

Lectures Notes on Optical Design using Zemax OpticStudio

Double Gauss Desing

Ahmet Bingül

Gaziantep University
Department of Optical
Engineering

Sep 2024

Double Gauss

- The double Gauss lens is a compound lens used mostly in camera lenses that reduces optical aberrations over a large focal plane.
- It was the first patented by Alvan Graham Clark in 1888.
- f/2 (or slower) ve FOV < ±40°.
- See for more info: en.wikipedia.org/wiki/Double-Gauss_lens

Stucture

- It consists of two consecutive Gaussian lenses;
 Design with 2 positive meniscus lenses outside and 2 negative meniscus lenses inside.
- The symmetry of the system and the division of optical power into many elements reduce optical aberrations within the system.
- It forms the basis for standard wide-aperture lenses, particularly those used in 35 mm and other small-format **photographic cameras**.

Canon EF50mm f/2.5

Production

One of the biggest issues that the designer should pay attention to when installing an optical system is that the **optical system can be produced**. For this, it is necessary to consider both the manufacturability of the structure of the **lenses** and the **mechanics** that will surround the outside of the system.

Two suggestions:

- 1. Relation between center thickness (ct) and diameter (D) of lens: D/10 < ct < D/3
- 2. Lenses that are too close together must be removed, this creates difficulties in the mechanical structure.

Example 1: f/5 Double Gauss Design

The specifications are as follows:

• F/# : 5

• EFL : 50 mm

• FOV : 20°

Wavelength : F, d, C (visible)

Glasses : Schott

Example 1: LDE at time t = 0.

Start with predefined design form.

Example 1: Operands in MFE

- TTHI Thickness between surfaces 2 and 12
- OPLT Value of 1st operand must be less than 100
- CTGT Center thickness between 12 and 13 must be less than 30
- DIMX Maximum distotion must me less than 1% for 2nd wavelength
- CVLT Curvature of 8th surface must be less than 0 (Namely, C₈ = 1/R₈ < 0)

Example 1: t = 30 min

- Stop the hammer optimization.
- Can you change design to reduce the manufacturing cost?

Example 1: Performance

F 3: FFT MTF

Exercise 1

Design a Double Gauss Lens to perform the following specifications:

• F/# : 3.3

• EFL : 50 mm

• EPD : 15 mm

• FOV : 40° (Namely SFOV = 0,10,20 deg)

Wavelength : F, d, C (visible)

Glass Catalog : SCHOTT

Exercise 2

Design a Double Gauss Lens to perform the following specifications:

• F/# : 3.3

• EFL : 50 mm

• EPD : 15 mm

• FOV : 40° (Namely SFOV = 0,10,20 deg)

Wavelength : F, d, C (visible)

Glass Catalog : CDGM

With SHOTT Glasses

With CDGM Glasses

With SHOTT Glasses

<u>Açı</u>	RMS Spot	Rad.
<u>0°</u>	2.2 µm	
10°	3.4 µm	
20°	5.0 μm	

With CDGM Glasses

<u>Açı</u>	RMS Sp	ot Rad.
0°	4.2	μm
10°	5.8	μm
20°	4.2	μm

With SHOTT Glasses

With CDGM Galsses

With SHOTT Glasses

With CDGM Glasses

