
1
2

3 ARTICLE IN PRESS
4

5
6

1234567891011121819333435

36 International Journal of Machine Tools & Manufacture�� (2002) ��–��39
4344

45

46 NC end milling optimization using evolutionary computation

47 V. Tandona, H. El-Mounayri a,*, H. Kishawy 1,b

48
a Mechanical Engineering Department at Purdue School of Engineering, 723 West Michigan Street, SL 260, Indianapolis, IN 46202-5132, USA

49
b Mechanical Engineering Department, University of New Brunswick, Fredericton, NB, Canada E3B 5A3

50 Received 23 October 2000; received in revised form 12 October 2001; accepted 16 October 2001

51

52 Abstract

53 Typically, NC programmers generate tool paths for end milling using a computer-aided process planner but manually schedule
54 “conservative” cutting conditions. In this paper, a new evolutionary computation technique, particle swarm optimization (PSO), is
55 proposed and implemented to efficiently and robustly optimize multiple machining parameters simultaneously for the case of milling.
56 An artificial neural networks (ANN) predictive model for critical process parameters is used to predict the cutting forces which in
57 turn are used by the PSO developed algorithm to optimize the cutting conditions subject to a comprehensive set of constraints.
58 Next, the algorithm is used to optimize both feed and speed for a typical case found in industry, namely, pocket-milling. Machining
59 time reductions of up to 35% are observed. In addition, the new technique is found to be efficient and robust. 2001 Published
60 by Elsevier Science Ltd.
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65 1. Literature survey

66 NC programs generated today, experience a large vari-
67 ation in cutting forces due to non-uniformity in metal
68 removal along the cutter path. This may be due to a var-
69 iety of factors, surface nature (curvature), tool incli-
70 nation, cornering etc. In order to increase productivity,
71 process parameters should be assigned according to the
72 NC tool path in addition to the conditions of the part,
73 tools, setup, and the machine. The idea is to change these
74 variables according to the current in-process part
75 geometry and tool path so that the cutting force is in
76 control [1].
77 The current development uses experimental force data
78 acquired by running exhaustive sample cases in 2.5 and
79 3-D. Such sample cases have been used by various
80 researchers for evaluating optimization efficacy [2–4].
81 Tests are conducted at constant feed rates specified by
82 the NC programmer to acquire the force variation data.
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83Next, the force vs time data is correlated to position and
84the information used to insert optimized cutting para-
85meters at the required positions (NC blocks). The modi-
86fied NC program is then executed and a fresh force scen-
87ario acquired. Comparison of the two acquisitions
88demonstrates the efficiency of our development. Takata
89et al. [5] and Park et al. [6] reported the use of similar
90techniques for optimization implementations.
91Most researchers have concentrated their efforts on
92modifying the feed rate alone, though some groups have
93tried to work with other parameters as well. All the
94reported efforts in the area have tried to re-schedule the
95feed rate per NC block instruction [1,2,7–16]. Essen-
96tially, each input NC block (either in NC or CLSF stage)
97is read, analyzed and then outputted with a modified feed
98rate code. It is the assumptions and the methods of analy-
99sis that differentiate various studies. Further, most of
100these studies do not address themselves to the specifics
101of the CNC end milling process and instead concentrate
102on a generic operation.
103Most works on the development of NC code optimiz-
104ation developments involve the use of very simplistic
105forms of force prediction algorithms. Also, the literature
106shows use of volume of removed material as feedback
107or the machine tool horsepower as the constraint to regu-
108late the feed rate.
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109 The cutting force, as a single parameter for describing
110 the net effect of all input variables, is found to be an
111 optimal quantity for use as a feedback from the simu-
112 lated process for feed rate optimization [8]. Simple spe-
113 cific energy models of metal cutting have been presented
114 in textbooks for quite some time [17,18]. These are
115 sometimes employed along with correction coefficients,
116 by a number of researchers such as Wang [1], Fussell
117 et al. [11], Lazaro et al. [19], etc.
118 Other more accurate models (e.g. Yellowey [20],
119 Kline and DeVor [21], and Fussell et al. [22]) use the
120 simple steady state milling force model by Yellowey,
121 also known as the average cutting coefficient model
122 implemented by Altintas et al. [23,24].
123 Bailey et al. [25] studied these different approaches
124 and found the MRR approach to be adequate for estimat-
125 ing required spindle torque and power, but not when
126 constraints such as chip load, maximum cutting force,
127 deflections and chatter are considered. They also note
128 the widespread use of static mechanistic models since,
129 due to their closed form, they can be inverted to directly
130 solve for the feed, which is the primary variable of con-
131 cern.
132 The independent variables for optimal cutting para-
133 meters have been identified as the following:

134 �135 Tool diameter and length
136 �137 Number of passes
138 �139 Depth of cut (radial & axial) for each pass [26]
140 �141 Spindle speed and
142 �143 Feed (per tooth, per revolution or per unit time) [27].

144 Most studies state one of three objectives:

145 1.146 Minimum manufacturing cost [2].
147 2.148 Maximum production rate [26].
149 3.150 A variant of maximum productivity [5].

151 It has also been realized that a combination of the mini-
152 mum production cost and minimum production time
153 [28–31] is the most effective objective since neglecting
154 either requirement alone does not do justice to the prob-
155 lem at hand. Agapiou [29–31] has investigated this con-
156 cept extensively.
157 There are a variety of constraints (and various forms)
158 that have been considered applicable by many
159 researchers for different machining situations [32–34].
160 However, a comprehensive list of constraints reported in
161 the literature is presented here:

162 1.163 Available feed and speeds (machine tool related),
164 power, arbor rigidity, and arbor deflection [29].
165 2.166 Maximum available machine power and maximum
167 permitted cutting edge load for roughing, and allowed
168 maximum tool deflection for finishing [35].
169 3.170 Tool normal and tangential deflection limits [10].
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1714. 172Machine tool limiting power, spindle torque,
173maximum feed force, spindle speed boundaries, and
174feed per tooth boundaries [26].
1755. 176Avoid excess cutting force and chatter vibration, to
177maintain the required machining accuracy [19].
1786. 179The maximum cutting power available, the surface
180roughness required, the maximum cutting force per-
181mitted by the rigidity of the machine tool and the
182accuracy required, and the maximum feed rate and
183rotational speed available on the machine tool [28].
1847. 185Constant cutting force, constant machining error, and
186the maintaining of moderate changes in cutting
187states [19].
1888. 189Shank breakage and tooth breakage (limiting force
190and chip thickness respectively) [17].

191Imani and Elbestawi [10], for example, recommend ign-
192oring stability and maximum cutting force constraints for
193semi-finishing of free cutting steels.
194Cutting force, once again, is found to be one of the
195most important process parameters used as a constraint
196in the cutting operation, as it relates to a large number
197of abnormal occurrences such as tool breakage and
198excess tool wear as well as basic data for estimation of
199chatter vibration and machining error [19].
200Availability of quantitatively reliable machining per-
201formance equations relating the tool-life, forces, torque,
202power, surface finish, etc. to the cutting or process vari-
203ables is critical to the development of an optimization
204algorithm [26]. It is not uncommon for researchers to
205forego this requirement and in some cases even assume
206a direct linear relation between the feed (independent
207variable) and the force (constraint) as well as the mach-
208ining error. Such a study is presented by Takata et al.
209in [19]. While they report improvement in machining
210performance, it is easy to note that such improvement
211obtained is nothing more than a small portion of the
212possible gain. Further, in certain situations it may even
213result in wrong inferences leading to catastrophic tool
214failure conditions.
215A similar approach is also reported by Weinert et al.
216[28]; their method of feed rate adaptation is based on
217the cross sectional area of the cut. While two correction
218coefficients have been included to account for influence
219of symmetry of engagement and the direction/inclination
220of the cut, essentially a linear relationship is assumed
221between the feed rate and the modified cross section
222parameter or MRR. However, an important addition to
223the literature is made by realizing that it is necessary to
224take into account the dynamic capabilities of the
225machine. The new feed-rate value must be added to the
226NC-file at the correct position. This is done to ensure
227that the calculated optimal feed rate is reached before
228the volume to be cut exceeds a given value. An appli-
229cable length of deceleration is calculated and included
230along with the cutter diameter as a safety parameter. This
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231 work is unique in considering control related issues with
232 feed rescheduling.

233 2. Force model

234 A feed forward neural network with one to two hidden
235 layers and sigmoid activation functions is designed to
236 predict the maximum force, mean force and other rel-
237 evant conditions (the details are given in [36]).
238 Back propagation (BP) is the training method of
239 choice. Standard BP is a gradient descent algorithm and
240 the name BP refers to the manner in which the gradient
241 is computed for non-linear multi-layer ANN. One of the
242 main attractions of using BP networks is that they tend
243 to give reasonable results when presented with inputs
244 that they have never seen. Typically, a new input will
245 lead to an output similar to the correct output for input
246 vectors used in the training, that are similar to the new
247 input being presented. This generalization property
248 makes it possible to train a network on a representative
249 set of input/target pairs and get good results without
250 training the network on all possible input/output pairs,
251 which is generally impossible in situations such as ours.
252 Also, with this method the order in which the patterns
253 are presented to the network do not influence the train-
254 ing. This is also because adaptation is done only at the
255 end of each epoch.
256 A variation of the standard BP technique of adjusting
257 the network weights is the Levenberg–Marquardt tech-
258 nique [10]. Similar to quasi-Newton methods, this algor-
259 ithm approaches second-order training speed without
260 much added computational expense.
261 A feed forward ALM network is designed and studied
262 for effectiveness in learning the non-linear map between
263 the input machining parameters and the output con-
264 ditions. The ANN designed for this application is
265 presented in Fig. 1.

7
8

9
10

11 Fig. 1. Predictive force model network topology.
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2663. Optimization of end milling

2673.1. Objective function

268In the case of end-milling a variety of objective func-
269tions have been proposed to date [35,10,17,19,26–28,32–
27034]. The more important ones found in the literature
271being:
272(1) The machining time, tm

273tm�
p·L·D

1000·n·Z·Sz
�W

b � (1)
274

275where L=length of workpiece [mm], D=cutter diameter
276[mm], W=width of workpiece [mm], n=cutting speed
277[m/min], Z=number of teeth/flutes, Sz=feed per tooth
278[mm/tooth], and b=width of cut /radial depth of cut
279[mm].
280(2) Tool life (for ith operation), Ti

281Ti�
Can·Dw

nai ·SbZi
·d gi·bdi ·Zl

(2)
282

283where d=axial depth of cut [mm].
284Here, a, b, g, d, w, l are exponents in the tool life
285equation and are experimentally determined. Also, Cn is
286the constant of proportionality. Note that these variables
287are unique for different tool–workpiece combinations.
288(3) Production cost, C, for plain milling (combination
289of 1 & 2),

290C�A1�A2·n−1·S −1
z ·b−1�A3·na−1·Sb−1

z ·d g·bd−1 (3) 291

292where

293

A1=M·t1

A2=
p·L·D·M·W

1000·Z

A3=[M·tc+Ct]
p·L·D·W·Zl

1000·Z·Can·Dw 294
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295

296 In another form, it may be cast as the production time
297 for plain milling, tp,

298 tp�A4�A5·n−1·S −1
z ·b−1�A6·na−1·S b−1

z ·d g·bd−1 (4)299

300 where

301

A4=t1

A5=
p·L·D·W
1000·Z

A6=
p·L·D·W·Zl·tc

1000·Z·Can·Dw302

303

304 Eq. (3) is used in this work to define the objective
305 function; this will be illustrated in Section 4.4.

306 3.2. Constraints

307 Apart from the objective functions, there exist a num-
308 ber of constraints that must be satisfied for a meaningful
309 optimization of the machining process. While some are
310 obvious from the machine tool capabilities, others are
311 derived from product requirements such as surface fin-
312 ish, force-bearing capacity of the tool etc. Jha et al. [37],
313 in a study on milling cutter design, present the most
314 comprehensive list of constraints. These are presented in
315 Table 1.
316 From the list of constraints in Table 1, we find the
317 following. The first two (dual) constraints are related to
318 machine capabilities and have to be considered for a
319 meaningful optimization exercise. Constraints 3 through
320 8 are related to the geometrical aspects of the manufac-
321 turing process and are as such not in the scope of our
322 current exercise. For example, if the optimizer changes
323 the depth of cut, it will be necessary to regenerate the
324 tool path. The latter requires a feedback integration of
325 the optimizer to the CAM application. It is however,
326 necessary to note that the proposed optimizing algorithm
327 can be readily extended to encompass multi-dimensional
328 solution space. Constraints 9 through 13 are essentially
329 force related and can be condensed to generate a single
330 constraint on the maximum cutting force permissible.
331 Note that since all five constraints are inequalities plac-
332 ing a limit on the cutting force a simple “minimum of”
333 selection is enough to condense the constraints. Practi-
334 cally, during rough milling, horsepower limitation may
335 be the active constraint, while during finish milling, sur-
336 face finish may be the active constraint. The non-nega-
337 tivity constraint as such is redundant since parameters
338 of concern are in any case limited to a subset of positive
339 real space.
340 Thus, we arrive at the following constraints on the
341 optimization problem, where n is the cutting velocity
342 and Sz is feed per tooth

343 nmin�n�nmax (5)344
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345Sz min�Sz�Sz max (6) 346

347F(n,Sz)�Flim (7) 348

349

350Here the first two constraints are machine tool related,
351specifically, the available range of spindle speed and
352feed rates. The third constraint is force related. As recog-
353nized earlier in the literature review, the cutting force,
354as a single parameter, is an optimal quantity for describ-
355ing the net effect of all input variables, for use as a feed-
356back to optimization. More specifically, Flim epitomizes
357a variety of force related constraints. Here, it is important
358to note the complexity introduced in the optimization
359problem by the force function. While feed and speed
360define the two dimensions, force is the third dimension.
361This third dimension, however, is a complex function of
362the first two. Thus, the feasible region of the force con-
363straint is also affected by the solution coordinates in the
364feed–speed space. This is illustrated in Fig. 2, which also
365demonstrates the complexity of the search for an opti-
366mum solution.

3674. Particle swarm optimization

368Evolutionary computation (EC) comprises a variety of
369methods including optimization paradigms that are based
370on evolution mechanisms such as biological genetics and
371natural selection.
372While EC provides many characteristics that make it
373the method of choice in our problem situation, the most
374important reasons are firstly, these paradigms use direct
375“fi tness” information instead of functional derivatives or
376other related knowledge. This fits in perfectly with our
377development since we do not have an explicit functional
378representation of the process model and hence the
379derivative etc. is also not known. Secondly, they use pro-
380babilistic, rather than deterministic, transition rules. This
381overcomes the problem of getting stuck in local optima
382prevalent with deterministic transition rules. Also, since
383we start with a diverse set of points, many optima can
384be explored efficiently, lowering the probability of get-
385ting stuck.
386Particle Swarm Optimization (PSO) is a relatively
387new technique, first presented in 1995 [38], for optimiz-
388ation of continuous non-linear functions [39,40]. Jim
389Kennedy discovered the method through simulation of
390a simplified social model, the graceful but unpredictable
391choreography of a bird flock [41].
392PSO is a very simple concept, and paradigms are
393implemented in a few lines of computer code. It requires
394only primitive mathematical operators, so is compu-
395tationally inexpensive in terms of both memory require-
396ments and speed. These characteristics are of immense
397value to the application situation at hand.
398PSO has been recognized as an evolutionary compu-
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8 Table 1
9 Constraints and their expressions in terms of common variables10

17

Constraint Expression in variables20

27

28 1 Feed rate constraint, fmax & fmin fmax�
1000·Z
p·D

n·Sz�fmax

31

32 2 Spindle speed constraint
Nmax�

1000
p·D

·n�Nmax

35

36 3 Depth of cut constraint bmin�b�bmax

39

40 4 At least two teeth in contact constraint Z·d 0.5

p·D0.5�1
43

44 5 Diameter of cutter Dmin�D�Dmax

47

48 6 Angular pitch (a) constraint p
Z·a

�1
51

52 7 Tooth height constraint h·Z
1.2·D

�1
55

56 8 Horsepower constraint Z·D−1

p·Vs

·n·Sz·d·b�Pallow

59

60 9 Maximum loading on feeding mechanism constraint Z·D−1

p·Vs

·Sz·d·b�Ft

63

64 10 Surface roughness constraint 1
8·Ra

·S2
z�hmax

67

68 11 Bending stress constraint 12Fa

psbw
Z·h·D−1+

6Fa

psbw
·d·D−1�1

71

72 12 Fatigue constraint Fa·Z
2pw

·�1
Se

+
1
Su
�·Z·D−1�1

75

76 13 Non-negativity constraint D�0; N�0; d�0; Z�0; f�0; h�0; a�079
80
81

13
14

15
16

17 Fig. 2. Map of maximum cutting force for a set of conditions.

399 tation technique [42] and has features of both genetic
400 algorithms (GA) and evolution strategies (ES). It is simi-
401 lar to a GA in that the system is initialized with a popu-
402 lation of random solutions [43]. However, unlike a GA
403 each population individual is also assigned a randomized
404 velocity, in effect, flying them through the solution hyp-
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405erspace. As is obvious, it is possible to simultaneously
406search for an optimum solution in multiple dimensions.
407Also, since each particle keeps track of its coordinates
408in hyperspace which are associated with the best fitness
409it has achieved so far, as well as the overall best value
410obtained by any member of the population, PSO may be
411considered as having characteristics of ES.

4124.1. Fitness function

413An important problem in the implementation of EC
414techniques is the construction of a fitness function
415adequately epitomizing the nature of the problem. Mich-
416alewicz [44,45] puts it as “…the evaluation function
417serves as the only link between the problem and the
418algorithm” .
419Here we are faced with a non-linear objective function
420along with a set of inequality constraints that may also
421be highly non-linear (ANN maps). The presence of con-
422straints in non-linear programming creates additional
423problems for finding the minimum. Some of the more
424important ones being [46]:

4251. 426The constraints define an admissible region, which
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427 must be non-empty for a meaningful optimization
428 problem to exist.
429 2.430 A constrained minimization problem may have local
431 minima even if the corresponding unconstrained prob-
432 lem does not have a local minimum.
433 3.434 None of the local minima may correspond to the glo-
435 bal minimum of the corresponding unconstrained
436 problem.

437 4.2. Exterior penalty function method

438 The penalty approach belongs to a class of indirect
439 methods for solving a constrained non-linear program-
440 ming problem via a sequence of one or more uncon-
441 strained minimization problems. This is based on a trans-
442 formation of the above general problem with constraints
443 to an unconstrained problem having the following gen-
444 eral energy function, E (pseudo-cost function)

445 E(x→,�)�f(x→)�P(g→(x→)),�) (8)446

447 where � is a controlling parameter, P is a real-valued
448 non-negative function called the penalty function, and
449 f is the non linear objective function. The basic idea in
450 the so-called exterior penalty function is to eliminate
451 some or all of the constraints and to add to the objective
452 function penalty terms, which prescribe a high cost to
453 infeasible points [46].
454 This leads us to the choice of the penalty function in
455 our case as follows:

456 Pig(gi(x))�[min{0,gi(x)}]2 (9)457

458 Here gi(x) are the inequality constraints to the optimiz-
459 ation problem. Note that in the feasible space of sol-
460 utions, the contribution from the penalty function is zero.
461 This is because of incorporating the constant 0 (zero) in
462 the argument of the “minimum of” function.

463 4.3. Application of PSO

464 Applying the PSO method consists of the following
465 steps [40]:

466 1.467 Initialize an array of particles with random positions
468 and velocities in 2 dimensions, feed rate and spindle
469 speed. This constitutes Generation 0.
470 2.471 Evaluate the desired fitness function in the 2 vari-
472 ables.
473 3.474 Compare evaluation with particle’ s (personal) pre-
475 vious best value PBEST[i],if current value�
476 PBEST[i], (i.e. it has achieved a new personal best)
477 then PBEST[i]=current value and
478 PBESTx[i][d]=current position in 2-dimensional hyp-
479 erspace.
480 4.481 Compare evaluation with group’s overall previous

1
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482best (PBEST[GBEST]), If current value�
483PBEST[GBEST] then GBEST=particle�s array index
484(i.e. found a new best fitness for the population as
485a whole)
4865. 487Compute particles’ new velocity by using the follow-
488ing formula,

489V[i][d]�w·V[i][d]

490�ACCFCONSTrand( )·(PBESTx[i][d]

491�Presentx[i][d]) (10)

492�ACCFCONSTrand( )·(PBESTx[GBEST][d]

493�Presentx[i][d]) 494

495

4966. 497Update particle’ s position by moving to
498Presentx[i][d]+V[i][d],
4997. 500Loop to step 2 until a criterion is met.

501Note that in step 5, the particle retains a portion of the
502velocity that brought it to the current position. This is
503achieved by an inertia factor w. Recent studies [47,48]
504indicate the use of an adaptive inertia weight/constriction
505factor to insure convergence.
506Further, the particle is given: (a) a velocity component
507toward the region where it achieved its personal best
508fitness and (b) another velocity component toward the
509location where the best fitness was achieved by any par-
510ticle in the population as a whole.
511These are proportional to the particle’ s current dis-
512tance from the latter two, thus pushing it toward more
513lucrative feasible spaces to conduct the search.
514The procedure is also illustrated in Fig. 3 with a flow-
515chart. Here i refers to the particular particles index in
516the array.

5174.4. Results

518Fig. 4 depicts a typical particle swarm movement
519toward the optimum solution. Generation 0 shows the
19
20

21
22

23Fig. 3. PSO flowchart.



1
2

3 ARTICLE IN PRESS
4

5
6

1 72 V. Tandon et al. / International Journal of Machine Tools & Manufacture �� (2002) ��–��
326
27

28
29

30 Fig. 4. PSO simulation.
31

32

520 random initialization of the particle’ s coordinates in the
521 solution space. In subsequent generations, the swarm is
522 tracked (×). Also, the best achieved by any population
523 member thus far, is shown (�). Also, the feasible space
524 is graphed by the rectangle. An acceptable solution has

1
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525to be found within this two-dimensional space. Note that
526the third constraint on force is also active and as such
527is not part of these illustrations.
528To establish repeatability and robustness of the algor-
529ithm, the following machining conditions were presented
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530 for optimization: radial depth of cut=0.75 D, axial depth
531 of cut=0.25 in., cutter diameter=0.25 in., number of
532 flutes=2, rake angle=14°, primary clearance angle=16°.
533 Thus, the problem consists of minimizing the cost
534 function under given constraints.

535 150�N�1500 (11)536

537 10�f�250 (12)538

539 F(f,N)�300N (13)540

541 for the cost function, C, from Eq. (3),

542 C(x→)�
5×10−5

x1
�8.186	10−20x2x1 (14)

543

544 where

545 x1�feed rate ��
1000·Z
p·D

n·Sz�
546

547 x2�spindle speed ��
1000
p·D

·n�
548

549

550 This problem is solved using the PSO algorithm
551 implemented, and results are tabulated in Table 2. The
552 run number corresponds to each time the program is run
553 to find the optimum machining parameters. The best cost
554 obtained, the corresponding feed, speed along with the
555 force (constraint) are tabulated along with the number
556 of generations it took to reach that optimum cost.
557 While the repeatability of finding the solution is estab-
558 lished, we also find that the number of
559 iterations/generations required to reach a reasonable sol-
560 ution is never greater than 30. Hence, the terminating
561 criterion is set on a maximum number of iterations=35.
562 A sample of the evolution of the particle swarm is
563 presented in Fig. 5. This optimization method affords a
564 higher order (
2) of convergence, unlike traditional
565 Newton/quasi-Newton methods of optimization. Further,

87

88 Table 2
89 Repeatability of results over a number of runs90
91
92103

Effective
Spindle

104 Run Cost Feed Force number of
speed

generations113
114
115126

127 1 4.094 1498 122.27 0.3 12133

134 2 4.1 1495 121.93 0.3 15140

141 3 4.099 1498 121.95 0.2997 18147

148 4 4.135 1497 120.9 0.2985 26154

155 5 4.086 1500 122.39 0.3 12161

162 6 4.097 1498 122.03 0.2998 21168

169 7 4.088 1499 122.29 0.3 6175

176 8 4.097 1498 122.03 0.2997 11182

183 9 4.095 1499 122.1 0.2997 23189

190 10 4.09 1500 122.24 0.2999 20196
197
198

1
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34
35

36
37

38Fig. 5. Cost vs generations for run #7.

566various researchers empirically proved that the method
567is always successful in finding the global optimum.
568It is also worth noting that the solution obtained is for
569a specific cost function. This cost function may take a
570different form for different situations. It is easy to note
571the dependence of the nature of the cost function on
572M, Ct, a, b, Z and a number of other parameters. It is
573however, not of concern to consider dependence on the
574length and width of cut, since the optimization is being
575performed per unit length.

5765. Test case

577We shall now demonstrate the application of our
578research to a very common machining situation namely,
579pocket milling. We need to machine the workpiece so
580as to create the rectangular pocket on the top face seen
581in Fig. 6.
582Four different immersion levels are found in the tool
583path. The geometric conditions are analyzed using the
584predictive model developed and the results are presented
585in Table 3.
586Note that our machine tool has a small 0.2–0.4 second
587delay between different segments of the cutter path.
588From Table 3, a corresponding graph can be generated
589taking into account the above delay. This is presented
590in Fig. 7(a), which shows the simulated cutting forces
591using non-optimum cutting conditions. The above mach-
592ining operation is conducted and the actual cutting force
593data acquired using the setup described above. This is
594also presented, for comparison, in Fig. 7(b). The differ-
595ences in the two figures are attributed to the increase of
596immersion in cornering (neglected in simulation
597calculations) as well as the wear condition of the tool
598(which leads to an increase in cutting force). On the
599other hand, the PSO algorithm is used to optimize the
600cutting conditions and the resulting cutting forces are
601shown in Fig. 8(a) (simulated values) and Fig. 8(b)
602(measured values). The machining time is reduced by
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42

43
44

45 Fig. 6. Design model and tool path on workpiece.

210

211 Table 3
212 Various immersions and associated machining parameters (non-
213 optimal)214
215
216221

222 Immersion Feed/speed conditions Max. force (N)225
226
227232

233 1 100/800 481236

237 3/4 100/800 401240

241 1/2 100/800 347244

245 1/4 100/800 195.7248
249
250

603 35% as a result of optimizing the feed and speed. Table
604 4 shows a comparison between the optimal cutting con-
605 ditions and the non-optimal ones.

606 6. Conclusions and future research

607 This work has presented a new approach to optimizing
608 the cutting conditions in end milling (feed and speed)
609 subject to a near to comprehensive set of constraints.
610 The original set of seventeen constraints was reduced
611 to an equivalent set (of only three equations). Next, a
612 production cost objective function was used to define
613 the parameter to optimize (in this case, minimize). An
614 algorithm for PSO was then developed and used to
615 robustly and efficiently find the optimum cutting con-
616 ditions. Both feed and speed were considered during
617 optimization. The new technique has several advantages
618 and benefits and is suitable for use with ANN based
619 models where no explicit relation between inputs and
620 outputs is available. This work opens the door for a new
621 class of optimization techniques (i.e. EC based) in the
622 area of machining.
623 The current implementation and testing of the new
624 technique was limited in terms of the process, material,
625 and number of process parameters and inputs considered.
626 For example, the depth of cut was not one of the input
627 parameters considered during the optimization. Optimiz-
628 ing the depth of cut requires the regeneration of the tool

1
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47
48

49
50

51Fig. 7. Simulated vs predicted forces before optimization. (a) Simu-
52lated force variation; (b) experimentally acquired force variation.
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354
55

56
57

58 Fig. 8. Simulated vs predicted forces after optimization. (a) Measured
59 forces; (b) predicted forces.

256

257 Table 4
258 Various immersions and associated machining parameters (comparison
259 of non-optimal with optimal ones)260
261
262271

Feed/speed Max. Optimized Max.
272 Immersion

conditions force (N) feed/speed force281
282
283292

293 1 100/800 481 131.3/1499 296298

299 3/4 100/800 401 157.8/1499 299304

305 1/2 100/800 347 199.95/1487 299310

311 1/4 100/800 195.7 199.95/1353 210316
317
318

629 path and thus an integration of the optimizer to the CAM
630 application. These additional requirements as well as the
631 expansion and extension of the models and testing (to
632 other tool shapes, material, etc.) shall be the subjects of
633 future work.
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