$1^{\text {st }}$ Week Problems

Problem 1- A tank has two rooms separated by a membrane. Room A has 1 kg air and volume $0.5 \mathrm{~m}^{3}$, room B has $0.75 \mathrm{~m}^{3}$ air with density $0.8 \mathrm{~kg} / \mathrm{m}^{3}$. The membrane is broken and the air comes to a uniform state. Find the final density of the air.

Problem 2- A $2.5-\mathrm{m}$-tall steel cylinder has a cross-sectional area of $1.5 \mathrm{~m}^{2}$. At the bottom, with a height of 0.5 m , is liquid water, on top of which is a 1-m-high layer of gasoline. This is shown in figure. The gasoline surface is exposed to atmospheric air at 101 kPa . What is the highest pressure in the water?

AE209 Thermodynamics Quiz-1

Quiz Problem 1- A $5-\mathrm{m}^{3}$ container is filled with 900 kg of granite (density of $2400 \mathrm{~kg} / \mathrm{m} 3$). The rest of the volume is air, with density equal to $1.15 \mathrm{~kg} / \mathrm{m} 3$. Find the mass of air and the overall (average) specific volume. Also find the specific gravity and specific weight of the granite. ($\rho_{\text {water }}$ $=997 \mathrm{~kg} / \mathrm{m}^{3}$)

Quiz Problem 2- A steel tank of cross-sectional area $3 \mathrm{~m}^{2}$ and height 16 m weighs 10000 kg and is open at the top, as shown in Figure. We want to float it in the ocean so that it is positioned 10 m straight down by pouring concrete into its bottom. How much concrete should we use?

