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Abstract

This paper presents an optimisation system software developed for the determination of optimal index positions of cutting
tools on the automatic tool changer (ATC) or turret magazine of CNC machine tools. Position selection is performed using a
genetic algorithm (GA) which takes a list of cutting tools assigned to certain machining operations together with total number
of index positions available on the ATC or turret magazines and, catalogue value of indexing time as the input, and then
randomly generates an initial population of position sets (chromosomes). New chromosomes are generated using genetic
operators:crossover, reproductionandmutation. A fitness function is used to evaluate the goodness of each chromosome in
terms oftotal tool-indexing time. Based on the fitness values, the next generation is formed from the newly generated sequences
and old population. As the iterations are continued, the better sequences with higher fitness values (lower total-indexing times)
dominate and the system converges to an optimal positioning set. The system is implemented in C programming language
and on a PC. It can be used as stand-alone system or as an integrated module of a process planning system called OPPS-PRI
(OptimisedProcessPlanningSystem forPRIsmatic parts) developed for prismatic parts. © 2000 Published by Elsevier Science
B.V.
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1. Introduction

Determination of optimal positions of cutting tools
on the automatic tool changer (ATC) or turret maga-
zine of a CNC machine tool is an important task and
for achievement of optimal process plans for reducing
total non-machining time, since profits are generated
only when the machine iscutting.

Indexingcan broadly be described as the process of
automatic tool positioning and/or changing on the ATC
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or turret magazine of CNC machine tools, when the
cutting tools are called within the part program. How-
ever, its definition depends on the type of apparatus
(such as disk, turret, drum, or chain types) used for the
tool changing or indexing, as turrets are used on CNC
lathes and turning centres, and ATCs are used on CNC
milling machines and milling centres. Chain type tool
magazines are generally used in machining centres. In
this work, only the turret and ATC magazines are con-
sidered. Since there is no need to load or unload the
cutting tools after fixing them to the turret magazine
of a lathe,turret-indexingcan only be referred to the
positioning of turret andturret-indexing time( from
tool-to-toolor from face-to-face) can be defined as the
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Fig. 1. Turret indexing time.

time elapsed in which a turret magazine can move be-
tween two neighbouring stations or tools as illustrated
in Fig. 1. Cutters must first be carried between the
ATC(s) and spindle(s) in milling. Therefore, an index-
ing operation on the ATC of a CNC milling machine
includes three sub-processes; unloading a used cutter
from the spindle, positioning the ATC magazine for a
new cutting tool and loading the new cutting tool to
the spindle.ATC-indexing timecan generally be de-
fined as the time elapsed in which all of the three
sub-processes described above are performed. How-
ever, if the loading and unloading time are excluded,
ATC-indexing time( from tool-to-tool or from pocket
to next pocket) refers to the time elapsed in which an
ATC magazine can move between two neighbouring
index or tool pocket, as in the case of turret magazines.

The indexing time for both turret and ATC maga-
zines is sometimes referred as themagazine rotating
speedin machine tool catalogues. The typical values
of ATC-indexing time for CNC milling machines are
higher than those of turret-indexing time given for
CNC turning machines. This is not only due to in-
volvement of the loading and unloading in each tool
change, but also due to the heavier cutters on the ATCs
as compared to turrets.

HITEC Turning Centre produced by Hitachi Seiki
[8] has a turret indexing time of 0.1 s for a 12-station
turret. Compact Universal CNC lathe Hi-Eco10 pro-
duced by Hwacheon [2] has a higher value: 0.2 s for
a 10-station turret. TAKSAN TMC-700 VMC (Ver-
tical Machining Centre) which has a 12-station ATC
provides a magazine rotating speed (time) of 0.69 s
at 50 Hz [14]. They all offer abi-directional indexing

in which the nearest path between the index stations
(current station and target station) on the magazine
can automatically be determined.

Especially for those machines that cannot provide
a fast tool-indexing capability, it is extremely impor-
tant to decrease the total tool-indexing time which
directly affects total non-cutting time. Although ma-
chine tool manufacturers have recently equipped their
machines with superior and faster turrets and ATCs,
tool-indexing time can still be reduced by applying
an effectivetool arrangement policy(or index alloca-
tion policy) in order to increase the cutting time. In
this work, a GA-based optimisation system is devel-
oped for allocating the optimal index positions on the
tool magazine to the specified cutting tools. It can be
used as a stand-alone system for both CNC turning
and milling machines. It has also been integrated to a
process planning system called OPPS-PRI [4] which
is implemented on a VMC, which aims in the first
place to integrate CAD and CAM with its interfaces,
taking into accountoptimality in each stage of plan-
ning endeavour. GAs are generally used for optimis-
ing the process planning events. An overall structure
of the OPPS-PRI including the system developed in
this work (OTIP) is shown in Fig. 2.

A typical session in the OPPS-PRI is as follows.
After the component is modelled on a CAD (computer
aided design) platform and the STEP (STandard for
Exchange of Product modelling data) file of the com-
ponent is obtained, the machining features on the com-
ponent are recognised. An optimum workpiece size is
selected from standard workpiece database. Type of
machining operations for each feature of the compo-

Fig. 2. Overall structure of the OPPS-PRI [4].
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nent is determined correspondingly. Machining oper-
ations are collapsed into set-ups. They are sequenced
using the machinability rules. The cutting tools as well
as the other auxiliary tooling are selected from respec-
tive tool libraries.

The sequence of operations is optimised based
on sequencing criteria like safety and minimum tool
change. The machining parameters (speed, feed, depth
of cut, and number of passes for each operation) are
optimised. Critical regions between the features of the
component are checked using DFM (design for manu-
facturing) module in order to determine whether they
are machinable or not, under the specified machining
conditions. If any problem exists, it is eliminated. The
most useable result of the system is a part program
executable on a VMC which is generated with the use
of the CAD/CAM database prepared by up-stream
modules of the system.

Among all the modules of OPPS-PRI shown in
Fig. 2, in this paper, the emphasis is given to theop-
timal pocket allocation policyon the ATC or turret
magazines. The other modules are left out of the con-
tent of this paper. The whole system has been devel-
oped in C programming language. When it is executed,
a pop-up/pull-down menu appears on the screen. It
involves seven menus, namely; File, CAD-interface,
Plan, Optimisation, DFM-tool, CAM-interface, and
About, as shown in Fig. 3.

This paper has the main goal of underlining the im-
portance of the determination of optimal index posi-
tions of cutting tools on the magazines for reducing

Fig. 3. Main menu of the OPPS-PRI (Optimisation is selected).

non-cutting time in manufacturing and presents an im-
plemented methodology based on a genetic algorithm
(GA). Following this section, the rest of this paper is
organised as follows. A brief explanation of GAs and
their operators are given in Section 2. Section 3 pro-
vides previous work using GAs. Approach to the prob-
lem of finding optimal tool position sets on the ATCs
and the methodology are then presented in Section 4.
The use of methodology is demonstrated with an ex-
ample in Section 5. The importance of optimisation of
corporate activities in CIM (computer integrated man-
ufacturing) and use of artificial intelligence (AI) tech-
niques for solving CAD/CAM problems are discussed
and finally, conclusions are drawn in Section 6.

2. Genetic algorithms and operators

GAs are the most popular approach among com-
binatorial algorithms like Tabu (Taboo) search (TS),
simulated annealing (SA). They are robust search al-
gorithms based on the mechanics of natural selection
and genetics. Generation of the initial population of
strings is done randomly. New chromosomes can be
generated usinggenetic operators. In GA terminol-
ogy, a candidate solution is represented by a sequence
of numbers and/or characters known as achromosome
or string. Each element in the string is called agene
and represents a process variable. A selected number
of strings is called apopulationand the population at
a given time is ageneration. A typical GA is com-
posed of several genetic operators such ascrossover,
inversionandmutation. There are also other types of
genetic operators that yield good results. Genetic oper-
ators operate on thegenesto replace their place within
the chromosome. In the following examples, a gene in
the chromosomes is abbreviated by “G”.

Simple crossover involves two parents and
crossover points are selected randomly. If two par-
ents to be used for generating new chromosomes
are {Parent 1: G1-G2-G3-G4-G5} and {Parent 2:
G5-G3-G1-G4-G2} and a crossover point was chosen
randomly as 2; this produces the following chil-
dren: {Child 1: G1-G2-|G1-G4-G2} and {Child 2:
G5-G3-|G3-G4-G5}. From the above example, it is
obvious that using simple one-point crossover pro-
duces undesirable results, and therefore, a modified
crossover operator was used, referred to as PMX
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(partially matched crossover) [7] or sometimes LOX
(linear order crossover) [11]. PMX is actually a
method of reproduction that arose to deal with trav-
elling sales person (TSP) problem. Under PMX two
parents are randomly picked from the population, and
two crossover points are randomly chosen. These two
points define where the crossover is to take place.
The genes between the crossover points are replaced
between the parents and the children are generated.
The example below illustrates how PMX operator
works. If the same parents (Parent 1 and Parent 2)
are used for generating new chromosomes with PMX
or LOX and two crossover points were chosen ran-
domly as 2 and 4, this produces the following chil-
dren: {Child 3: G1-G2-|G1-G4-|G5} and {Child 4:
G5-G3-|G3-G4-|G2}. These intermediate children are
not valid, since some of the genes appear more than
once and others do not appear at all. To eliminate
this problem, the children go through a verification
process that produces valid chromosomes from the
invalid children, making sure that the genes between
the crossover points are not changed and each gene
appears once and only once in a chromosome. The
final result is: {Child 3: G3-G2-|G1-G4-|G5} and
{Child 4: G5-G1-|G3-G4-|G2}.

Inversionoperates on a single parent. It reverses the
order of the element between two randomly chosen
points in the parent:{Parent 1: G1-|G2-G3-|G4-G5}.
Assuming that the two random inversion points are 1
and 3, the child generated by the inversion operator
on the parent is:{Child 5: G3-G2-G1-G4-G5}.

Mutationoperation involves a single parent. An in-
dex into the parent is randomly picked, and the gene
at that position becomes the first gene in the new chro-
mosome. From this picked position on, the parent is
wrapped around to produce the child. This operation
keeps some of the parent characteristics. If the parent
is: {Parent 1: G1-G2-|G3-G4-G5}, pick position is 2;
this operator produces:{Child 6: G3-G4-G5-G1-G2}.

3. Background

Optimisation of corporate activities in CIM and pro-
cess planning is one of the foremost targets of intel-
ligent manufacturing systems (IMSs), since it is be-
lieved that only those industries capable of making
effective productions would withstand international

competition in the next millennium. The optimisation
problem for sequence of operations is similar to the op-
timisation problem for index positions of cutting tools
to be used on the tool magazines of CNC machine
tools. Use of numerous strategies has been notified for
determining an optimal sequence of operations. These
techniques include the use of integer programming,
branch & bound, dynamic programming and evolu-
tionary techniques. Solution spaces to be considered
in these optimisation problems are very large, since
there are many possible alternative solutions, although
the solution space is reduced by the use of feasibility
constraints. It is too difficult to search effectively such
large spaces using dedicated search strategies. Con-
sideration of all applicable constraints results in diffi-
culties in the formulation and solution of the problem.
Therefore, evolutionary search techniqueswhich often
require less effort to search the large solution spaces
are generally needed [16].

GA is a search strategy ideally suited to parallel
computing and most effectively applied to problems
in which small changes result invery nonlinear be-
haviour in the solution space [10]. GAs are able to
search very large solution spaces efficiently by provid-
ing a lower computational cost, since they use prob-
abilistic transition rules instead of deterministic ones.
They are easy to implement and increasingly used to
solve inherently intractable problems called NP-hard
problems. The optimising routines to handle NP-hard
problems increase quickly with increasing problem
size. Therefore, more emphasis is given on the devel-
opment of heuristic procedures which usually do not
claim for reaching either a local or global optimum and
on obtaining near optimal solutions within a reason-
able computation time. This results in the restriction
of the search space in some way, leaving some parts
totally untouched. Although GAs are heuristic proce-
dures themselves, they test for fitness a wealth of sam-
plings from different regions of the search space si-
multaneously, and sort out and exploit regions of inter-
est very quickly [15]. It has been proved that the TSP
problemwhich can be referred to either a combinato-
rial optimisation problem or a NP-complete problem
cannot be solved by deterministic algorithms within
an acceptable time, since it has numerous local min-
ima. Some traditional optimisation methods like ex-
haustive search method, greedy method, and dynamic
programming, have been applied to this problem. They
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were either too time-consuming or too difficult to find
an acceptable solution. GAs are well suited to solving
complicated and multi-variable optimisation problems
[1].

AI has the largest impact on the recent advances
in CAD/CAM integration. GA beingone of the most
popular combinatorial algorithms and AI techniques,
is a robust search technique for solving optimisation
problems based on the mechanics of the survival of
the fittest. GAs have been successfully applied to var-
ious optimisation problems, such as the TSP prob-
lem, space allocation, job-shop scheduling, etc. [9].
Some of the outstanding work using GAs found in the
CAD/CAM literature is summarised as follows.

Kamhawi et al. [10] proposed an approach based
on a genetic algorithm for feature sequencing in a
rapid design system. The proposed system provides
a machinist with safe and near-optimal feature se-
quence while considering “safety” and “tool change”
as conflicting criteria. Dereli et al. [5] developed a
GA based system to optimise the sequence of fea-
tures which correspond to at least a single or more
operations required to produce prismatic components
by feeding the initial population with TSP strings to
make the convergence to the optimal solution faster.
Usher and Bowden [16] applied GA approach to op-
eration sequencing for use in computer aided process
planning (CAPP). Their system determines optimal or
near-optimal operation sequences for parts of varying
geometry. It has been shown that a GA is a viable
means for searching the solution space of operation
sequences providing a computational time of the order
of a few seconds. Vancza and Markus [17] used a GA
for operation sequencing in which each chromosome
is represented by elements corresponding to feature
states that are produced by machining operations. The
use of genetic operators like crossover and mutation
resulted in about 10% in feasible sequences as the op-
erators violated some of the precedence constraints.
Derek and Debasish [3] applied a coding strategy in
GA for sequencing of parallel machining operations,
where combinations of interacting work holding and
tool holding devices are used. Their coding methodol-
ogy allows the generation of valid operation sequences
through the use of well known genetic operators
such as mutation and crossover. Roy [13] developed
a method based on an adaptive micro genetic algo-
rithm (mGA) for optimal design of process variables

in multi-pass wire drawing. By using themGA, the
difference between maximum and minimum effective
plastic strains in the end product is minimised, so
also the total deformation energy in a multi-pass wire
drawing process. ThemGAs are different from simple
GAs in terms of the number of strings in population.
Population size for GAs being currently used in the
optimisation problems ranges from 30 to 200. How-
ever, it is enough to randomly generate a population
of five strings inmGAs. The application of GAs to job
sequencing problems was introduced by Öztemel and
Düğenci [12]. Several problems are solved by both
GAs and well known heuristics based methods. The
results and their comparison were also presented. It
has been proven that GAs are more successful than the
others, especially when large numbers of jobs and ma-
chines are considered. Yokota [18] formulated an opti-
mal weight design problem of a gear for a constrained
bending strength of gear, torsional strength of shafts
and each gear dimension as a nonlinear programming
problem, and solved it directly by keeping the nonlin-
ear constraint by using an improved genetic algorithm.

The inclusive information on the different applica-
tions (i.e. on engineering design and optimisation) of
GAs can be found in [6,7].

4. Allocation policy and methodology

In this work, theindex allocation problemis handled
in three phasesin terms of the relation between the
total number of cutting tools employed and the total
number of available index positions on the ATC or
turret of the machine tool to be used:

Phase1. The number of cutting tools isequal tothe
number of index positions.

Phase2. The number of cutting tools issmaller than
the number of index positions
(a) without duplicated tools,
(b) with duplicated tools.

Phase3. The number of cutting tools ishigher than
the number of index positions.

The overall aim is to minimise the total manufactur-
ing cost by reducing the tool operating or tooling cost
with the use of different tool indexing policies like
loadingduplicate toolson the tool magazines. If the
problem falls into Phase 1, there is no need to duplicate
the cutting tools in the tooling set to avoid the second
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ATC set-up which increases the total non-machining
time considerably. If the total number of the cutting
tools that are assigned for fully machining a compo-
nent, are smaller than the total number of available
index positions on the ATC of a machine tool (Phase
2), then the effect of the duplicated tools on a possible
decrease in the tool indexing time should be tested.
For example, certain cutting tools can be duplicated
on the ATC, so in thechromosome of cutting tools in
GA as well. In Phase 3, the problem is somewhat dif-
ferent, so it changes to selecting the tools to be used
(shifted) in the second set-up. The example arrange-
ments of cutting tools on a 12-station ATC for each
phase are given in Figs. 4–7, respectively.

It should also be noticed that there might be other
sub-phasesbetween the three tool set-up phases spec-
ified above. For instance, for Phase 2(b) where the du-
plicated tools are used in such a way that no unloaded
index is left on the ATC. However, there is another
case where the optimal arrangement of cutting tools
may require an ATC organisation in which an index
(or more than one index) is left unloaded.

GA is an effective tool for solving the problem of
determining optimal positions of cutting tools on the
ATC magazines. It is very difficult to solve the problem
using Brute-force Searchalgorithm, since there are
many alternatives to be controlled and they require a
long time. For instance, there are about 479 millions
of alternative tooling set-ups that can be used on a
12-station ATC and a positioning set of 12 cutting

Fig. 4. ATC arrangement: number of tools= number of indexes
(Phase 1).

Fig. 5. ATC arrangement: number of tools< number of indexes
(Phase 2(a)).

tools. As the total number of cutting tools employed in
machining and the ATC capacities increase, the benefit
to be obtained from the right tool arrangement would
have a greater importance. Even 1 s saved in the tool
indexing time would reduce the total production time
considerably, especially in high-volume production.
For example, if 1 billion parts are to be produced per
year, 1 s saved in the tool indexing time will cause a
gain of about 12 working days.

Fig. 6. ATC arrangement: number of tools< number of indexes
(Phase 2(b)).
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Fig. 7. ATC arrangements: number of tools > number of indexes (Phase 3).

This paper presents a methodology proposed for
the determination of optimal ATC (or turret) index
positions of cutting tools that are assigned to certain
machining operations. Position selection is performed
using a genetic algorithm that leads to the least to-
tal tool indexing time. The algorithm takes a list of
cutting tools characterised with certain numbers as-
signed to machining operations together with the total
number of positions available on the ATC or turret
magazine, and the catalogue value of their indexing
time specified in the manuals of CNC machine tools
as the input. The type of ATC or turret magazine such
as whether it has auni-directional or bi-directional
tool indexing capability, is also considered. The first
step in the GA is to randomly generate an initial popu-
lation of positioning sets (chromosomes). The cutting
tools are represented as the genes in these chromo-
somes. Fig. 8 shows a typical arrangement of cutting
tools indexed on a 12-station ATC. The representation
of this arrangement in the GA, i.e. a typical chromo-
some of cutting tools for a 12-station ATC is given in
Table 1.

Initial population of candidate position sets (chro-
mosomes) is then generated by a random number
generator, which is initialised with the randseed pa-
rameter. Total number of chromosomes in the initial
population is taken as 200 in this study. A section of
the initial population is shown in Table 2.

New chromosomes (children) are then generated
from the initial population (parents) by using the PMX
operator. The children obtained from the parents are
shown in Table 3.

Fig. 8. A typical tool arrangement on a 12-station ATC.

Table 1
A typical chromosome of 12 cutting tools

ATC positions Chromosome

P1 T2
P2 T5
P3 T7
P4 T1
P5 T3
P6 T2
P7 T6
P8 T4
P9 T8
P10 T9
P11 T2
P12 T10
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Table 2
Randomly generated initial population of cutting tools

Chromosome no. Tools at index: 1-2-3-4-5-6-7-8-9-10

Parent 1 1-2-5-3-10-7-6-4-9-*8*
Parent 2 10-3-9-1-2-8-4-5-6-*7*
Parent 3 8-9-*5-6*-1-3-10-7-2-4
Parent 4 5-3-*8-6*-2-7-10-1-4-9
.
.
.

.

.

.

Parent 197 5-7-6-2-*3*-4-1-9-10-8
Parent 198 6-7-8-5-*4*-1-2-3-9-10
Parent 199 4-7-*5-8-9*-2-10-6-3-1
Parent 200 8-6-*9-10-4*-1-7-3-5-2

Table 3
Positioning sets generated by the PMX operator

Chromosome no. Tools at index: 1-2-3-4-5-6-7-8-9-10

Child 201 1-2-5-3-10-8-6-4-9-7
Child 202 10-3-9-1-2-7-4-5-6-8
Child 203 5-9-8-6-1-3-10-7-2-4
Child 204 8-3-5-6-2-7-10-1-4-9
.
.
.

.

.

.

Child 397 5-7-6-2-4-3-1-9-10-8
Child 398 6-7-8-5-3-1-2-4-9-10
Child 399 5-7-9-10-4-2-8-6-3-1
Child 400 10-6-5-8-9-1-7-3-4-2

PMX operator requires two crossover points
(shown by asterisks in Table 2) which are randomly
chosen. Generation of child chromosomes 201 and
202 from the parent chromosomes 1 and 2 is as
follows. Two random crossover points (i.e. 9 and
10) are picked along the sequence (by asterisks).
The cutting tools(genes) at the crossover points are
switched between the parents and then children are
generated. We have{Parent 1: 1-2-5-3-10-7-6-4-9-8}
and {Parent 2: 10-3-9-1-2-8-4-5-6-7}. The uniform
crossover operator produces the following children
{Child 201: 1-2-5-3-10-7-6-4-9-7} and {Child 202:
10-3-9-1-2-8-4-5-6-8}. These intermediate sequences
are not valid, since some of the features appear more
than once (7 in Child 201 and 8 in Child 202). The
children are validated and modified to produce valid
sequences from the invalid children, making sure that
the features at the crossover points are not changed
and feature appears only once in a sequence. The fi-
nal result is then:{Child 201: 1-2-5-3-10-8-6-4-9-7}

and {Child 202: 10-3-9-1-2-7-4-5-6-8}. All the
chromosomes in the initial population are matched
two-by-two, and new population is generated using
the PMX operator as described above. We have now
400 chromosomes; 200 from the initial population
and 200 from the new population. At this point, an
objective function(fitness function) is used to mea-
sure the goodness of each chromosome (set of cutting
tools assigned to the certain index positions) and in
order to minimise thetotal ATC indexing timefor a
given chromosome. Based on the operation sequence
given as the input to the system, the value of the ob-
jective function for a chromosome can be calculated
by multiplying the total number of unit rotations (be-
tween two adjacent index) of ATC magazine due to
the order of the genes (cutting tools) in the chromo-
some by the indexing time (magazine rotating speed
from one ATC index to next ATC index). The fitness
function for each chromosome (f ) can be expressed
mathematically by the following equation:

f =
i=# of total operations−1,
j=# of total operations∑

i=1,j=2;
while: i=i+1,j=j+1

|[INO[gene[opr[i]]]]

−[INO[gene[opr[j ]]]] | ,
(1)

where gene, opr and INO are the vectorial representa-
tions of genes (cutting tools or cutting tool numbers)
in a single chromosome, associated machining opera-
tions (operation no) and index numbers available on
an ATC magazine, respectively. The index numbers
of each cutting tool in a chromosome are found. The
differences between the index numbers of subsequent
cutting tools are calculated and then totalled to find
the total number of unit rotations (fitness value) for
each chromosome. Absolute differences are always
considered in calculating the number of unit rotations
required from current tool to target tool. It should also
be noticed that if the ATC has a bi-directional indexing
capability, the difference between two index numbers
must be calculated such that its value should be equal
to or smaller than the half of the ATC capacity. For
a 10-station/bi-directional ATC magazine, the maxi-
mum number of unit rotations from one tool to another
is equal to or smaller than 5. In this case, if the ATC
magazine has a magazine rotating speed (from index
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to next index) of 1 s, and the sequenced operations
{O1-O2-O3-O4-O5-O6- O7-O8-O9- O10-O11- O12}
require the cutting tools{T10-T9-T3-T5-T4-T6-T7-
T8-T2-T1-T10-T8}, respectively, then the fitness
value of chromosome-201, i.e. set of cutting tools
{1-2-5-3-10-7-6-4-9-8} assigned to index numbers
{1-2-3-4-5-6-7-8-9-10} on the ATC, is calculated as
follows:

INO[gene[opr[1]]−INO[gene[opr[2]]=
INO[10] −INO[9] = |5−9|= 4

INO[gene[opr[2]]−INO[gene[opr[3]]=
INO[9]−INO[3] = |9−4|= 5

INO[gene[opr[3]]−INO[gene[opr[4]]=
INO[3]−INO[5] = |4−3|= 1

INO[gene[opr[4]]−INO[gene[opr[5]]=
INO[5]−INO[4] = |3−8|= 5

INO[gene[opr[5]]−INO[gene[opr[6]]=
INO[4]−INO[6] = |8−7|= 1

INO[gene[opr[6]]−INO[gene[opr[7]]=
INO[6]−INO[7] = |7−10|= 3

INO[gene[opr[7]]−INO[gene[opr[8]]=
INO[7]−INO[8] = |10−6|= 4

INO[gene[opr[8]]−INO[gene[opr[9]]=
INO[8]−INO[2] = |6−2|= 4

INO[gene[opr[9]]−INO[gene[opr[10]]=
INO[2]−INO[1] = |2−1|= 1

INO[gene[opr[10]]−INO[gene[opr[11]]=
INO[1]−INO[10] = |1−5|= 4

INO[gene[opr[11]]−INO[gene[opr[12]]=
INO[10]−INO[8] = |5−6|= 1

Total unit rotations= 33
Total indexing time= 33×1= 33 s

The next step is to put all 400 chromosomes (200
parents and 200 child) in an ascending order starting
from the one, which hasthe least total indexing time
as fitness. Based on the fitness values, the next gen-
eration (current population) is formed from the newly
generated sequences and old population such that it
includes 80% of good positioning sets and 20% of

bad positioning sets among 400 chromosomes in due
order.

At this stage, each chromosome in the new popu-
lation is mutated and reproduced randomly using the
mutation and inversion operators, respectively. The
random number generator is used to select the muta-
tion and inversion points. Finally, the order of the chro-
mosomes in the new population is re-mixed before the
PMX operates on the genes. The iterations are con-
tinued by this way. GA seeks to find theposition set
with the least cumulative fitness (total indexing time).
As the execution of the genetic algorithm reaches to
certain number of iterations, the better sequences with
the least fitness values dominate in the population and
the system eventually converges to an optimal solu-
tion. The number of iterations can be specified by the
user or the system automatically stops, if the solutions
cannot be improved for a cycle of generations.

A machine tool data base is prepared by using the
manuals of several CNC machine tool manufacturers
and integrated to the system. When the user selects
the machine tool, parameters like tool capacity of the
ATC, type of ATC movement and indexing time are
captured and fed into the optimisation software.

When the GA-based optimisation system is used
alone, the sequence of machining operations and cut-
ting tools assignment to that operations can interac-
tively be provided to the system by the user from the
keyboard or they can be achieved from a previously
created text file. When the system is executed in the
OPPS-PRI, all necessary information regarding ma-
chining operations and their associated cutting tools
are prepared by the operation selection/sequencing
module and tool selection module, respectively. For
ease of managing, both the machining operations and
corresponding cutting tools are characterised by num-
bers. Their accompanying labels or specifications are
also stored in the memory.

5. An example

An example part including 12 features is shown in
Fig. 9. The abbreviations used for the part features are
tabulated in Table 4. The operations assigned to the
part features by the operation selection module of the
OPPS-PRI are given in Table 5. Tool selection module
of the OPPS-PRI, provides candidate tools (up to 3)
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Fig. 9. An example part.

Table 4
List of features on the example part and their acronyms

Feature no. Type Abbreviations

1 Face –
2 Blind step B-STP
3 Blind slot B-SLT
4 Thru slot T-SLT
5 Face slot F-SLT
6 Rectangular pocket R-PKT
7 Thru step T-STP
8 Blind slot B-SLT
9 Blind hole B-HOL

10 Thru hole T-HOL
11 Thru hole T-HOL
12 Thru hole T-HOL

Table 5
Operations assigned to the features of the example part

Set-up no. Operations Operation Corresponding feature

1 O1 Face milling FACE (F1)
1 O2 Step milling T-STP (F7)
1 O3 Slot milling B-SLT (F8)
1 O4 Slot milling T-SLT (F4)
1 O5 Slot milling B-SLT (F3)
1 O6 Slot milling F-SLT (F5)
1 O7 Step milling B-STP (F2)
1 O8 Pocket milling R-PKT (F6)
1 O9 Centre drilling B-HOL (F9)
1 O10 Twist drilling B-HOL (F9)
2 O11 Centre drilling T-HOL (F10)
2 O12 Centre drilling T-HOL (F11)
2 O13 Centre drilling T-HOL (F12)
2 O14 Twist drilling T-HOL (F10)
2 O15 Twist drilling T-HOL (F11)
2 O16 Twist drilling T-HOL (F12)
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Table 6
Cutting tools assigned to (optimal) operations

Operation seq. Operation no. Cutting tools

1 O1 T1
2 O2 T1
3 O3 T5
4 O4 T4
5 O5 T2
6 O9 T9
7 O10 T7
8 O8 T3
9 O6 T3

10 O7 T3
11 O11 T9
12 O12 T9
13 O13 T9
14 O14 T10
15 O15 T8
16 O16 T6

for the operations and a single tool is assigned for each
operation.

The sequence of operations is then optimised based
on minimum tool-change criterion. The optimal se-
quence of operations together with the cutting tools
selected for each operation is given in Table 6. The
detailed information on the cutting tools can be found
in Table 7.

The last input to the system involves the machine
tool specifications, which can either be obtained from
the machine tool data base or can be entered from
the keyboard by the user. In this example, the target
machine is assumed to be TAKSAN TMC-700 VMC,

Table 7
Tooling Information

Cutter Type Cutter Adaptor Insert

T1 Modern ISCAR F90SD-D63-22-12 BT 40 KBM 22 SDTM 1205 PDR-HQ
T2 Solid – BT 40 PB 444 E –
T3 Solid – BT 40 VT 10 –
T4 Modern ISCAR E90A-D20-CS20 BT 40 VT 20 APKT 1003 PDTR-76
T5 Modern ISCAR E90SP-D25-W25-10 BT 40 VT 25 SPMT 100408 TR-HQ
T6 Solid – BT 40 PB 444 E-10 –
T7 Solid – BT 40 PB 444 E-9 –
T8 Solid – BT 40 VT 12 –
T9 Solid – BT 40 MM B12 with (0–10 mm mandren)
T10 Solid – BT 40 MM B16 with (4–16 mm mandren)

which has a bi-directional ATC with a holding ca-
pacity of 16 cutting tools and an indexing time of
0.69 s.

The problem described here falls into Phase 2(a)
where the total number of cutting tools employed
is smaller than the total number of index posi-
tions available on the ATC. Therefore, some cutting
tools can also be duplicated in the tooling set-up
of ATC magazine. At this stage, the user is warned
whether he/she has spare tool(s)/tool holder(s) to
be used for duplicating any tool or not. If avail-
able, the specified tool(s) can be used more than
once. However, it should be noticed that tooling
is expensive, so its profits should be tested care-
fully.

The proposed alternative position sets for the prob-
lem are tabulated in Table 8. The resulting configura-
tion on the ATC is also depicted in Fig. 10.

Notice that GA converges rapidly to an optimal so-
lution; 13 unit rotations of ATC or in other words a
total turret indexing time of 8.97 s per part. The above
problem is also asked to 10 average technicians, work-
ers and operators. Average value of total unit rotations
of ATC and indexing time obtained from this quiz is
equal to 20 and 13.80 s, respectively. Even in this small
sized problem, the gain is 4 s per component to be
produced. For a batch of 40 000 parts, the total gain is
about 44.44 h. The slower the ATC (the higher value
of indexing time from tool-to-tool), the higher is the
gain. It should be noticed that rotating speed of the
machine tool magazine is also important. If the size
of the problem increases, the gain obtained from GA
will also increase.
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Table 8
Proposed position sets

No. of iterations Positions on ATC (with no duplications) Fitness:
No. of unit
rotations

Fitness:
total index
time (s)Itr. no. Elapsed time (s) 1 2 3 4 5 6 7 8 9 10

1 1/5 T3 T7 T4 T5 T1 T2 T9 T10 T8 T6 20 13.80
2 2/12 T8 T6 T10 T3 T9 T2 T7 T1 T4 T5 19 13.11
3 3/15 T1 T5 T4 T7 T3 T9 T2 T10 T8 T6 15 10.35
4 20/50 T1 T5 T4 T3 T2 T7 T9 T10 T8 T6 15 10.35
5 30/80 T1 T5 T4 T2 T7 T3 T9 T10 T8 T6 13 8.97

Fig. 10. Tool positions on the ATC for the example part.

6. Discussion and concluding remarks

Recent researches and developments in manufactur-
ing area have the objectives of increased productivity
and cost effectiveness by integrating many activities
within a CIM system which is heading towards the
Factory of the Future. For this purpose, an advanced
production system called IMS is oriented towards the
needs of the 21st century and designed to maintain and
improve the vitality ofmanufacturing sectorkeeping
it as the cornerstone of all economic activities and
ensuring that manufacturing remains an attractive in-
dustrial area. IMS takes intellectual activities in manu-
facturing and improves productivity by systematising,
optimising and flexibly integrating those corporate

activities. Therefore, the optimisation of corporate ac-
tivities in CIM and CAPP is one of the greatest targets
of IMSs, since it is believed that only those indus-
tries capable ofmaking effective productionswould
withstand international competition in the next mil-
lennium. AI based techniques like GAs are designed
for capturing, representing, organising, and utilising
knowledge by computers, and hence play an impor-
tant role in intelligent manufacturing. AI techniques
shorten the reaction time of a manufacturing system.

In this paper, a GA-based system developed for the
optimisation of turret index positions of cutting tools to
be used on the turret or ATC magazine of the CNC ma-
chine tools, is presented. It has been recognised that a
small saving in the total turret indexing time will cause
a considerable increase in cutting time by decreasing
the non-cutting time, especially for high-volume pro-
duction. The developed optimisation system can be
used for both ATC magazines and turrets on CNC ma-
chine tools. It can be used as a stand-alone system. It
has been also integrated to a process planning system
called OPPS-PRI which has been implemented on a
VMC. The developed system has been used in small
and medium-sized manufacturing industries making
batch production of spare parts for textile industry in
Gaziantep city, with positive results. However, it has
been recognised that for large-scale problems, GAs
are somewhat slow and occasionally cannot converge
to a global optimum.

With the developed optimisation system in this
work, it would be possible to reduce the time spent
in the indexing on tool magazines, and to contribute
to the success of the manufacturing industry. This
will lead to increased utilisation of CNC machine
tools and maximisation of CNC productivity which
are commonly considered as ultimate goals of CIM.
The methodology described in this work can also be
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adopted to 5-axis machining centres, Flexible Manu-
facturing Systems and Flexible Manufacturing Cells
which use chain type of tool magazines on which a
huge amount of cutting tools are to be controlled.
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