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Significant Figures

• Whenever we employ a number in a computation, we must have 
assurance that it can be used with confidence.

FIGURE 3.1
An automobile speedometer and odometer 
illustrating the concept of a significant figure.

Visual inspection of the speedometer 
indicates that the car is traveling between 
48 and 49 km/h.



Significant Figures

FIGURE 3.1
An automobile speedometer and odometer 
illustrating the concept of a significant figure.

We insist that the speed be estimated to one decimal place. For this case, one person 
might say 48.8, whereas another might say 48.9 km/h. 

Therefore, because of the limits of this 
instrument, only the first two digits can be used 
with confidence. Estimates of the third digit (or 
higher) must be viewed as approximations.



Significant Figures

FIGURE 3.1
An automobile speedometer and odometer 
illustrating the concept of a significant figure.

In contrast, the odometer provides up to six certain digits. From Fig. 3.1, we can 
conclude that the car has traveled slightly less than 87,324.5 km during its lifetime. In 
this case, the seventh digit (and higher) is uncertain.



Significant Figures

• The concept of a significant figure, or digit, has been developed to 
formally designate the reliability of a numerical value. 

• The significant digits of a number are those that can be used with 
confidence. They correspond to the number of certain digits plus 
one estimated digit. 

• For example, the speedometer and the odometer in Fig. 3.1 yield 
readings of three and seven significant figures, respectively

• For the speedometer: three significant figures: 48.5
• For the odometer: seven-significant-figure reading of 87,324.45



Significant Figures
• Although it is usually a straightforward procedure to ascertain the 

significant figures of a number, some cases can lead to confusion.

• For example, zeros are not always significant figures because they 
may be necessary just to locate a decimal point. 

• The numbers 0.00001845, 0.0001845, and 0.001845 all have four 
significant figures.

• For example, at face value the number 45,300 may have three, four, 
or five significant digits, depending on whether the zeros are known 
with confidence.

• Such uncertainty can be resolved by using scientific notation, where 
4.53 × 104, 4.530 × 104, 4.5300 × 104 designate that the number is 
known to three, four, and five significant figures, respectively.



Significant Figures

The concept of significant figures has two important implications for 
our study of numerical methods:
• As introduced in the falling parachutist problem, numerical methods 

yield approximate results. We must, therefore, develop criteria to 
specify how confident we are in our approximate result.

• Although quantities such as π, e, or √7 represent specific quantities, 
they cannot be expressed exactly by a limited number of digits.

π = 3.141592653589793238462643 …



Example

If we are measuring the lengths of the base and height of a triangle 
with an instrument that provides values to the nearest tenth of an inch, 
then the measured lengths of b = 12.3 in and h = 17.2 in are expressed 
to three significant digits.

Calculate area with three significant figures.

A = 0.5bh = 0.5(12.3)(17.2) = 106 in2



Accuracy and Precision

The errors associated with both calculations and measurements can be 
characterized with regard to their accuracy and precision. 

• Accuracy refers to how closely a computed or measured value agrees 
with the true value. 

• Precision refers to how closely individual computed or measured 
values agree with each other.

• Inaccuracy (also called bias) is defined as systematic deviation from 
the truth.

• Imprecision (also called uncertainty), on the other hand, refers to the 
magnitude of the scatter.



Accuracy and Precision

(a) Inaccurate and imprecise; 

(b) accurate and imprecise;

(c) inaccurate and precise; 

(d) accurate and precise.



Error Types

An error in estimating or determining a quantity of interest can be 
defined as a deviation from its unknown true value. 

In general, errors can be classified based on their sources as non-
numerical and numerical errors.

• Non-numerical errors include (1) modeling errors, (2) blunders and 
mistakes, and (3) uncertainty in information and data.

• Numerical errors include (1) round-off errors, (2) truncation errors, 
(3) propagation errors, and (4) mathematical-approximation errors.



Error Definitions

Numerical errors arise from the use of approximations to represent 
exact mathematical operations and quantities.

• Truncation errors, when approximations are used to represent exact 
mathematical procedures, 

• Round-off errors, when numbers having limited significant figures are 
used to represent exact numbers.

The relationship between the exact, or true, result and the 
approximation can be formulated as

True value = approximation + error



𝐸𝑡= True value - approximation 

𝜀𝑡 = 
𝐸𝑡

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
100%

We can define the error as the difference between the computed and true 
values of a number:

A relative true error (𝜀𝑡) is defined as the true error 𝐸𝑡 relative to the true 
value: 

𝜀𝑡 = 
𝐸𝑡

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒

The relative true error could be expressed as a percentage by multiplying 
𝜀𝑡 by 100·



Problem Statement. Suppose that you have the task of measuring the 

lengths of a bridge and a rivet and come up with 9999 and 9 cm, 

respectively. If the true values are 10,000 and 10 cm, respectively, 

compute (a) the true error and (b) the true percent relative error for each 

case.

Solution.
(a) The error for measuring the bridge is  Et = 10,000 - 9999 = 1 cm

and for the rivet it is  Et = 10 - 9 = 1 cm

(b) The percent relative error for the bridge is

for rivet is



• For numerical methods, the true value will be known only when we deal 

with functions that can be solved analytically. 

• However, in real-world applications, we will obviously not know the true 

answer a priori. For these situations, an alternative is to normalize the error 

using the best available estimate of the true value, that is, to the 

approximation itself,

Error can be written as ei = xi – xt



If we choose x0 = 2 as the initial estimate of the positive value of x,

x2 = 3.414214 e2 = 0.585786

Example



If the tolerable error were set at 0.025



BENDING MOMENT FOR A BEAM

The maximum-moment location corresponds to the point of zero shear force. 
Numerical methods can be used to determine this point along the span of the beam.





The numerical solution starts by assuming a value for the location of the maximum 
bending moment—that is, zero shear force (V) location, say x0· 



The shear force V(x0) based on this initial estimate of x0 might not be zero· Then a 
new value for the location (distance), xi+1, can be computed based on xi (with a 
starting value of x0) by adjusting the original distance using the following adjustment 
(Δx):

Therefore, the new distance is

This process should be continued until some tolerance level (error level) is 
achieved.



The exact or true distance (xi) can be 
determined by solving for the distance 
from V(x0) = 0, which is





TAYLOR SERIES EXPANSION

A Taylor series is commonly used as a basis of approximation in numerical analysis.

A Taylor series is the sum of functions based on continually increasing derivatives. For 
a function f(x) that depends on only one independent variable x, the value of the 
function at point x0 + h can be approximated by the following Taylor series:





TAYLOR SERIES EXPANSION OF THE SQUARE ROOT

The square-root function, using the Taylor series expansion, can be expressed as

To evaluate the Taylor series, the derivatives of the function are developed



For a base point x0 = 1 and h = 0.001, the four terms of the Taylor series produce the 
fol-lowing estimate for the square root of 1.001:



The exponential evaluation to the base e of x can be expressed by the 
following series:

EXAMPLE SERIES 

The natural logarithm of x can be expressed using a Taylor series as

The sine and cosine 
functions can also be 
expressed using the 
Taylor series as



• For numerical methods, the true value will be known only when we deal 

with functions that can be solved analytically. 

• However, in real-world applications, we will obviously not know the true 

answer a priori. For these situations, an alternative is to normalize the error 

using the best available estimate of the true value, that is, to the 

approximation itself,

where the subscript a signifies that 

the error is normalized to an 

approximate value.

Tolerance: Many numerical methods work in an iterative fashion. There should be a stopping
criteria for these methods. We stop when the error level drops below a certain tolerance value 

(𝜀𝑠 ) that we select (| 𝜀𝑎 | < 𝜀𝑠 )



Error Estimates for Iterative Methods
Problem Statement. In mathematics, functions can often be 
represented by infinite series. For example, the exponential function can 
be computed using Maclaurin series expansion

Starting with the simplest version, ex = 1, add terms one at a time to 
estimate e0.5. After each new term is added, compute the true and 
approximate percent relative errors. Note that the true value is e0.5 = 
1.648721 . . . . Add terms until the absolute value of the approximate error 
estimate 𝜀𝑎 falls below a prespecified error criterion 𝜀𝑠 conforming to 
three significant figures.



Solution. First, determine the error criterion that ensures a result is 

correct to at least three significant figures:

𝜀𝑠 = (0.5 x 102-3)% = 0.05%

Thus, we will add terms to the series until 𝜀𝑎 falls below this level.

The first estimate is equal to 1. The second estimate is then generated by 

adding the second term, as in

ex = 1 + x
or for x = 0.5,

e0.5 = 1 + 0.5 = 1.5

This represents a true percent relative error of



An approximate estimate of the error

Because 𝜀𝑎 is not less than the required value of 𝜀𝑠, we would continue the 

computation by adding another term, x2/2!, and repeating the error 

calculations. The process is continued until 𝜀𝑎 < 𝜀𝑠 
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