AE 433 CFD - HW4

DUE DATE: Beginning of the next lecture (31.12.2021 Friday, 8:30)

Consider a three element (NHLP 2D) airfoil. The mesh is given in the lecture.
Problem specifications:
Reynolds number: 3.52×10^{6}.
Angle of incidence (α): 0° to 23°.
Use sea-level atmospheric conditions and the unit chord.

1. Do the SST k-omega turbulence model solution for angle of attack values of $0,2,4,6,8,10,11$, $12,13,14,15,16,17,18,19,20,21,22,23$ degrees.
2. Capture pressure contours around slat, main airfoil and flap, at $\alpha=4^{\circ}$ and at $\alpha=20^{\circ}$. Did you notice any difference? Comment on it.
3. Capture velocity magnitude contours around slat, main airfoil and flap, at $\alpha=4^{\circ}$ and at $\alpha=20^{\circ}$. Did you notice any difference? Comment on it.
4. Draw C_{1} vs α.
5. Draw C_{d} vs α.
6. Draw C_{m} vs α.
7. Draw C_{p} vs x at $\alpha=4^{\circ}$.
8. Draw C_{p} vs x at $\alpha=20^{\circ}$.
9. Export boundary layer profiles of total pressure coefficient $C_{p_{\text {_tot }}}$ for both 4 and 20° normal to the upper surface at:
a. $\mathrm{X}=0.35 \mathrm{~m}$ on the main element.
b. Main element shroud trailing edge.
c. 50% flap chord.
d. Flap trailing edge.
10. Calculate and plot C_{p} values on the airfoil at angle of attacks 0,10 and 15 degrees. Compare them with the experimental data (cp_exp.xy) supplied in AE433 site.
11. You can use the references given below for validation of your graphs.

NOTES:

1. Report cannot be longer than 20 pages.
2. No additional submissions are needed other than one printed report with a cover page.

References:

1. Moir I.R.M. Measurements on a Two-Dimensional Airfoil with High-Lift Devices, AGARD AR 303. Aug 1994. Case A2.
2. De Rango, S. and Zingg, D.W., Higher-Order Spatial Discretization for Turbulent Aerodynamics Computations, AIAA Journal, Vol. 39, No. 7, July 2001.
3. Fejtek, I., Summary of Code Validation Results for a Multiple Element Airfoil Test Case, AIAA.
