,
392-397
Dispersion, interpolation of, 18-19
Dispersive power of glass, 145, 149
Distortion
calculation of, 103, 107-109, 123-124,
132-134, 306, 309-310, 311-313
on curved image surface, 311, 313
measurement, 311-313
orders of, 111, 124
Seidel contribution formulas, 132-134,
318-319
surface contribution to, 311-313
Ditteon, Richard, 277
Dolland, John, 138
Donders-type afocal system, 87
Double anastigmats, design of, 351-377

Double-Gauss lens, 6, 219, 363-368, 369-372,

373-377
Double graph, for correcting two aberrations,
209-211
Double lenses, design of achromatic, 339-349
Dowell, J.H., 30
Drude, P., 17
Dyson catadioptric system, 469-470

E

Eccentricity, of conic sections, 46-47, 190,
193, 445, 447, 472, 482, 510

Element, 2

Ellipse, how to draw, 445-446

Elliptical lens surface, 190

Elliptical mirror, 445-446

Encircled energy, 10, 249, 517, 523
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Entrance pupil, 134, 229-231
Equivalent refracting locus, 67-68,
257, 264
Erfle eyepiece, 506-510
Erfle, H., 506
Exit pupil, 134, 229-231
Eyepiece
design, 501-511
Erfle-type, 506-510
military-type, 501-506

F
Factory, relations with, 2-8, 42, 167
Feder, Donald P., 168, 315, 318, 526
Field flattener, 301-305, 379, 442, 456457,
477-478
Field lens, aberrations of, 299, 301-302,
321, 348, 456, 458-459, 501, 503,
505-507
First-order optics, 51-99
Flint glass, 145
Flint-in-front cemented doublet, 214-216,
334, 342-345, 347
Flint-in-front symmetrical objective,
342-346
Fluorite, 150, 220
temperature coefficient, of refractive index,
19-20
use of, to correct secondary spectrum, 149,
152
Focal length, 59, 61, 64, 67
calculation of, 70-71
of marginal ray, 264
need to maintain, 1
relation between, 67, 69-70
variation across aperture (OSC), 256-257
variation across field (distortion), 306,
309-310
Focal lines, astigmatic, 289-291
Focal point, 61, 64-65, 67-68, 71-72, 86,
91, 94, 193, 257, 312, 322, 347,
375, 397, 465
Foci of ellipse, 445-447
Formulas, some useful, 37-41
Four-lens system with minimum aberration,
186-188
Four-ray method for design of doublet,
209-212
Freedom, degrees of, 1
Front focus, 68
Front landscape lens, design of, 329-330
Fulcher, G.S., 188

Index

G
G-sum
coma, 263
spherical, 199, 211-212
Gabor catadioptric system, 455-459
Gabor, Dennis, 455, 456
Galilean viewfinder, 510-511
Gauss, Carl Friedrich, 59, 67, 157, 363
Gauss theory of lenses, 67-78
Gauss-type lens, design of, 363-369
Gavrilov, D.V., 439
Glass
choice of, 356
color of, 12
graph of n against V, 146
graph of P against V, 153-154
interpolation
dispersion, 18-19
index of refraction, 16-18
long crown, 149-150
need for annealing, 522
optical, 11-13, 143, 145-147, 150, 439
partial dispersion ratio of, 12, 149-150,
220
short flint, 146, 149-150, 154
temperature coefficient, 19
types of, 12, 149, 153, 166, 276, 380, 408
Glatzel, E., 393, 521, 525
Graphical determination of astigmatism,
294-296
Graphical ray tracing
finite heights and angles, 57-59
meridional, 30-32
through parabolic surface, 57
paraxial, 57-59
Gregorian telescope, 471, 482
Griffith, John D., 399
Grubb, Thomas, 336
Grubb type of landscape lens, 336
Guan, Feng, 277

H

(H' - L) plot, 21, 323-327

Hall, Chester, 137

Height-solve method, 55

Herzberger formula, for refractive index,
18

Herzberger, M., 18

Hiatus between principal planes, 68, 79

Highway reflector buttons, 191

Hirano, Hiroyuki, 430

Hopkins, Robert E., 367, 428, 526
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Huygens, Christiaan, 137
Hyperbolic mirror, 447, 463-465
Hyperbolic surface on a lens, 188, 193

I
Image

nature of, 25

plane, 10, 103, 105

real and virtual, 25-26

space, 25

of a spherical object, 66

surface, 103

of a tilted object, 77
Image displacement caused by parallel plate,

204-205
Image space, 25-26
Improvement programs, for computers,
513-529

Infinitesimals, dealing with, 52
Infrared lens, with minimum aberration, 185
Infrared materials, 13, 200
Interpolation, of refractive indices, 16-20
Intersection

of two rays, 236

of two spherical surfaces, 39
Invariant, the optical or Lagrange, 63
Isoplanatic, 265

J
Johnson, B.K., 300

Johnson, R. Barry, 467, 488

K

Kebo, Reynold S., 487

Ketteler, E., 17

Kingslake, Rudolf, 369, 373, 393, 398, 429,
526

Klingenstierna, S., 138

Knife-edge lens, 3

Korsch, Dietrich, 489

Kreidl, N.J., 11

L
(1, I') method for paraxial ray tracing, 55
Lagrange equation
distant object, 64, 70-71, 256-257
near object, 259
Lagrange invariant, 63, 73, 129-130, 133, 260,
262, 318
Landscape lens
achromatic, 334-339
Chevalier-type, 334-336
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front, 329-330
Grubb-type, 336
new achromat, 336-339
rear, 327-329
simple, 325-330
Last radius
solution by (D — d), 166-167, 213, 217,
222, 270, 270, 274, 277, 282, 334,
342-343, 384, 448
solution for a stated U’, 40-41
Lateral color. See also Aberration, lateral
color
calculated by (D — d), 315-316
in eyepieces, 501-510
orders of, 313
primary, 313-315
Seidel surface contribution, 320-321
Law of refraction, 26-27, 33, 52-53,
290-291
Layout, of an optical system, 78-87
Least-squares procedure, for lens
optimization, 518-521
Lee, HW., 367
Lee, Sang Soo, 486
Lens, 2, 20. See also, Design procedure for
appraisal, 10-11
blank diameter, 3-4
cementing, 5
coatings, 5
evaluation, 10
monocentric, 79
mounts, 4
power, 20, 61, 70, 72, 79, 81-82, 84-85,
148, 161, 201, 216, 300, 355-357,
363, 388-389, 420, 425, 448
thick, 61-62, 75-76, 78-79, 81-82, 84, 183,
221, 273, 420, 425, 468
thickness, 3-5
thin, 12, 62, 75, 78-79, 81-82, 87-99, 145,
147-148, 156-162, 169, 183,
198-204, 209, 211-216, 220-222,
226, 263-264, 269, 273, 276,
282-283, 318-321, 327, 355-357,
380, 388-390, 393, 407, 419426,
468
tolerances, 6-8
types, 20-21
Lens design books, 529-530
Lens design computing development,
525-528
Lens design software, 528
Lenses, stop position is DOF, 323-349
Lister-type microscopic objective, 284-285,
288, 525
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Listing, Johann Benedict, 72-74

Long crown glasses, 149-150

Longitudinal magnification, 65-67, 77-78,
144, 197, 263

Loops, in optically compensated zooms,
93, 96

M
Magnification
chromatic difference of, 314
by Lagrange theorem, 63-67
lenses to change, 397-408
longitudinal, 65-66, 77-78, 144, 197, 263
need to maintain, 1
transverse, 63-64
Magnifier
hemispherical, 180
hyperhemispherical, 180181
Maksutov—Bouwers system, 453455
Maksutov—Cassegrain system, 473-480
Maksutov, D.D., 453
Malus, E.L., 164
Malus’s theorem, 164
Mangin, A., 451
Mangin mirror, 451-453
Massive optics, glass for, 12
Matching principle, 283-288
Matching thicknesses in assembly, 6
Materials
glass, 12
infrared, 13
plastic, 13-16
ultraviolet, 13
Matrix paraxial ray tracing, 59-61
Maximum aperture of aplanatic lens, 257
Meridian plane, 27
Meridional ray plot, 236-238, 245, 323,
346, 360-361, 369, 382, 384, 387,
394-395, 405-406, 415, 418-419,
427, 457458, 475, 477-480
Meridional ray tracing, 25-49
Mersenne, Marin, 497
Methyl methacrylate plastic, 13
Microscope objective
Lister-type, 284-285, 288
low-power cemented triple, 278
Schwarzschild, 480482
Military-type eyepiece, 501-506
Minimum primary spherical aberration
lens, 199
Minimum spherical aberration
in four-lens system, 186-188

Index

in single-lens system, 183-184, 199
in two-lens system, 184-186
Mirror
elliptical, 445-446
hyperbolic, 447, 463-464
nonaplanatic, 265
parabolic, 444-445
spherical, 442-444
Mirror systems
advantages of, 439-440
disadvantages of, 440
need for baffles in, 440, 492
with one mirror, 442447
ray tracing of, 440-442
with three mirrors, 482-496
with two mirrors, 471-482
Mirrors and lenses, comparison of,
439-440
Modulation transfer function (MTF),
10-11, 229, 250-252, 265, 268,
376-377
Monocentric lens, 79
Monochromat four-lens objective, 186188
Mounts for lenses, 4

N
Narrow air space, to reduce zonal
aberration, 21, 222, 269, 271
Negative lens, thickness of, 3
New-achromat, 305
doublet, 339-349
landscape lens, 336-339
symmetrical objective, 348, 400
Newton’s rule, for solution of equations,
47-48
Newton, Isaac, 137
Nodal planes, 73
Nodal points, 72-76, 79, 313, 322,
442, 523
Nonaplanatic mirror, 264-265, 267
Notation and sign conventions, 29-30

(0]
Object
and image, 25-26, 30, 65, 67, 69, 71-72, 83,
106, 145, 179-180, 298, 316, 398,
442, 469
real and virtual, 25-26
Object point
axial, 27, 68, 164, 228, 264, 444
extraaxial, 27-28, 238
Object space, 25, 30, 63



Index

Oblique aberrations, 289-322
Oblique meridional rays, 234-238
Oblique pencils, (D — d) of, 315-316
Oblique power, 291-292
Oblique rays, through spherical
surface, 236
Oblique spherical aberration
sagittal, 127, 245, 302-303, 434
tangential, 127, 245, 303
Off-axis parabolic mirror, 445
Offense against the sine condition, 228,
257-266. See also OSC
Offner catoptric system, 470-471
One-glass achromat, 159-162
OPD), formula, 207-208
Optical axis, 3
of aspheric surface, 3
Optical center, 75-77, 315, 322
Optical glass, 12-13, 22-23, 143, 145-147,
150, 439
Optical invariant, 63, 129
Optical materials, 11-16, 23, 138, 166
Optical plastics, 13-16, 23
Optical sine theorem, 255-256
Optimization principles
control of boundary conditions, 523-524
tolerances, 524-525
weights and balancing aberrations,
522-523
Optimization programs for lens
improvement, 514, 525, 529
Orders of
aberrations, 106, 108-110, 113, 126, 128,
131-132, 198, 252, 320, 393, 428,
434, 436, 459, 521, 525
chromatic aberration, 139, 144, 153, 498
coma, 121, 123, 126, 179, 254, 263, 266,
302, 371, 415, 418
distortion, 111, 124, 302
lateral color, 313, 315
spherical aberration, 111, 113, 116,
118-119, 174-176, 179-180,
194-196, 201, 272, 375, 523
OSC, 258. See also Coma
effect of bending on, 264
in eyepieces, 260, 504-506
and spherical aberration, relation between,
263-266
surface contribution to, 260-262
at three cases of zero spherical aberration,
257-258
tolerance, 259
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Otzen, Christian, 428, 429
Overcorrected and undercorrected chromatic
aberration, 138-139

P
PA, expressions for calculating, 178
Parabola, graphical ray trace through, 30-31
Parabolic mirror

coma in, 266

off-axis, 266-267
Parabolic mirror corrector, 440, 448-450
Parallel-air-space aplanat, 270-273
Parallel plate

image displacement by, 80, 204-205

spherical aberration of, 205
Paraxial ray, 27-28, 51

at aspheric surface, 57

graphical ray tracing of, 57-59

matrix ray tracing by, 59-63

by (/, I') method, 55-56

ray-tracing formulas for, 53

by (v — nu) method, 53-54
Partial dispersion ratio, 12, 149-150, 220
Patents, as sources of data, 9
Periscopic lens, design of, 331-333
Petzval, Joseph, 110, 380
Petzval portrait lens, 379-387
Petzval sum, methods for reducing,

300-305

Petzval surface and astigmatism, 299-300

fifth-order, 337, 367
Petzval theorem, the, 110, 229, 297-305
Photovisual lens, design of, 220
Pincushion distortion, 124, 309-310
Plane of incidence, 26
Planes, focal and principal, 67-68
Plastic lenses

advantages of, 16

disadvantages of, 16

tolerances, 8
Plastics

optical, 13-16

properties, 15

temperature coefficient of refractive index,

16, 19-20

Plate of glass. See Parallel plate
Point spread function, 10, 248, 265
Polystyrene, 14
Positive lens, thickness of, 3
Power contribution of a surface, 70
Power of a lens, 70
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Predesign
of Cooke triplet, 420-425
of symmetrical dialyte objective, 355-356
of triple apochromat, 152-153
Price, William H., 429
Primary aberrations (Seidel), computation of,
318-321
Primary coma, of a thin lens (G-sum), 263
Primary distortion, 124, 309
Primary lateral color, 313-315, 420, 459, 468,
503
Primary spherical aberration
of a thin lens (G-sum), 198-204
tolerance of, 206-208
Principal plane, 64, 68-70, 73-75, 77-79, 84,
86, 257, 314, 364
Principal points, 67-69, 72, 74, 84, 86-87,
314, 326, 348, 357, 390, 398-399,
425, 442, 467-468
Principal ray, 230
Projection lens f/1.6, 34-35
Protar lens, 297, 400-408
Pupils, 229

R

Rah, Seung Yu, 486

Rapid Rectilinear lens, 339-342, 346, 351,

353

Ray plot
meridional, 236-238
sagittal, 107, 243-245

Ray tracing
at aspheric surface, 45-48
computer program for, 36-37
graphical, 30-32, 57-59, 240
matrix approach, 59-63
mirror systems, 440-442
oblique meridional rays, 234-236
paraxial rays, 52-63, 233
by (Q, U) method, 32-34
right-to-left, 61, 232, 442, 511
skew rays, 11, 238-243, 526-527
at tilted surface, 42-45
trigonometrical, 32-37

Rays
distribution from a single-lens zone,

152-153

meridional, 27-29
paraxial, 27-28, 52
skew, 26, 28-29, 107, 238-243
types of, 27-28

Rear landscape lens, design of, 327-329

Index

Reflection, procedure for handling, 27
Reflective system, ray tracing through, 440-442
Refraction, law of, 26-27
Refractive index
interpolation of, 16-20
temperature coefficient of, 16, 19-20
of vacuum, 26-27
Relations, some useful, 3741
Relay lens, for telescope, 346-348, 370
Right-to-left ray tracing, paraxial, 61
Ritchey—Chrétien telescope, 447
Rodgers, J. Michael, 493, 497
Rood, J.L., 11
Rosin, Seymour, 302, 303, 502
Ross, F.E., 447
Ross Concentric lens, 348-349
Ross corrector, 448-450
Rudolph, Paul, 280, 339, 400

S
Sagittal focal line, 118, 120, 289, 291, 319
Sagittal plane, 107
Sagittal ray plot, 107, 243-245
Sag Z, calculation of, 34, 37
Scheimpflug condition, 77-78
Scheimpflug, Theodor, 77
Schmidt camera, 2, 459-462
Schott formula, for refractive index, 18,
154, 170
Schott, Otto, 305
Schroder, H., 305
Schroeder, Daniel J., 348
Schupmann achromat, 159-162, 465-466, 502
Schupmann, Ludwig, 466
Schwarzschild, Karl, 420, 480
Schwarzschild microscope objective,
480482

Secondary chromatic aberration, 143
Secondary spectrum, 142

of a dialyte, 158-159

paraxial, 149-152
Secondary spherical aberration, 196
Seidel aberrations, computation of, 318-321
Sellmeier’s formula, 18
Sellmeier, W., 17, 18
Separated thin lenses, 62-63, 82
Shafer, David R., 393, 482, 488, 525
Shape parameter X, 81, 200
Shift of image, by parallel plate, 80, 204
Short flint glasses, 154
Sign conventions, 29-30, 52, 440
Silicon lens, for infrared, 185-186



Index

Sine condition
Abbe, 256-257
and coma, 255-268
offense against the, OSC, 258-266
Sine theorem, the optical, 255-256
Skew ray, 28
tracing, 238-243
Smith-Helmholtz theorem. See Lagrange
equation
Smith, T., 294
Sphere, power series for sag of, 45-46
Spherical aberration
of cemented doublet, 139-140
correction of zonal, 216-219
Delano’s formulas, 177
effect of bending on, 200
effect of defocus on, 119, 175, 196, 484
effect of object distance on, 181-182
G-sum, 199, 211, 263
longitudinal, 115-117, 140, 173-174, 219,
225, 318, 434, 464
oblique, 111, 127, 205, 246, 343, 360, 395,
409, 418, 429, 434
orders of, 115, 118, 176, 179-180,
194-195
and OSC, relation between, 263-266, 269,
270-271, 273
overcorrection when object is near
surface, 182
of parallel plate, 205
primary, of a thin lens, 198-204
single aspheric lens with zero, 189
single lens with minimum, 107, 183-184, 199
surface contribution to, 176-193, 201
three cases of zero, 179-181
tolerances, 206-208
transverse, 115, 117, 173-174
zonal, 194-197
zonal tolerance, 206-207
Spherical G-sum, 199, 211, 263
Spherical mirror, 439-440, 442-444, 451, 453,
456, 459, 469, 472-473, 486, 488
Spherical versus aspheric surfaces, 2-3
Spherochromatism of
Bouwers—Maksutov system, 453-455
cemented doublet, 139-143
Cooke triplet lens, 425
double-Gauss lens, 369-373
expression for, 143
f72.8 Triplet objective, 223
Mangin mirror, 451-453
triple apochromat, 222
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Spherometer formula, 37-38
Spot diagram, 10, 105, 123, 245-249, 254,
265-267, 483-485, 490491, 493
Starting system, sources of, 9-10
Steinheil Periskop lens, 333
Steinheil, Sohn, 333
Stigmatic, symmetrical optical systems,
101-113
Stop position
effect on aberrations, 325
for zero OSC, 260
Stop-shift effects, on Seidel aberrations,
the (H'-L) plot, 21
Styrene, 13
Subnormal of parabola, 31
Superachromat, 156
Surface contribution to
chromatic aberration, 143-144
distortion, 311-313
lens power, 70
0SC, 260-262
primary spherical aberration, 197
Seidel aberrations, 318-319
spherical aberration, 176-193
Symmetrical anastigmats, 351-377
Symmetrical dialyte, 355-363
Symmetrical double-Gauss lens, 363-377
Symmetrical flint-in-front double lens,
342-346
Symmetrical principle, the, 229, 316-317
System, 2
layout of, 59, 78-98

T
Tangential focal line, 188-199, 228, 293-294,
299, 337
Taylor, H. Dennis, 220, 419, 426
Telecentric, 231, 312, 322, 347, 470
Telecentric system, 312
Telephoto lens
design of, 388-397
at finite magnification, 83
reverse, 429
Telescope
Bouwers—-Maksutov, 453-455
broad-spectrum afocal catadioptric,
465468
Maksutov—Cassegrain, 473-480
multiple-mirror zoom, 482-496
parabolic mirror, 444-445
Schmidt, 459-462
tilted component, 497



548

Telescope ( Continued)
unobscured pupil, 488-489, 492, 496
variable focal-range, 462-464
Telescope objective design, 220
Telescopic relay lenses, 346-348
Temperature coefficient of refractive index,
16, 19-20
Tertiary spectrum, of apochromat, 155, 220
Tessar lens, design of, 409-418
Thick single lens, 78-79
Thickness
establishment of, 3-5
insertion of
in apochromatic triplet, 220
in Cooke triplet, 421
in thin lens, 421
Thickness matching, 6
Thin lens
astigmatism of, 292
contributions to Seidel aberrations,
319-320
in plane of image, 321
predesign of
cemented doublet, 211-212
Cooke triplet, 420-425
dialyte-type objective, 156-162
primary spherical aberration of,
198-204
Seidel aberrations of, 319-320
systems of separated, 62-63, 83
Thin-lens achromat
air spaced, 156-162
cemented, 159, 161
Thin-lens layout of
Cooke triplet, 419-425
four-lens optically compensated zoom,
93-96
mechanically compensated zoom,
87-88
three-lens apochromat, 152-156
three-lens optically compensated zoom,
90-93
three-lens zoom, 88-90
zoom enlarger or printer, 96-98
Third-order aberrations. See Seidel
aberrations
Three cases of zero spherical aberration
astigmatism in, 296
OSC in, 257-266
Three-lens apochromat
completed, 154, 156
predesign, 152-156

Index

Three-mirror system, 482
Tilt tolerances, 42
Tilted surface
astigmatism at, 296-297
image of, 77
ray tracing through, 42-45
Tolerance
manufacturing glass, 7
for OPD,,, 207
for OSC, 259
plastic, 8
for primary spherical aberration, 206
for zonal aberration, 206-207
Total internal reflection, 36
Tradeoffs, in design, 8
Transverse aberrations, canceled by
symmetry, 21
Triple aplanat
with buried surface, 280
cemented, 275-278
Triple apochromat
completed, 220-223
predesign, 152-156
Triplet, Cooke, 418-436
Triplet lenses improvements, 426-436
Two-lens systems, 84-87
Two-mirror systems, 471-482
Types of lenses to be designed, 20-21

U

Ultraviolet materials, 13

Undercorrected and overcorrected chromatic
aberration, 138-140

Unit magnification systems, 469-471

Unit planes, 68

Unsymmetrical photographic objectives,
379-437

A%

V-number of glass, 145, 154, 281

Vacuum, refractive index of, 26

van Albada, LEW., 30

Viewfinder, Galilean-type, 510-511

Vignetting, 21, 230-234, 253, 352, 361,
367, 382, 389, 400, 405, 408409,
415, 426, 429, 434, 448, 465,
470, 523

Villa, J., 439

Volume, of a lens, 4041

von Helmholtz, H., 17

von Hoegh, E., 351, 355

von Rohr, M., 333, 348
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von Seidel, Philip Ludwig, 128
von Voigtlander, F., 379

W
Wave aberrations, 128, 132, 134, 319
Weight of a lens, 10, 12, 40

Weighting aberrations, in automatic design,

522-523
Woehl, Walter E., 485

Y

Y, expressions for calculating, 34

(y — nu) method, for paraxial rays,
53-54

Yoder, Paul R., Jr., 5

Young’s construction, for astigmatism,
295

Young, Thomas, 31, 294
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Z

Zero spherical aberration, three cases of
astigmatism at, 258
OSC at, 257-266

Zonal spherical aberration, 194-197
of cemented doublet, 220
correction of, 216-219
in presence of tertiary aberration, 218
tolerance, 206-208
tolerance by OPD),, formula, 207

Zone of a lens, rays from a single,

252-253

Zoom system
for enlarger or printer, 96-98
layout of, 87-98
mechanically compensated, 87-88
multiple-mirror, 482-496
optically compensated, four-lens, 93-96
optically compensated, three-lens, 90-93
three-lens, 88-90
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