

Lectures Notes on Optical Design using Zemax OpticStudio

Introduction to Optical System Design

Ahmet Bingül

Gaziantep University
Department of Optical
Engineering

Sep 2024

Resources

Course Web Page:

http://www1.gantep.edu.tr/~bingul/zemax

Books:

http://www1.gantep.edu.tr/~bingul/zemax/OD.zip

Electromagnetic Spectra

Optics is a branch of physics. It is the science of light.

It covers the wavelength (λ) range of electromagnetic spectrum from 10 nm to 1 mm.

- Ultraviolet UV: $\lambda = (0.01 \mu m, 0.380 \mu m)$
 - **UV-A** (0.380-0.315 μm)
 - **UV-B** (0.315-0.280 μm)
 - > UV-C (0.280-0.010 μm)
- Visible, VIS: $\lambda = (0.380 \mu m, 0.750 \mu m) <$
- Infrared, IR: $\lambda = (0.750 \mu m, 1000 \mu m)$
 - Near IR [NIR]: (0.75 0.9 μm)
 - > Short-Wavelength IR [SWIR]: (0.9 1.7 μm)
 - Mid-Wavelength IR [MWIR]: (3-8 μm)
 - Long-Wavelength IR [LWIR]: (8-15 μm)
 - Far Infrared [FIR]: (15-1000 μm)

Optical System

There are mainly three components of an optical system:

Optical System Design

 Optical Design is the process of designing optical components to meet a set of performance requirements and constraints, including cost and manufacturing limitations.

A system may contain a few lenses like a beam expander

or many lenses!

This is a 30-Element Lithography Lens from the Patent Literature

Types of Optical System

There are two categories:

Imaging Optical Systems

is concerned with resolving a specified minimum-sized object over a desired field of view.

Main goal is to form sharp images.

- Camera
- > Telescope
- Microscope

Non-imaging Optical Design

is concerned with the optimal transfer of light radiation between a source and a target.

- > Tunnel, Street or Automotive illumination
- Focusing Sun Energy
- > Free-Form Lens Design

Detectors

 Final element of an imaging system can be Eye, CCD, CMOS sensor or photodiode.

Detectors

The first step of the system engineering for an electro-optic camera development is **selecting a proper imaging sensor** according to the mission requirements. (In general, imaging sensor specification is a leading input for an optical design)

e.g. Osram CMV12000 CMOS Image Sensor

Specifications:

Parameters	Symbol	Value
Detector Type	-	CMOS
Pixel Pitch	p	5.5 μm
Spectrum	λ	450 - 700 nm
Quantum Efficiency (@500 nm)	QE	>46%
Dimension	Pixel x Pixel	4096(H) X 3072 (V)
		22.5(H') X 16.9 (V')
Readout Noise	σ_{read}	13 ē
Full Well Charge	N_{FWC}	13,500 ē
Modulation Transfer Function	MTF	58%

Quantum Efficiency*

^{*}QE represents the ratio of the number of incident photons that are transformed into electrons concerning the wavelength

Figure 4 Example of a visage in differents ranges

Generalized Imaging Systems

Specifying the Image Quality

The following list contains some of the more common ways of specifying the image quality.

Each of these will be discussed later.

RMS blur diameter

The diameter of a circle containing approximately 68% of the energy imaged from a point source.

Modulation transfer function (MTF)

The modulation (contrast) versus the number of line pairs per millimeter in the image.

Encircled energy (or ensquared energy)

The diameter of a circle (or side of a square such as a pixel) containing a given percent of energy.

Root-mean-square (rms) wavefront error

The rms departure of the real wavefront from a perfect wavefront.

Other

Depending on the functional requirements of the system, there may be other performance requirements relating to image quality, for example, point spread function (PSF), control of specific aberrations, etc.

Summary of Optical Design Steps

- 1. Define the problem
- Determine pre-design
- 3. Select starting point
- 5. Optimize the system
- 6. Fulfill final analysis
- 7. Prepare for fabrication

(detector, componets, etc)

(design form, patent, etc)

4. Perform initial analysis (implement your starting issues)

(use software)

(thermal, tolerencing, mechanical)

Some Reference Books

- 1. R. E. Fischer, **Optical System Design**, Mc Graw Hill 2nd Ed (2008)
- 2. R. Kingslake, Lens Design Fundamentals, Spie Press 2nd Ed (2010)
- 3. D. C. O'Shea, **Elements of Modern Optical Design**, John Wiley (1985)
- 4. J.M. Geary, Lens Design, Willmann-Bell, Inc (2002)

News

- Optical Society of America (OSA) https://www.osa.org
- 2. Applied Optics https://opg.optica.org/ao/home.cfm
- 3. International Journal for Light and Electron Optics https://www.journals.elsevier.com/optik