

Lectures Notes on Optical Design using Zemax OpticStudio

Reflecting Telescopes

Ahmet Bingül

Gaziantep University
Department of
Optical Engineering

Sep 2024

Telescope

 Telescopes are designed to aid in viewing distant objects, such as the planets in our Solar System.

- There are two different types:
 - refracting telescopes
 uses a combination of lenses
 - reflecting telescopes
 uses a mirrors and a lenses

Some Basic Reflecting Telescopes

1. Newtonian Telescope

- Uses two mirrors: parabolic and flat.
- Typical f-numbers: f/3 . . . f/10.
- Total length of telescope is in the order of focal length of mirror.

2. Cassegrain Telescope

- Uses two mirrors: parabolic and convex hyperbolic.
- Typical f-numbers: f/8 . . . f/15.
- Primary and secondary focal foints are the foci of the hyperbola.
- Total length of the telescope is much shorter than Newtonian for the same primary focal length.

3. Gregorian Telesscpope

- Uses two mirrors: parabolic and concave elliptical.
- The primary and secondary focal points of this telescope are the foci of the ellipse.

Figure 34 Basic designs for reflecting telescopes. (a) Newtonian telescope. (b) Cassegrain telescope. (c) Gregorian telescope.

Our Newtonian Telescope Project

http://www1.gantep.edu.tr/~bingul/hezarfen

- The largest reflecting telescopes in the world are at the Keck Observatory on Mauna Kea, Hawaii at an elevation of 4145 meters.
- Two telescopes with diameters of 10 m, each containing 36 hexagonally shaped, computer-controlled mirrors that work together to form a large reflecting surface.

Example: Newtonian Telescope

- (a) In Zemax, full the simulation of the Newtonian Telescope; one concave mirror and one flat mirror. Let the entrance pupil 150 mm, radius of curvature of the mirror is |R| = 1.5 m and the distance between primary and secondary mirror is 0.6 m. Image plane is placed at a distance 0.2 m from the flat (secondary) mirror.
- (b) What is the geometric radius of the spot diagram on the image plane?
- (c) What is the dimension of secondary mirror?
- (d) Determine the location of image plane where we have a minimum spot size.
- (e) What is magnification of the telescoope with an eyepiece having focal length of 20 mm?

Cassegrain Telescope

 R_1 = radius of primary (first) mirror

 R_2 = radius of secondary mirror

d = distance between mirrors

b = back focal distance (BFD)

f = focal length of the telecscope

 $f_1 = R_1/2 < 0$ (focal length of Mirror 1)

 $f_2 = R_2/2 < 0$ (focal length of Mirror 2)

For two spherical mirrors, we can obtain the following equations via paraxial ray tracing:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$d+b = \left(1 - \frac{d}{f_1}\right)f$$

Example: Cassegrain Telescope

Implement a Cassegrain Telescope whose system parameters are:

System focal length f = 800 mm

Distance between mirrors d = 200 mm

Back focal distance (BFD) b = 50 mm

Primary mirror diameter D = 200 mm

We have two equations:

$$\frac{1}{800} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{200}{f_1 f_2}$$

$$250 = 800(1 - \frac{200}{f_1})$$

Solving for focal lengths and radii of the mirrors:

$$f_1 = +290.909 \text{ mm} = > |R_1| = 581.818 \text{ mm}$$

$$f_2 = -142.857 \text{ mm} = |R_2| = 285.714 \text{ mm}$$

Note that the total distance of telescope is b+d = 250 mm. Focal length is f = 800 mm.

Cassegrain Design with Field Corrector Lenses

The typical Cassegrain design is known for its excellent on-axis optical performance but tends to perform poorly in off-axis applications.

E.g. Cassegrain design with f/10, D= 120 mm, and FOV = 1°.

For parabolic mirror, third order angular aberration is given by:

$$AA3 = 3a_1y^2\theta/R^2 + 2a_2y\theta^2/R + a_3\theta^3$$

Cassegrain Design with Field Corrector Lenses

To improve off-axis performance usually a field corrector lens system is added to the mirror system before image sensor.

Note:

If we want to design Cassegrain Telescope whose target (final) focal length F with a corrector lens,

- Design Cassegrain mirror system with focal length a bit grater or smaller than the target F.
 Namely, two-mirror focal length should be:
 F' = F + ΔF or F' = F ΔF
- 2. Add corrector lenses and optimize full system to reach target focal length, F.

Int J Nano Rech 2019 V2:1, ISSN: 2581-6608

Example: Cassegrain Telescope with Corrector Design

Design a Cassegrain Telescope with corrector to satisfy the following specifications:

EFFL = 1000 mm

F/# = 10

WAVE = F, d, C (visible)

 $FOV = 1^{\circ}$

TOTR < 300 mm

Step 1: Design Cassegrain mirrors such that system focal length is F' = 1200 mm as follows:

	Surface Type	Comn	Radius	Thickness	Material	Semi-Diame	Chip Zone	Mech Semi-Dia	Conic
0	OBJECT Standard ▼		Infinity	Infinity		Infinity	0.000	Infinity	0.000
1	STOP Standard ▼		Infinity	250.000		60.000	0.000	60.000	0.000
2	(aper) Standard ▼		-666.667	-250.000	MIRROR	62.156	0.000	62.156	-1.000
3	Standard ▼		-230.769	300.000	MIRROR	17.782	0.000	17.782	-3.130
4	IMAGE Standard ▼		Infinity	-		10.528	0.000	10.528	0.000

Step2: Add a doublet lens and optimize the system as follows. Notice F = 1000 mm.

