AE 433 CFD – HW1

DUE DATE: Beginning of the next lecture (10.12.2021 Friday, 8:30)

Parameters for the flow in a pipe are given as follows:

Pipe radius: 0.02619 m

Pipe length: 7.62 m

Cases are as follows:

Case-1: Laminar flow, Re = 655, 2D

Case-2: Turbulent flow, Re = 111569, 2D

Case-3: Laminar flow, Re = 655, 3D

Case-4: Turbulent flow, Re = 111569, 3D

Instructions:

- 1. Use boundary conditions of inlet, outlet and wall for your solution.
- Specify uniform flow at the inlet, no slip boundary condition at the wall and constant pressure at the outlet (gage pressure 0 for case-1 and case-3, gage pressure 400 Pa for case-2 and case-4).
- 3. Use "laminar" as the solution model for case-1 and "standard k-epsilon turbulence model with standard wall functions" as the solution model for case-2.
- 4. Take air density 1.17 kg/m³ and viscosity 1.872x10⁻⁵ kg/m-s.
- 5. Take turbulence intensity 0.01% and turbulence length scale 0.000294 m at the inlet for case-2 and case-4.
- 6. Take backflow turbulent kinetic energy as $1 \text{ m}^2/\text{s}^2$ and backflow turbulent dissipation rate as $1 \text{ m}^2/\text{s}^3$ at the outlet for case-2 and case-4.
- Take sand grain roughness height 2.5x10⁻⁵ m and roughness constant 0.5 for case-2 and case-4.
- 8. Assume an operating condition of 97725.9 Pa.
- 9. Use SIMPLE method with 2nd order accuracy.
- 10. Use residuals to be 1e-06 for all.

Consider the following reference values:

Area (m ²)	0.002154869
Density (kg/m ³)	1.17
Enthalpy (j/kg)	0
Length (m)	0.05238
Pressure (Pa)	0
Temperature (K)	288.16
Velocity (m/s)	0.2 (case-1 and case-3), 34.08 (case-2 and case-4)
Viscosity (kg/m-s)	1.872x10 ⁻⁵
Ratio of specific heats	1.4

Point Name	x0	y0	
point-1	7.62	0.000	
point-2	7.62	0.005	
point-3	7.62	0.010	
point-4	7.62	0.015	
point-5	7.62	0.020	
point-6	7.62	0.021	
point-7	7.62	0.022	
point-8	7.62	0.023	
point-9	7.62	0.024	
point-10	7.62	0.025	

Surface Name	x0	у0	x1	y1
x=10d	0.5238	0	0.5238	0.02619
x=20d	1.0476	0	1.0476	0.02619
x=40d	2.0952	0	2.0952	0.02619
x=60d	3.1428	0	3.1428	0.02619
x=100d	5.2380	0	5.2380	0.02619

For all cases:

- a) Show your geometry/mesh/solution steps on CFD by figures in your report.
- b) Show your residual output in a figure.
- c) Export and show the axial velocity profile at the points and surfaces given in figure above. Compare cases with each other and experimental results.
- d) Plot static pressure change in the axis, compare them with the experimental data.
- e) Export wall shear stress values and report them.
- f) Show axial velocity profile vectors in the surfaces above.
- g) Comment on analytical solutions of CFD study. Is it possible to analytically solve cases? Answer for each case separately.

NOTES:

- 1. Report cannot be longer than 20 pages.
- 2. No additional submissions are needed other than **one printed report with a cover page**.
- 3. Experimental data are shared in AE433 page.