ME209 - Numerical Methods

Lecture 3: Roots of Equations

By:
Prof. Dr. Ahmet Erkliğ

Introduction

Any nonlinear equation can, after suitable algebraic manipulation, be expressed as a function of the following form:

$$
f(x)=0
$$

The values of x that satisfy the condition of equation are termed the roots of the function; these roots are the solution to the equation $f(x)=$ 0

Introduction

For very simple functions, the roots can often be found analytically. For example, for the general second-order polynomial $a x^{2}+b x+c=0$, the roots x_{1} and x_{2} can be found analytically using the following equation:

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

The roots for a third-order polynomial can also be found analytically• However, a general solution does not exist for other higher order polynomials.
It is more difficult to obtain analytical solutions for the roots of non-polynomial, nonlinear functions.

Introduction

- However, there are many complex equations whose roots we cannot easily find analytically. In such cases, numerical methods can be used as powerful alternatives in finding the roots of equations.
- Numerical methods commonly used in finding the roots of equations can be examined in two groups. These are: Bracketing methods and open methods.

Bracketing methods:

- Bisection Method
- False-Position Method

Open methods:

- One-point Iteration Method
- Newton-Raphson Method
- Secant Method

General Idea of Bracketing Methods

RULE 1: IF $f\left(x_{l}\right) * f\left(x_{u}\right)<0$ THEN there are odd number of roots.

RULE 2: IF $f\left(x_{l}\right) * f\left(x_{u}\right)>0$ THEN there are: (i) even number of roots,
(ii) no roots.

VIOLATIONS:

(i) multiple roots,
(ii) discontinuities.

Bisection Method

- The bisection method is an extension of the direct-search method for cases when it is known that only one root occurs within a given interval of x. For the same level of precision, the bisection method will, in general, require fewer calculations than the direct-search method.
- The bisection method is one type of incremental search method in which the interval is always divided in half.
- If a function changes sign over an interval, the function value at the midpoint is evaluated.
- The location of the root is then determined as lying at the midpoint of the subinterval within which the sign change occurs.
- The process is repeated to obtain refined estimates.
- The bisection method will always converge on the root, provided that only one root lies within the starting interval for x.

Bisection Method

- Step 1: Choose two initial estimations, $x_{\text {LOWER }}\left(x_{l}\right)$ and $x_{\text {UPPER }}\left(x_{u}\right)$.
- They should bracket the root, i.e.

$$
f\left(x_{l}\right) * f\left(x_{u}\right)<0
$$

Step 2: Estimate the root as a midpoint of this interval

$$
x_{r}=\frac{\left(x_{l}+x_{u}\right)}{2}
$$

Step 3: Determine the interval which contains the root,
(a) IF $f\left(x_{l}\right) * f\left(x_{r}\right)<0$ THEN the root is between x_{L} and x_{r}, Therefore, set $x_{u}=x_{r}$ and RETURN to step 2.

(b) IF $f\left(x_{l}\right) * f\left(x_{r}\right)>0$ THEN the root is between x_{r} and x_{U}. Therefore, set $x_{l}=x_{r}$ and RETURN to step 2.
(c) IF $f\left(x_{l}\right) * f\left(x_{r}\right)=0$, the root is equals x_{r}; TERMINATE the computation

Termination Criteria and Error Estimates

We need a termination criteria to end the iteration. Here, an approximate percent relative error ε_{a} can be calculated as:

$$
\varepsilon_{a}=\left|\frac{x_{r}^{\text {new }}-x_{r}^{\text {old }}}{x_{r}^{\text {new }}}\right| 100 \%
$$

When the approximate percent relative error ε_{a} falls below the specified percent relative error ε_{s} or tolerance, we could terminate the bisection method.

To terminate calculations $\varepsilon_{a}<\varepsilon_{s}$

Example 3.1: Find the square root of 11. (Tolerance value: $\left|\varepsilon_{s}\right|=0.5 \%$)

$$
x^{2}=11 \rightarrow f(x)=x^{2}-11 \quad(\text { exact solution is } 3.31662479)
$$

Choose initial estimates: $3^{2}=9<11$ and $4^{2}=16>11 \rightarrow \boldsymbol{x}_{\boldsymbol{l}}=\mathbf{3}$ and $\boldsymbol{x}_{\boldsymbol{u}}=\mathbf{4}$
1st iteration: $x_{r}=\frac{x_{l}+x_{u}}{2}=\frac{3+4}{2} \rightarrow x_{r}=3.5$ and $f(3.5)=3.5^{2}-11=1.25$
$f\left(x_{l}\right) * f\left(x_{r}\right)=-2 * 1.25 \rightarrow-2.5<0\left(\right.$ root is between x_{l} and $\left.x_{r}\right)$

SET $x_{u}=x_{r}=3.5$ and CONTINUE to iterate.

2nd iteration: $\quad x_{l}=3, x_{u}=3.5$
$x_{r}=\frac{3+3.5}{2} \rightarrow x_{r}=3.25$ and $f(3.25)=3.25^{2}-11=-0.4375$
$f\left(x_{l}\right) * f\left(x_{r}\right)=-2 *-0.4375=0.875>0$ (root is between x_{r} and x_{u})

SET $x_{l}=x_{r}=3.25$ and CONTINUE to iterate.

3rd iteration: $x_{l}=3.25, x_{u}=3.5$

$$
\begin{aligned}
& x_{r}=\frac{3.25+3.5}{2} \rightarrow x_{r}=3.375 \text { and } f(3.375)=0.390625 \\
& f\left(x_{l}\right) * f\left(x_{r}\right)=-0.4375 * 0.390625=-0.17089<0 \\
& \text { (root is between } x_{l} \text { and } x_{r} \text {) } \\
& \text { SET } x_{u}=x_{r}=3.375 \text { and CONTINUE to iterate. }
\end{aligned}
$$

4th iteration: $x_{l}=3.25, x_{u}=3.375$
$x_{r}=\frac{3.25+3.375}{2} \rightarrow x_{r}=3.3125$
and $f(3.3125)=3.3125^{2}-11=-0.027343$
$-0.4375 *-0.027343=0.011963>0$ (root is between x_{r} and x_{u})

SET $x_{l}=x_{r}=3.3125$ and CONTINUE to iterate.

5th iteration: $x_{l}=3.3125, x_{u}=3.375$
$x_{r}=\frac{3.3125+3.375}{2} \rightarrow x_{r}=3.34375$ and

$$
f(3.34375)=0.18066
$$

$-0.027343 * 0.390625=-0.01068<0$ (root is between x_{l} and x_{r})

SET $x_{u}=x_{r}=3.34375$ and CONTINUE to iterate.

6th iteration: $x_{l}=3.3125, x_{u}=3.34375$
$x_{r}=\frac{3.3125+3.34375}{2} \rightarrow x_{r}=3.32815$ and $f(3.32815)=0.076416$
$-0.027343 * 0.076416=-0.002089<0$ (root is between x_{l} and x_{r})

Iteration	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{l}}\right) \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{a}}\right\|(\%)$
1	3	3.5	4	-2	1.25	-2.5	-
2	3	3.25	3.5	-2	-0.4375	0.875	7.69
3	3.25	3.375	3.5	-0.4375	0.390625	-0.17089	3.70
4	3.25	3.3125	3.375	-0.4375	-0.027343	0.011963	1.88
5	3.3125	3.34375	3.375	-0.027343	0.18066	-0.004942	0.93
6	3.3125	3					

Example 2

Calculate root of following polynolmial

$$
f(x)=x^{3}-x^{2}-10 x-8=0
$$

Finding the roots within the interval $3.75 \leq x \leq 5.00$ to a relative accuracy as an absolute value between successive iterations of 0.01 .
Check:

$$
\begin{aligned}
& f(x=3.75)=-6.82 \\
& f(x=5.00)=42 \\
& f(x f u=-286.44<0
\end{aligned}
$$

Subinterval

Containing Root

Iteration \boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{m}}\right)$	$\boldsymbol{f}\left(\mathbf{x}_{\boldsymbol{u}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{\prime}}\right) \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right) \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{u}}\right)$	Error $\boldsymbol{\epsilon}$
1	3.750	4.375	5.000	-6.830	12.850	42.000	-	+	-
2	3.750	4.062	4.375	-6.830	1.903	12.850	-	+	0.313
3	3.750	3.906	4.062	-6.830	-2.724	1.903	+	-	0.156
4	3.906	3.984	4.062	-2.724	-0.477	1.903	+	-	0.078
5	3.984	4.023	4.062	-0.477	0.696	1.903	-	+	0.039
6	3.984	4.004	4.023	-0.477	0.120	0.696	-	+	0.019
7	3.984	3.994	4.004	-0.477	-0.180	0.120	+	-	0.010

False-Position Method

An alternative method that exploits this graphical insight is to join $f\left(x_{l}\right)$ and $f\left(x_{u}\right)$ by a straight line. The intersection of this line with the x axis represents an improved estimate of the root.
 The fact that the replacement of the curve by a straight line gives a "false position" of the root is the origin of the name, method of false position, or in Latin, regula falsi. It is also called the linear interpolation method.

Using similar triangles

$$
x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)}
$$

FALSE-POSITION METHOD

- Step 1: Choose two initial estimations, $x_{\text {LOWER }}\left(x_{l}\right)$ and $x_{U P P E R}\left(x_{u}\right)$.
- They should bracket the root, i.e.

$$
f\left(x_{l}\right) * f\left(x_{u}\right)<0
$$

- Step 2: Using similar triangles, the intersection of the straight line with the x axis can be estimated as

$$
x_{r}=\frac{x_{u} f\left(x_{l}\right)-x_{l} f\left(x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \quad \text { or } \quad x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)}
$$

- Determine the interval which contains the root:

IF $f\left(x_{l}\right) * f\left(x_{r}\right)<0$ root is between x_{l} and x_{r}
ELSE root is between x_{r} and x_{u}

3.3.3. FALSE-POSITION METHOD

- False-position method always converges to the true root,
- $f\left(x_{l}\right) * f\left(x_{u}\right)<0$ is true if the interval has odd number of roots, not necessarily one root.
- The false-position method generally converges faster than the bisection method.
- Step 3: Estimate a new root in this interval, Stop when the specified tolerance is reached.

Example 3.2: Find the square root of 11 by using false-position method. (Tolerance value: $\left|\varepsilon_{s}\right|=0.5 \%$) $x^{2}=11 \rightarrow f(x)=x^{2}-11$ (exact solution is 3.31662479$)$

Choose initial estimates: $3^{2}=9<11$ and $4^{2}=16>11 \rightarrow \boldsymbol{x}_{\boldsymbol{l}}=\mathbf{3}$ and $\boldsymbol{x}_{\boldsymbol{u}}=\mathbf{4}$
1st iteration: $x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \rightarrow x_{r}=3.28571429$ and
$f(3.28571429)=3.28571429^{2}-11=-0.2040817$
$f\left(x_{l}\right) * f\left(x_{r}\right)=-2 *-0.2040817 \rightarrow 0.408163>0\left(\right.$ root is between x_{l} and $\left.x_{r}\right)$

SET $x_{l}=x_{r}=3.28571429$ and CONTINUE to iterate.

2nd iteration: $x_{l}=3.28571429, x_{u}=4$
$x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \rightarrow x_{r}=3.313725$ and
$f(3.313725)=3.313725^{2}-11=-0.019227$
$f\left(x_{l}\right) * f\left(x_{r}\right)=-0.2040817 *-0.019227$
$\rightarrow 0.00392>0\left(\right.$ root is between x_{r} and $\left.x_{u}\right)$
SET $x_{l}=x_{r}=3.313725$ and CONTINUE to iterate.
3rd iteration: $x_{l}=3.313725, x_{u}=4$
$x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \rightarrow x_{r}=3.3163543$ and $f(3.3163543)=3.3163543^{2}-11=-0.00179415$
$f\left(x_{l}\right) * f\left(x_{r}\right)=-0.019227 *-0.00179415$
$\rightarrow 0.0000344961>0$ (root is between x_{r} and x_{u})
SET $x_{l}=x_{r}=3.3163543$ and CONTINUE to iterate.

4th iteration: $x_{l}=3.3163543, x_{u}=4$
$x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \rightarrow x_{r}=3.31659949$ and $f(3.31659949)=3.31659949^{2}-11=-0.0001678$
$f\left(x_{l}\right) * f\left(x_{r}\right)=-0.00179415 *-0.0001678$
$\rightarrow 0.0000344961>0$ (root is between x_{r} and x_{u}) SET $x_{l}=x_{r}=3.3163543$ and CONTINUE to iterate.

| Iteration | x_{l} | x_{r} | $\boldsymbol{x}_{\boldsymbol{u}}$ | $f\left(x_{l}\right)$ | $f\left(x_{u}\right)$ | $f\left(x_{r}\right)$ | $f\left(x_{l}\right) f\left(x_{r}\right)$ | $\left\|\varepsilon_{a}\right\|(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 3 | 3.285714 | 4 | -2 | 5 | -0.2040816 | 0.4081632653 | -- |
| $\mathbf{2}$ | 3.285714 | 3.313725 | 4 | -0.20408 | 5 | -0.0192234 | 0.0039231379 | 0.84531 |
| $\mathbf{3}$ | 3.313725 | 3.316354 | 4 | -0.01922 | 5 | -0.0017969 | 0.0000345424 | 0.07926 |
| $\mathbf{4}$ | 3.316354 | 3.316599 | 4 | -0.0018 | 5 | -0.0001678 | 0.0000003016 | 0.00741 |
| $\mathbf{5}$ | 3.316599 | 3.316622 | 4 | -0.00017 | 5 | -0.0000157 | 0.0000000026 | 0.00069 |
| $\mathbf{6}$ | 3.316622 | 3.316625 | 4 | $-1.6 \mathrm{E}-05$ | 5 | -0.0000015 | 0.0000000000 | 0.00006 |

- Note that false-position method converged faster than the bisection method.

Notes on Bracketing Methods

- A plot of the function is always helpful.
- To determine the number of all roots, if there are any.
- to determine whether the roots are multiple or not.
- to determine whether to method converges to the desired root.
- to determine the initial guesses.
- Incremental search technique can be used to determine the initial guesses.
- Start from one end of the region of interest.
- Evaluate the function at specified intervals.
- If the sign of the function changes, than there is a root in that interval.
- Select your intervals small, otherwise you may miss some of the roots. But if they are too small, incremental search might become too costly.
- Incremental search, just by itself, can be used as a root finding technique with very small intervals (not efficient).

NEXT WEEK ROOTS OF EQUATIONS Open Methods

