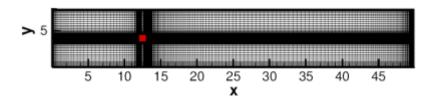

AE 433 CFD - HW2

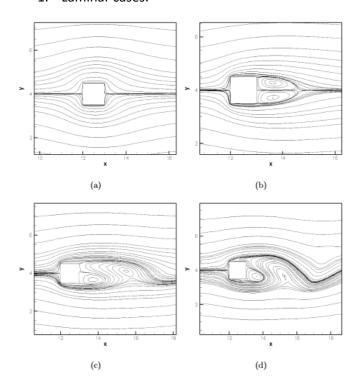

DUE DATE: Beginning of the next lecture (17.12.2021 Friday, 8:30)

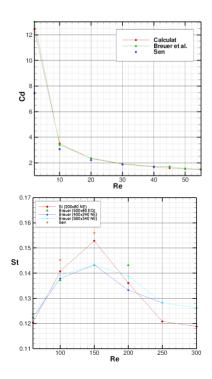
Consider a turbulent flow around a square cylinder. The figure is given as follows:

where D/H=1/8, L=50D, I=L/4. Take D= 4 cm.

Construct mesh similar to:

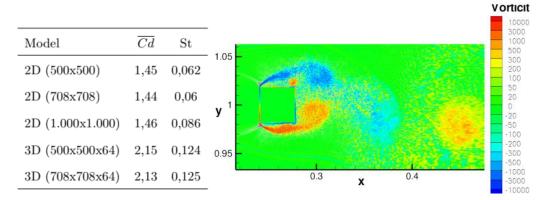
Run your simulation at (a) Re=1, (b) Re=30, (c) Re=60, (d) Re=200, (e) Re=22000. Use both steady and transient solution like in the case of tutorial 2. Compare the steady solution with transient solution.


- 1. Solve laminar for a, b, c, and d. Solve turbulent for e. Select your models, etc by your own, remembering the tutorials 1 and 2. Leave default for non-given parameters.
- 2. Compare the velocity and vorticity contours for a, b, c and d. Comment on it.
- 3. Find drag coefficients (Cd) for a, b, c and d. Draw Cd vs Re graph.
- 4. Find Strouhal (St) numbers for a, b, c and d. Draw St vs Re graph.
- 5. Find lift coefficients (CI) for a, b, c and d. Draw CI vs Re graph.
- 6. Find drag coefficient (Cd), Strouhal (St) number, lift coefficient (Cl) for e. Comment on the differences from the results on a, b, c and d.


NOTES:

- 1. Report cannot be longer than 20 pages.
- 2. No additional submissions are needed other than **one printed report with a cover page**.

Example solutions for your comparison:


1. Laminar cases:

Turbulent case:

Model	\overline{Cd}	\overline{Cl}	Cd_{rms}	Cl_{rms}	St
DNS (200x80)	0,7575	0,0309	0,3951	0,4617	0,1250
DNS (400x160)	1,6670	0,0119	0,3446	0,8760	0,0930
DNS (800x320)	1,2147	0,1312	0,2958	0,9685	0,0505
DNS (1131x453)	1,2549	-0,0323	0,3583	0,9449	0,0463
Smagorinsky (200x80)	2,5556	-0,0165	0,7748	1,4642	0,0734
Smagorinsky (400x160)	0,9112	0,1460	0,2123	0,2123	0,4304
Vreman~(200x80)	1,3839	0,1610	0,0930	0,5257	0,0664
Vreman (400x160)	1,4743	0,1191	0,1295	0,7397	0,0605

<u>Reference</u>: Valcarce A. Estudi de fluxes convectius en base a tècniques de CFD&HT, Spain: Technical University of Catalonia; 2012. [Master thesis]