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Abstract

This paper outlines the development of an optimization strategy to determine the optimum cutting para-
meters for multipass milling operations like plain milling and face milling. The developed strategy is based
on the “maximum production rate” criterion and incorporates eight technological constraints. The optimum
number of passes is determined via dynamic programming, and the optimal values of the cutting conditions
are found based on the objective function developed for the typified criterion by using a non-linear program-
ming technique called “geometric programming”. This paper also underlies the importance of using optimiz-
ation strategies rather than handbook recommendations as well as pointing out the superiority of the multi-
pass over the single-pass optimization approach. 1998 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a Depth of cut for its pass (mm)
amax Maximum depth cut for machine tool workpiece system
amin Minimum depth cut for machine tool workpiece system
aT Total depth of cut (mm)
bv, bz Exponents determined empirically
B Milling width (mm)
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Bm Correction coefficient of tool life equation
Bt Correction coefficient of tool life equation
Bh Correction coefficient of tool life equation
Bp Correction coefficient of tool life equation
Cv A constant taking into account the influence of all factors that are appearing

separately in the tool life formula
Czp Constant of the cutting force equation
da Arbor diameter (mm)
D Outer diameter of the cutter (mm)
e Permissible values of arbor deflection (mm)
ev, ez Exponents determined empirically
E Modulus of elasticity of arbor material (kg/mm2)
Es Modulus of elasticity of stub arbor material (MPa)
f Feed rate (mm/min)
fz Feed per tooth (mm/tooth)
Fc Mean peripheral cutting force (kg)
Fd Permissible force with regard to arbor deflection (kg)
Fs Permissible force with regard to arbor strength (kg)
Is Moment of inertia of stub arbor (mm4)
kb Permissible bending stress of the arbor material (kg/mm2)
kt Permissible torsional stress of the arbor material (kg/mm2)
L Length of cut (mm)
La Arbor length between supports (mm)
Ls Length of stub arbor (mm)
m Exponent determined empirically
nv, nz Exponents determined empirically
Nb Total number of components in the batch
N Spindle speed (rpm)
Np Number of passes
N Number of sections
q, qv Exponents determined empirically
P Exponent determined empirically
Pc Cutting power (kW)
Pm Nominal motor power (kW)
rv, rz Exponents determined empirically
T Tool life (min)
Tp Machine preparation time per component (min)
Ts Set up time of the machine for a new batch (min)
TL Loading and unloading time (min)
Ta Process adjusting time and quick return time
Tc Tool changing time per component (min)
Td Time for changing a dull cutting edge or tool (min)
Tm Machining time (min)
Tpr Total production time per component (min)



299A.İ. Sönmez et al. / International Journal of Machine Tools & Manufacture 39 (1999) 297–320

uv Exponent determined empirically
uz Exponent determined empirically
V Cutting speed (m/min)
z Number of teeth on the cutter
h Overall efficiency
d Permissible deflection of stub arbor at the end (mm)
ls Cutting inclination angle

1. Introduction

Multipass operations are generally used to machine stocks that cannot be removed in a single
pass. Some turning operations like external step turning and boring, and some of the milling
operations, such as face milling and deep shoulder milling in which a significant amount of stock
material is removed, are good examples of the operations which are commonly required to be
machined using multipass operations. Determination of the optimal cutting parameters (cutting
conditions) like the number of passes, depth of cut for each pass, speed, and feed is considered
as a crucial stage of multipass machining as in the case of all chip removal processes and
especially in process planning. The effective optimization of these parameters affects dramatically
the cost and production time of machined components as well as the quality of the final products.

Although in the early 1900s, Taylor [1] recognised that an optimum value for the speed can
be achieved by maximizing the material removal rate in a single pass operation, the progress in
developing optimization strategies has been very slow. Indeed, there have not been many studies
on the optimization of machining conditions in the literature [2,3]. This is mainly due to the
complex nature of optimization of machining operations that require the following,

I Knowledge of machining (i.e., turning or milling);
I Empirical equations relating the tool life, forces, power, surface finish and arbor deflection,

etc., to develop realistic constraints;
I Specification of machine tool capabilities, (i.e., maximum power or maximum feed available

from a machine tool);
I Development of an effective optimization criterion, (e.g., maximum production rate, minimum

production cost, maximum profit or a combination of these);
I Knowledge of mathematical and numerical optimization techniques, like the Simplex method,

Search method, Geometric programming and dynamic programming, etc.

The studies on the subject were first initiated in the early 1970s, and were generally trying to
answer the question of whether the multipass scheme is superior to the single pass or not? After the
published studies showed that the multipass optimization strategies can yield superior machining
parameters than single-pass optimization techniques, in the 1980s this time, the multipass stra-
tegies had to prove their significant and higher efficiency over the handbook recommendations,
which include rough machining performance data and machine tool specifications. Recent optimiz-
ation techniques have also been shown to be more and more optimal than the handbook rec-
ommendations which can only be considered as rough and initial values.

The literature in the area of the optimization of multipass machining operations has therefore
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been quite limited. Crookall and Venkataramani [4], Kals et al., [5] and Lambert and Walvekar
[6] have analysed the optimization of multipass turning operations. However, they have all selec-
ted the number of passes arbitrarily, thus their results could not be considered as the optimal
values. Hitomi [7–9] has optimized the optimum cutting speeds and the cycle time without con-
sidering the other cutting parameters in his first three attempts. In his later publication Hitomi
[10], he applied an approximation in order to find the optimum values of the cutting speed and
feed. Rao and Hati [11] as well as Iwata et al. [12], have also developed an optimization model
for the turning based on either minimum production time or minimum production cost. Devor et
al. [13], and Ermer and Kromodihardjo [14], have investigated the optimization of a two-pass
operation using the “minimum production time” criterion. However, their methods attempted to
optimize the cutting conditions through a trial and error method, and some non-flexible assump-
tions like using equal passes for the machining, although optimal values can be achieved by using
unequal cutting conditions. Agapiou [3] has developed a multipass optimization system for turning
processes in which the number of passes have been found by dynamic programming technique,
and then the cutting conditions are optimized through the Nelder–Mead Simplex Search method
by using a combined objective function.

It has also been recognized that the progress in developing constrained optimization systems
for milling operations has been even slower than for turning operations, since the milling has a
more complex cutting mechanism than that of turning. Today, there are only a few works on the
optimization of multipass milling operations cited in the literature. There are currently two
approaches to solve the problem:

I Using computer aided mathematical programming techniques, and
I Using numerical search techniques.

Recently, Wang [15] has developed an optimization software for multipass peripheral and end
milling operations which use a combination of the above two considerations based on the objective
function of “maximum production rate”. He has also verified the superiority of multipass over the
singlepass by carrying out some simulation tests. In this paper, the development of a constrained
optimization system for multipass face milling operations is outlined. The optimum number of
passes is first determined via dynamic programming, and then the optimal values of the cutting
parameters are found based on the objective function “maximum production rate” and using a
non-linear programming technique “geometric programming”.

The algorithm used in this study is adopted from the study of Agapiou [3] which is proposed
for the multipass turning operations. However, the methodology used in this work is rather differ-
ent because the geometric programming is preferred in lieu of the Nelder–Mead Simplex Search
method in the optimization of each stage of the dynamic programming. Also, it is well worth
pointing out that the cutting mechanism and constraints to the face milling problem are quite
different from those of turning processes. An example is presented to illustrate the procedure.
The factors that effect the efficiency of the method are also discussed.

2. Formulation of objective function

Production time for a component is the total time required to produce a component and is
composed of following items:
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(i) Machine preparation time,Tp (min)

Tp =
Ts

Nb

(1)

whereTp = machine preparation time per component (min),Ts = set up time of the machine for
a new batch (min), andNb = total number of components in the batch;

(ii) Loading and unloading time,TL, (min);
(iii) Process adjusting and quick return time,Ta (min);
(iv) Machining time,Tm (min); and
(v) Tool changing time per component,Tc (min):

Tc =
Td·Tm

T
(2)

whereTc = tool changing time per component (min),Td = time for changing a dull cutting edge
or tool (min), andT = tool life (min).

Total production time per component for a single pass operationTpr, is the sum of the above
time elements and can be written as:

Tpr = Tp + TL + Ta + Tm + Tc (3)

or

Tpr =
Ts

Nb

+ TL + Ta + Tm + TdSTm

T D. (4)

For a multi-pass operation in whichNp passes are required to remove the total depth of cut,
Tpr becomes as follows;

Tpr =
Ts

Nb

+ TL + ONp

i = 1

STai
+ Tmi

+ Td

Tmi

Ti
D (5)

where,Np is the total number of passes and subscripti denotes theith pass. Set up timeTs,
loading and unloading timeTL, process adjusting and quick return timeTa, and tool (or cutting
edge) changing timeTd, can be obtained from the standard time tables prepared for standard
processes, or determined directly measuring the required time for the related process. However,
machining timeTm and tool life T depend on the cutting conditions and should be calculated.
Machining time and tool life can be expressed in terms of cutting parameters. For a particular
milling operation, the machining time is given as:

Tm =
L
f

(6)

whereL = length of cut (mm) andf = feed rate (mm/min).
The feed is specified as below:

f = fz·z·N (7)
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wherefz = feed per tooth (mm/tooth),z = number of teeth on the cutter,N = spindle speed (rpm),
andN is given as

N =
1000·V

pD
(8)

whereV = cutting speed (m/min) andD = outer diameter of cutter (mm).
For a particular milling operation, the tool life formula given by Kaczmarek [16] can be

safely used:

T =
C1/m

v D
bv

m

V1/maev/mfuv/m
z Brv/mznv/mlqv/ms

(BmBhBpBt)
1
m (9)

whereT = tool life (min), Cv = a constant taking into account the influence of all factors,a =
depth of cut (min),V = cutting speed (m/min),D = outer diameter of the cutter (mm),fz = feed
per tooth (mm/tooth),B = milling width (min), z = number of teeth on the cutter,ls = cutting
inclination angle (degrees),bv,m,ev,uv,rv,nv,qv = exponents, andBm,Bh,Bp,Bt = correction coef-
ficients.

The influence of cutting speed on tool life largely depends on the value of exponentm. It
follows from experiments that for high speed steel teethm = 0.15–0.33 and for sintered carbide
teethm = 0.2–0.6. These values indicate that cutting speed has a stronger influence on the tooth
life of high speed steel than on that of sintered carbide teeth. Average values of the constantCv,
and of exponentsbv,m,ev,uv,rv, andnv, for plain and face milling can be found in Zu¨mrüt [17] for
milling steel and cast iron with high speed steel and sintered carbide teeth. Influence of the helix
angle of cutters with helical teeth or of the cutting edge inclination angle within practically applied
limits is quite small. However, it can be observed that tool life shortens with increasing anglels,
because then the number of teeth cutting simultaneously increase. At the same time, although the
cutting edges lengthen, the general amount of cutting teeth increase and tooth temperature rises.
You can consider that in cutters with helical teeth the anglels = 20–45°, the influence of the
cutting edge inclination angle may be neglected. Values of the correction factorBm taking into
account the type of workpiece material are also given in [17]. For the same type of material,
increased hardness or tensile strength causes a decrease of tool life for the same cutting conditions.
This may be corrected by using a correction factorBh. For ductile materials it is equal to:

Bh = Ss1

s2
Dp

(10)

where s1 = tensile strength of reference material (MPa),s2 = tensile strength of the material
being machined (MPa), andp = exponent for various materials.The same relationship for cast
iron and other brittle metals can also be expressed by:

Bh = SHB1

HB2

Dq

(11)

whereHB1
= Brinell hardness number of the reference material,HB2

= Brinell hardness number
of the material being machined, andq = exponent different for the various materials.
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Tool life is also affected by the production engineering methods used in the preparation of
semi-finished products (casting, forging, rolling etc.), the condition of the material and of its
surface layer. The influence of these factors is expressed by the correction factorBp which can
be found in Arshinov and Aleksiev [18] and Zu¨mrüt [17]. The kind of machining is taken into
account by the correction factorBt (for rough milling Bt = 1.0, for accurate millingBt = 0.8).

By substituting Eq. (6),Eq. (7),Eq. (8),Eq. (9) into Eq. (5), the objective function in multipass
milling operations can be expressed by the following:

Tpr =
Ts

Nb

+ TL + NpTa + ONp

i = 1

S pDL
fziz1000Vi

+
TdpLV1/m − 1

i aev/m
i f uv/m − 1

zi
Brv/mznv/m − 1lqv/m

s

1000C 1/m
v Dbv/m − 1(BmBhBpBt)1/m D. (12)

3. Evaluation of constraints

Optimal cutting conditions should satisfy some technological constraints. Machine tool, cutting
tool and workpiece specifications are the sources of these restrictions. These constraints can be
determined experimentally for a given workpiece as a function of tool material and geometry,
etc. Otherwise, the constraints related to speed, feed and depth of cut for the particular tool
workpiece combination should be used in order to proceed with optimization of cutting para-
meters. Below are constraints considered in this work.

3.1. Available feed and speeds

Optimum feed and cutting speed (or spindle speed) must be in the range determined by the
minimum and maximum feed rates and spindle speeds of the machine:

f zmin
# fz # fzmax

=
fmax

zNmax

, (13)

Vmin # V # Vmax =
pDNmax

1000
(14)

wheref zmin
andf zmax

are minimum and maximum feed per tooth of the machine tool respectively,
whereasVmin andVmax are minimum and maximum cutting speed.

3.2. Power

Power required for the cutting operation should not exceed the effective power transmitted to
cutting point by the machine tool:

Pm $
Pc

h
(15)
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wherePm = nominal motor power (kW),Pc = cutting power (kW), andh = overall efficiency of
machine tool.

In milling, mean value of power is given as:

Pc =
FcV
6120

(16)

whereFc is the mean peripheral cutting force (kg).
For the plain milling case, cutting forceFc is given by:

Fc = Czp·B·z·Dbzaezf uz
z (17)

For the face milling case, cutting forceFc is given by:

Fc = Czp·Brz·znz·Dbzaezf uz
z (18)

Coefficients and exponents appearing in cutting force equations (Eq. (17) and Eq. (18)) are
found in [18] and [17]. Eq. (15) concerns the milling of steel with ultimate tensile strengthsUTS =
750 MPa. Since the strength of the material strongly influences the cutting resistance, a correction
coefficient,KH should be introduced into the calculation of the peripheral cutting force and cutting
power, if the ultimate tensile strength of the steel is other than 750 MPa. This correction factor
for the different tensile strengths of steel is given in Table 1. Within the range of the cutting
edge anglex = 15–90° studied so far, an optimum value of this angle appears, amounting tox =
60° for face mills with sintered carbide teeth. For greater and smaller cutting edge angles, correc-
tion coefficientKY is used according to Table 1.

3.3. Arbor rigidity (arbor strength)

The arbor is also subject to torsion from the action of resistance to cutting. Therefore selected
feed rate should be checked with regard to arbor strength:

Fc # Fs (19)

where Fc = mean peripheral cutting force (kg),Fs = permissible force with regard to arbor
strength (kg):

Table 1
Correction factors for peripheral cutting forces

Correction coefficient,KH, for the peripheral cutting force taking into account the tensile strength of the steel
sUTS (MPa) 550 650 750 850 950 1050 1150
KH 0.85 0.925 1.00 1.075 1.15 1.125 1.30
Correction coefficientKY for the peripheral cutting force taking into account the cutting edge angle,x
x° 15 30 45 60 75 90
KY 1.23 1.15 1.06 1.0 1.06 1.14
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Fs =
0.1kbd3

a

0.08La + 0.65√(0.25La)2 + (0.5aD)2 (20)

wherekb = permissible bending stress of the arbor material (kg/mm2), da = arbor diameter (mm),
La = arbor length between supports (mm),a = kb/(1.3kt) coefficient in whichkt is the permissible
torsional stress (kg/mm2), andD = cutter diameter (mm).

3.4. Arbor deflection

Selected feed rate should be checked for arbor deflection as follows:

Fc # Fd (21)

whereFd = permissible force with regard to arbor deflection (kg):

Fd =
4Eed4

a

L3
a

(22)

whereE = modulus of elasticity of arbor material (kg/mm2), ande = permissible value of arbor
deflection (in roughing operations,e = 0.2 mm, in finishing operations,e = 0.05 mm).

Similar to the plain milling case, in face milling, arbor deflection should also be kept below a
certain value. Assuming the arbor as a cantilever beam, deflection at the end can be calculated by:

d =
FcL3

s

3EsIs

(23)

where d = permissible deflection of stub arbor at the end (mm),Fc = mean peripheral cutting
force (N),Ls = length of stub arbor (mm),Es = modulus of elasticity of stub arbor material (MPa),
and Is = moment of inertia of stub arbor (mm4).

Therefore, for mean peripheral cutting force, the inequality can be rewritten as:

Fc #
3dEsIs

L2
s

. (24)

Permissible value ofd can be taken as 0.2 mm in roughing and 0.05 mm in finishing operations.

4. Optimization methodology

The optimum value of the number of passes and the corresponding speed, feed and depth of
cut for each pass are all obtained in a dynamic multipass process. The problem, here, involves
four variables. The number of passes and depth of cut for each pass are determined through the
dynamic programming procedure, while the optimum cutting speed and feed for each pass are
determined by using the geometric programming method. The dynamic programming can be con-
sidered as a multistage decision process in which each single-stage optimization problem can be
stated, i.e., as a geometric problem. On one hand, geometric programming is a useful method
that can be used for solving non-linear programming problems subject to non-linear constraints.
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It is actually a formulation of the problem (the objective function) expressed in terms of a class
of function called positive polynomial or posynomial. One can find the detailed information on
the dynamic programming and geometric programming in Duffin [19] and Nemhause [20],
respectively.

The decision variable in the dynamic programming (in the optimization problem) is the depth
of cut (ai) to be taken in theith pass, which is represented asa(i,j). Total depth of cut (aT) is
divided into N equal sections which are actually the N discrete decision states. The minimum
increment of depth of cut is equal to:

aT

N
= a (25)

It is defined arbitrarily and should always smaller than the maximum depth of cut allowed for a
machine tool workpiece systemamax. The optimum number of passesNp is determined by the
dynamic programming approach and a pass consists of a certain number of sectionsa.

The dynamic programming procedure applied to multipass milling operations can be summar-
ized as follows:

1. The dynamic programming procedure is started from the Nth section. First, variables when
the stock is machined from the outer end of the Nth section to the inner end of the Nth section
are optimized. The depth of cut is the thickness of each section and calculated bya = aT/N.
At this stage, the problem is an optimization problem of the single pass operation. Optimum
cutting speedV(N,N) and feed per toothfz(N,N) which minimize the objective function
Tpr(N,N) are through the geometric programming module.

2. At the second stage, variables when the stock is machined from the outer end of the (N-1)th
section to the inner end of the (N-1)th section are optimized. But, in this case there are two
alternatives. The first one is to machine from the outer end of the (N-1) section to the inner
end of the same section and then from the outer end of the Nth section to the inner of the
same section in two passes. Secondly, you can also machine from the outer end of the (N-
1)th section to the inner end of the Nth section in a single pass. In this situation, for the (N-
1,N-1) and (N-1,N) processes optimum strategies and objective function values are determined.
Then, the minimum ofTpr(N-1,N-1) + Tpr(N,N) andTpr(N-1,N) determines the optimum strat-
egy at the second stage. Note that, at the end of each stage all alternatives should be stored
for future use.

3. The next stage is the (N-2)th section. Variables when the stock is machined from the outer
end of the (N-2)th section to the inner end of the (N-2)th section are optimized. As you rapidly
catch the situation, here there are three alternatives.

4. The same procedure is continued successively until reaching the first section for other dynamic
problem stages. Optimum values for the first section become the optimum values of the entire
cutting process, i.e. gives the optimal speed and feed values as well as the optimum number
of passes and the thickness of each pass. As seen from the procedure, when the dynamic
programming technique is active, the optimization of single pass machining for each section is
also accomplished by using the geometric programming module interconnected to the dynamic
programming program. The dynamic programming strategy used in this study is illustrated in
Fig. 1. A simplified flowchart for this strategy is also presented in Fig. 2.
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Fig. 1. Schematic representation of dynamic programming strategy.

According to Fig. 1, to minimize the production time and to reach to the first section from the
5th section, we have several alternatives. These alternatives are:

1. Tpr (5,4) + Tpr (1,1),
2. Tpr (5,3) + Tpr (2,2),
3. Tpr (5,3) + Tpr (2,1) + Tpr (1,1),
4. Tpr (5,2) + Tpr (3,3),
5. Tpr (5,2) + Tpr (3,2) + Tpr (1,1),
6. Tpr (5,2) + Tpr (3,1) + Tpr (2,2),
7. Tpr (5,2) + Tpr (3,1) + Tpr (2,1) + Tpr (1,1),
8. Tpr (5,1) + Tpr (4,4),
9. Tpr (5,1) + Tpr (4,3) + Tpr (1,1),
10. Tpr (5,1) + Tpr (4,2) + Tpr (2,2),
11. Tpr (5,1) + Tpr (4,2) + Tpr (2,1) + Tpr (1,1),
12. Tpr (5,1) + Tpr (4,1) + Tpr (3,3),
13. Tpr (5,1) + Tpr (4,1) + Tpr (3,2) + Tpr (1,1),
14. Tpr (5,1) + Tpr (4,1) + Tpr (3,1) + Tpr (2,2),
15. Tpr (5,1) + Tpr (4,1) + Tpr (3,1) + Tpr (2,1) + Tpr (1,1).

In a milling problem, for example,Tpr (1,1) andTpr (2,1) are equal because in the milling
operations the workpiece is fixed while the cutter turns as opposed to the turning. As a result of
this we have:

Tpr (5,4) = Tpr (4,4),
Tpr (5,3) = Tpr (4,3) = Tpr (3,3),
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Fig. 2. Flowchart of the developed optimization strategy.
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Tpr (5,2) = Tpr (4,2) = Tpr (3,2) = Tpr (2,2),
Tpr (5,1) = Tpr (4,1) = Tpr (3,1) = Tpr (2,1) = Tpr (1,1).

When the optimum cutting conditions are found fora = 1, a = 2, a = 3, a = 4, and so on, the
optimum solution is reached, such as optimum depths of cut for minimum production time criteria.
The stages of the dynamic iteration can also be given in a lower triangular matrix form [N× N]
for ease of calculating. The (i,j) elements of the matrix represent the starting diameter section
and the number of sections to be machined for a particular pass. A schematic representation of
the dynamic programming procedure is given by the diagram depicted in Fig. 1, where the total
depth of cutaT is divided into five sections (N= 5). Assuming that the maximum and minimum
depths of cut for a machine tool workpiece system are known, the lower triangular matrix of the
example depicted in Fig. 1 for the objective function values, is given below:

Tpr(i,j) = |
|
X 0 0 0 0

X X 0 0 0

X X X 0 0

X X X X 0

X X X X 0

|
|

whereX represents an entry and the diagonal elements represent the possible single passes. The
cutting speed and feed values can also be stored in separate lower triangular matrices in a similar
manner [3].

5. Optimization of each pass by geometric programming

5.1. Development of primal program

The general form of the primal objective function of the geometric programming is given in
Eq. (12) and can be written in terms of the geometric programming formulation as:

g0(t) = C01* ta0111 * ta0122 + C02* ta0211 * ta0222 (26)

wheret1 = cutting speed,V (m/min), t2 = feed per tooth,fz (mm).

C01 −
pDL
1000z

(27)
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a011 = − 1 (28)

a012 = − 1 (29)

C02 =
TdpLaev/m Brv/mznv/m − 1lqv/m

s

1000*C1/m
v Dbv/m − 1(BmBhBpBt)1/m (30)

a201 =
1
m

− 1 (31)

a022 =
uv

m
− 1 (32)

The constraint functions formulated in the previous section should also be rewritten in such a
way that they should be in terms of forced constraint functions. For this purpose, the first con-
straint is formulated as:

C11ta1111 ta1122 # 1 (33)

where

C11 =
1

fzmax

=
zNmax

fmax

(34)

a111 = 0 (35)

a112 = 1. (36)

The second constraint is formulated as:

C21ta2111 ta2122 # 1 (37)

where

C21 =
1

Vmax

=
1000

pDNmax

(38)
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a211 = 1 (39)

a212 = 0. (40)

The third constraint is formulated as:

C31ta3111 ta3122 # 1 (41)

where

C31 =
CzpBzDbzaez

K1

(42)

K1 = Pmh6120 (43)

a311 = 1 (44)

a312 = uz. (45)

The fourth constraint is formulated as:

C41ta4111 ta4122 # 1 (46)

where

C41 =
CzpBzDbzaez

K2

(47)

K2 = Fs =
0.1kbd3

a

0.08La + 0.65√(0.25La)2 + (0.5aD)2 (48)

a411 = 0 (49)

a412 = uz (50)

The fifth constraint is formulated as:
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C51ta5111 ta5122 # 1 (51)

where

C51 =
CzpBzDbzaez

K3

(52)

K3 = Fd =
4Eed4

a

L3
a

(53)

a511 = 0 (54)

a512 = uz. (55)

The sixth constraint is formulated as:

C61ta6111 ta6122 # 1 (56)

where

C61 =
CzpBrzznzDbzaez

K1

(57)

K1 = Pmh6120 (58)

a611 = 1 (59)

a612 = uz. (60)

The seventh constraint is formulated as:

C71ta7111 ta7122 # 1 (61)

where

C71 =
CzpBrzznzDbzaez

K2

(62)
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K2 = Fs =
0.1kbd3

a

0.08La + 0.65√(0.25La)2 + (0.5aD)2 (63)

a711 = 0 (64)

a712 = uz. (65)

The eighth constraint is formulated as:

C81ta8111 ta8122 # 1 (66)

where

C81 =
CzpBrzznzDbzaez

K4

(67)

K4 =
3dEsIs

L3
s

(68)

a811 = 0 (69)

a812 = uz. (70)

6. Dual program

It is seen from the primal objective function that the objective function has two terms and there
are eight constraint functions. All of the constraint functions have single terms. So the dual objec-
tive function turns out to be:

U(d) = SC01

d01
Dd01SC02

d02
Dd02

Cd11
11 Cd21

21 Cd31
31 Cd41

41 Cd51
51 Cd61

61 Cd71
71 Cd81

81 (71)

whered01 andd02 are the dual variables of the objective function. The dual variables are subjected
to the linear constraints. According to the normality condition of the geometric programming, the
first dual constraint function is given by:

d01 + d02 = 1. (72)
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The other constraints functions are according to the orthogonality condition:

a011d01 + a021d02 + a111d11 + a211d21 + a311d31 + a411d41 + a511d51 + a611d61

+ a711d71 + a811d81 = 0 (73)

a012d01 + a022d02 + a112d11 + a212d21 + a312d31 + a412d41 + a512d51 + a612d61 + a712d71

+ a812d81 = 0 (74)

and the non-negative constraints are:

d01 $ 0, d02 $ 0, d11 $ 0, d21 $ 0, d31 $ 0, d41 $ 0, d51 $ 0, d61 $ 0, d71 $ 0, d81 (75)

$ 0.

The dual objective functionU(d) has to be maximized by using the dual constraint functions
which are formulated in Eqs. (72)–(75). The maximum point obtained from the dual objective
function is the minimum value of the original objective function. However, the degree of difficulty
of the problem is seven, therefore an additional method is necessary to solve the problem. For
this purpose, the natural algorithm of the dual objective function is taken first. The resulting non-
linear optimization problem can be solved by using the “Generalized Lagrange Multipliers”
method. The detailed information on the “Generalized Lagrange Multipliers” method can be found
in [21]. After the required manipulations, although there are thirteen equations and thirteen
unknowns, the problem cannot be solved easily due to the existence of non-linear terms in the
constraint equations. However, some equations are only functions of certain variables that can be
found by solving those equations simultaneously, there remaining two equations and eight
unknowns. Finally, to solve them, a “direct elimination” should be carried out according to the
type of milling operation. If the type of milling is plain milling, constraints 6, 7, 8 can be elimin-
ated directly (d61 = d71 = d81 = 0), whereas, if the type of milling is face milling, constraints 3,
4, 5 can also be eliminated (d31 = d41 = d51 = 0). After the direct elimination process, in any plain
milling optimization problem, if two of the constraints are active and the others are redundant
then possible combinations of the dual vectors are as follows:

Com For C.1 For C.2 For C.3 For C.4 For C.5
1 d11Þ0 d21Þ0 d31 = 0 d41 = 0 d51 = 0
2 d11Þ0 d21 = 0 d31Þ0 d41 = 0 d51 = 0
3 d11Þ0 d21 = 0 d31 = 0 d41Þ0 d51 = 0
4 d11Þ0 d21 = 0 d31 = 0 d41 = 0 d51Þ0
5 d11 = 0 d21Þ0 d31Þ0 d41 = 0 d51 = 0
6 d11 = 0 d21Þ0 d31 = 0 d41Þ0 d51 = 0
7 d11 = 0 d21Þ0 d31 = 0 d41 = 0 d51Þ0
8 d11 = 0 d21 = 0 d31Þ0 d41Þ0 d51 = 0
9 d11 = 0 d21 = 0 d31Þ0 d41 = 0 d51Þ0
10 d11 = 0 d21 = 0 d31 = 0 d41Þ0 d51Þ0

From these ten possibilities, one which gives the maximum value ofU(d) is the optimum solution
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of the original functiong(t) and the dual vectors for this solution are the terms. The original
objective function is obtained as follows:

g(V,fz) = C01Va011f a012
z + C02Va021f a022

z (76)

g(V,fz) = g(d01) + g(d02) (77)

g(d01) = C01Va011f a012
z (78)

d(d02) = C02Va021f a022
z . (79)

There are two equations and two unknowns, which can be solved simultaneously to findV and
fz. Using Eqs. (28), (29), (78) and (79), the optimal cutting speed can be found by the follow-
ing formula:

V = FSC02

gd02
DSC01

gd01
Da022GS 1

a022 − a021D. (80)

And similarly, the feed per tooth can be calculated by the formula:

f z = FSC02

gd02
DSC01

gd01
Da021GS 1

a021 − a022D. (81)

The procedure used in both dynamic and geometric programming stages of the optimization prob-
lem of the multipass milling operations are given below.

7. Dynamic programming procedure

1. Determine depth of cut each section (a = aT/N)
2. k = k + 1 andas = k·a
3. If as # amin, calculateTpr go to 2
4. If as $ amin, takek9 = k
5. k9 = k + 1 andas = k9·a
6. If as # amax, calculateTpr go to 5
7. If as $ amax, takeas = amax, calculateTpr

8. Determine minimumTpr according to dynamic programming alternatives. TakeVopt and fz,opt

from this Tpr.
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8. Geometric programming procedure

1. Calculate coefficients (C01, C02, C11, C21, . . ., anda011, a012, a012, a022, a111, a112, . . .)
2. State differential equations
3. Obtain possible combinations to decide which constraints are active or redundant. For con-

straint elimination make a like iteration method.
4. Calculate (d01, d02, d11, d21, . . .)
5. CalculateU(d) from
6. CalculateVopt, fz,opt andTpr,opt.

9. An application example

Given:

Type of machining: plain milling (Up)
Motor power (Pm) = 5.5 kW, efficiency= 0.7
Arbor diameter= 27 mm, arbor length between supports= 210 mm
Permissible bending stress of arbor: 140 MPa= 14.27 kg/mm2

Permissible torsional stress of arbor: 120 MPa= 12.23 kg/mm2

Modulus of elasticity of arbor material= 200 GPa= 20,387 kg/mm2

Spindle speed range: (31.5–2000) rpm, feed rate range: (14–900) mm/min
Tool material: HSS, tool diameter= 63 mm, number of teeth= 8
Material: structural carbon steel (C# 0.6%)
Scale on the hot rolled workpiece.
Tensile strength: 750 MPa, Brinell hardness number= 150
Length of cut= 160 mm, width of cut= 50 mm, depth of cut= 5 mm
Loading and unloading time of one workpiece= 1.5 min
Set-up time of fixtures and machine tool= 10 min
Tool change time= 5 min
Process adjusting and quick return time= 0.1 (min/part)
Lot size (number of parts in the batch)= 100
Cutting inclination= 30°

Find the optimal cutting parameters and the number of passes with depth of cuts. For this, first
you have to find the necessary constants from related tables like the following:

Cv = 35.4
m = 0.33
bv = 0.45

ev = 0.3, Bm = 1.0, Bh = Ss1

s2
Dp

= S750
750D1

= 1, Bp = 0.8, Bt = 0.8, e = 0.2 mm

uv = 0.4
rv = 0.1
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nv = 0.1

bz = − 0.86
qv = 0, Czp = 68.2, ez = 0.86

uz = 0.72

Let’s take the number of sections for dynamic iteration as 5, and suppose that:

amin = 0.5mm

amax = 4 mm

Through the given procedures, dynamic iteration trials for production time, speed and feed
values are calculated and stored in the lower triangular matrices separately:

V = |
|
32.25 0 0 0 0

32.25 25.16 0 0 0

32.25 25.16 26.4 0 0

32.25 25.16 26.4 30.95 0

32.25 26.15 26.4 30.95 0

|
|

f z = |
|
0.7044 0 0 0 0

0.7044 0.57 0 0 0

07044 0.57 0.338 0 0

0.7044 0.57 0.338 0.149 0

0.7044 0.57 0.338 0.149 0

|
|
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Tpr = |
|
1.9067 0 0 0 0

1.9067 2.01 0 0 0

1.9067 2.01 2.195 0 0

1.9067 2.01 2.195 2.636 0

1.9067 2.01 2.195 2.636 0

|
|

Tpr (5,4) = Tpr (4,4) = 2.636 min
Tpr (5,3) = Tpr (4,3) = Tpr (3,3) = 2.195 min
Tpr (5,2) = Tpr (4,2) = Tpr (3,2) = Tpr (2,2) = 2.01 min
Tpr (5,1) = Tpr (4,1) = Tpr (3,1) = Tpr (2,1) = Tpr (1,1) = 1.843 min
For total depth of cuta = 5 mm total production time alternatives:

1. Tpr (5,4) + Tpr (1,1) = 4.479 min
2. Tpr (5,3) + Tpr (2,2) = 4.205 min
3. Tpr (5,3) + Tpr (2,1) + Tpr (1,1) = 5.881 min
4. Tpr (5,2) + Tpr (3,3) = 4.205 min
5. Tpr (5,2) + Tpr (3,2) + Tpr (1,1) = 5.863 min
6. Tpr (5,2) + Tpr (3,1) + Tpr (2,2) = 5.863 min
7. Tpr (5,2) + Tpr (3,1) + Tpr (2,1) + Tpr (1,1) = 7.539 min
8. Tpr (5,1) + Tpr (4.4) = 4.479 min
9. Tpr (5,1) + Tpr (4,3) + Tpr (1,1) = 5.881 min
10. Tpr (5,1) + Tpr (4,2) + Tpr (2,2) = 5.863 min
11. Tpr (5,1) + Tpr (4,2) + Tpr (2,1) + Tpr (1,1) = 7.539 min
12. Tpr (5,1) + Tpr (4,1) + Tpr (3,3) = 5.881 min
13. Tpr (5,1) + Tpr (4,1) + Tpr (3,2) + Tpr (1,1) = 7.539 min
14. Tpr (5,1) + Tpr (4,1) + Tpr (3,1) + Tpr (2,2) = 7.539 min
15. Tpr (5,1) + Tpr (4,1) + Tpr (3,1) + Tpr (2,1) + Tpr (1,1) = 9.215 min

From the above alternatives, the 2nd and 4th are found to be the optimum solutions based on
our objective function. Where:

Optimum unit production time:Tpr = 4.205 min
Optimum number of passes: N= 2
Below are the resulting optimal values of cutting conditions:
According to the 2nd alternative:

Pass a (mm) Tpr (min) V (m/min) fz (mm/tooth)

1st 3 2.195 26.4 0.338
2nd 2 2.01 25.16 0.57
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According to the 4th alternative:

Pass a (mm) Tpr (min) V (m/min) fz (mm/tooth)

1st 2 2.01 25.16 0.57
2nd 3 2.195 26.4 0.338

10. Discussion and conclusion

In this study, a mathematical model has been developed for the constrained optimization of
cutting parameters that are used in the multipass plain and face milling operations. It is based on
the “maximum production rate” criterion. For automating the procedures given in the previous
sections, a program is implemented on an IBM compatible PC by using C language. The
developed optimization strategy mainly utilizes the two main mathematical techniques: dynamic
programming and geometric programming. One of the important steps in executing the program
is to select a proper number of sections for the problems, since higher precision, i.e. selecting a
higher number for the number of sections, will increase the execution time dramatically, although
more effective times are calculated for the objective function. This value should be selected always
according to the total depth. The values obtained by the program have been tested for various
sizes of material stock and values of constraints to see the effectiveness of the proposed optimiz-
ation strategy over the ones proposed by single-pass based optimization systems reported in the
literature and handbook recommendations. The results have shown that the multipass approach
to the optimization of cutting conditions is superior to the single-pass production rates and hand-
book values. It has been also recognized that in the multipass operations it is always better to
use unequal cutting conditions in each pass instead of using equal depths of cut for all passes
which is often used as “canned cycles” in CNC machine tool controllers. With the developed
program, it would be possible to have an increase in the productivity which is always considered
as a main goal of process planning applications.
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