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Abstract: Mathematical models of robotic systems not only provide the desigher with the most valuabie resource on which ideas
about control and motion design can be tested or the performance of a non existing sketch can be checked before a prototype is
manufactured, but also provide a versatile t’eaching and practising aid. The mathematical mode! of the system includes the charac-
teristics of the manipulator and its drive systems and is definitive of their dynamic behaviour. In most robotic applications, the re-

: h faster than the drives and the manipulator and hence.its model is generally not required. This .

sponse of the controller is muc

paper presents a treatise on the generation of m
grange and Hamilton equations and a formulation based on gr
gregs of freedom planar articulated linkage. The resulting clo:
rules of thumb for the use of these equations are given. Finally,
of which are commercially available, are described.
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otion equations of robotic manipulators, excluding the drives. Newton-Euler, La-
adient methods are examined and tested on an all-revolute, three de-
sed form motion equations are presented for comparison, and the
some of the well kriown general purpose simulator softwares, some

Artikiile Rijit Cisim Sistemleri Igin. Hareket Denklemieri Tiiretme Metodiarinin
Similasyona Y&nelik Kargilagtiriimasi

Ozet: Robotik sistemlerin matematik modelleri tasanmeilarin kontrol ve hareket profili belirlemede fikirlerini uzerinde uyguladiklart
énemli bir arag olup ayni zamanda egitim amaglari iginde kullanilirlar. Matematik model sistemin karakteristiklerini igerip dinamik
davranisint belirleyicidir. Robotik uygulamalarin gogdunlugunda kontrol donanim ve yaziminin islem hizi maniplator ve strici
motorlarindan ¢ok daha yiksek oldugundan buniarin modellemesi genellikle aranmaz. Bu makale robot maniplatdrlerinin srict
motorlari diginda olmak iizere hareket denklemierinin eide edilmesi konusunda genel bir bilgi sunmaktadir. Newton-Euler, Lagrange
ve Hamilton formulieri ile gradient metodiari ile ilgili bir bagka formilasyon incelenmis ve 3 serbestiik dereceli, déner eklemlerden
olugan diziemsel bir maniplatorin modellemesinde kullanimigtir. Tiretilen hareket denkiemleri kargilagtirma igin sunularak sozl

edilen metodlarla ilgili uygulama esaslari anlatimigtir. Son olarak bir kism ticari olarak mevcut genel amagh simdlatdr programian

tanulmigtir,
Anahtar SbzcOKler: Robot maniplatdrier, Newton-Euler denklemleri, Lagrange denkiemi, Hamilton denklemleri, Gradient
metodlar. ’

Introduction sion elements in a small volume, multi-degrees of free-

Robotic manipulators are composed of rigid links in
articulation, connected to one another by lower kine-
matic pairs. They differ from mechanisms with their
extended movabilities and therefore require no func-
tional closed link loops. To provide solid positioning in
space a manipulator has to have 6 degrees of free-
dom, at least 3 of which have to be rotational. It has
to be simple in construction and control. Because of
higher contact or bearing stresses and the requirement
of packing multiple servo motors and power transmis-

dom joints are not preferred. Universally accepted ma-
nipulator configuration is the connection of movable
rigid links equal in number .to the total degrees of
freedom to one another by single degree of freedom,
single input-single output joints, namely revolute and
prismatic, forming an articulated open chain linkage.
Each joint is actuated by a motor of its own, enabling
all the succeeding links to move relative to the preced-
ing link. Motors are controlled by a digital computer
in the case of a robot, or by a human operator in the
case of a tele-operator. Using a robot at the limits of
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its capacity is a difficult task. On one hand, working
conditions are variable with changing payloads and ir-
regular Kinematic requirements, and on the other
hand, the dynamic behaviour and tendencies of a ro-
botic system is hardly ever appreciable or predictable
with so many coupled movabilities. Applications like re-
pairwork at hazardous media need precise and reliable
robot operation. A digital or analog simulation can be
tested beforehand, which supposedly should display
how the actual robot will behave on duty. Ideas on
motion design or control can be implemented on a
simulation initially to observe or at least get an idea
about how the real robot will respond. Finally a fast
- animated simulation can be used as a teaching aid in
practising to use a robot. e

Simulations are based on mathematical models
which incorporate the parameters of the real systems
they simulate and are definitive of their dynamic beha-
viour. A simulation ‘should respond to external forces
in the same manner as the real system does. Compati-
bility of the simulation to the real system it simulates
must be complete In kinematic, static and dynamic as-
pects. Mathematical models occur in the form of mul-
tiple non-linear differential equations, each of the
order 2 or more and require their simultaneous solu-
tion. Closed form solutions of motion equations are
never possible, therefore, a stage of numerical or ana-
log integration is required. Numerical integration is
slow, but more accurate than analog. However, real
time integration of complicated equations are only pos-
sible only by analog means. Another important criteri-
on in the selection of digital or analog means of im-
plementation is the limitation in the number of arith-
metic making modules of analog computers. In prepar-
ing a mathematical model computational efficiency is
vital. Definition of efficiency may be dominated by ac-
curacy, speed, number of individual arithmetic opera-
tions or integrations or a combination of these. At
this point, one has to know different approaches to
generate the motion equations of real systems and the
advantages of each over the others. This paper aims
to put forth a treatise on the generation of motion
equations of articulated open chain linkages, As the
operation speed of the control hard and software is
much higher than that of the servo drives and the
manipulator linkage, its model is hardly ever required.
Simulation of servo drives whether electrical or hy-
draulic is a complete problem in itself.

Dynamics of Mechanical Systerns

The dynamics of a system is the relationship be-
tween its kinematics and the forces acting on it. The
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first correct definition of the principles governing rigid
body dynamics was published by Newton and compris
es the basis of classical mechanics. His deductions
known as "Newton's laws" are completely based on
experimental observations and have no mathematical
proof, but there has been no incident reported that
does not follow these laws. Therefore they can be re-

garded as axioms,

Newton's Laws:

Written in three statements, they describe the dy-
namics of particle motion. The first indication that
these laws could be used to define angular motion is
due to Euler and hence the approach as a whole is
known as the Newton-Euler formula.

First law:
Newton's first law states that every material body

.remains in its state of rest or uniform rectilinear mo-

tion unless a net non-zero force acts on it. In conjunction
with the first law, Newton defines the quantity of motion
as the product of two factors, the velocity and the quan-
tity of matter, that is, the /inear momentum as:

P=mv (1

where m is the mass of the body, v is its rectilinear
velocity and P is the linear momentum. For a body
having constant mass and velocity, momentum remains
unchanged, hence the first law is generally known as
the law of the conservation of momentum.

The first law can be applied to the angular motion
of a rigid body as:

K =lw : (@)

where [ is the mass moment of inertia of the body,
w is its angular velocity and K is the angular momen-
tum. On a constant Inertia body, If no external mo-
ments act, it conserves its angular velocity and hence
angular momentum.

For static compatibility, a physical mode! and the
accompanying mathematics must obey the first law.
Application of the first law to a system of bodies require
the setting up of some constraint equations, which de-
scribe. the link dimensions and types of joints and the
connectivities they provide. Static compatibility is based
on kinematic compatibility described by the constraint
equations. Equations 1 and 2 are vector equations,
meaning that the expressions on both sides of the equa-
tion are equal in magnitude and direction.



Second Law:

Newton's second law describes the general motion
of rigid bodies, stating that the change in the quantity
of motion is equal to the net force acting on it and
takes place in the direction of the straight line along
which the force acts. Change is meant with respect to

time and so:
P=F | | (3)

where F is the resultant vector of all external forces
acting. The idea can be extended for rotating -bodies
so that the rate of change of angular momentum is
equal to the net moment acting as:

AN

K=1 )

where 7 is the resultant moment or torque.

The second law defines how the motion of a body
proceeds in ‘time under the effect of a given forcing
system. For dynamic compatibility, a model must obey
the second law.

Third Law:

Newton's third law states that action always equals
reaction. The forces that two bodies exert on each
other are equal in magnitude and opposite in direc-
tion. The third law, defining the nature of the force
interaction between different bodies makes possible
the transition from the mechanics of single bodies into
compound systems. The third law concerns the kine-
matic and static compatibilities. . v

Newton's laws completely define the motion of
bodies or systems of bodies as a function of time. Ap-
plication of the laws for planar linkages leads to the
systematic free-body definition of system subsets. Each
free body moving in a plane has 3 degrees of free-
dom and 3 equations can be derived for each movabil-
ity. Between the 3N coordinates defined for the sys-
tem having N bodies and n degrees of freedom, (3N-
n) many are related with each other leaving only n in-
dependent generalised coordinates. Existence of con-
straints creates two problems in application: holonomic
constraints between the coordinates defined and time
in some cases add that many algebraic equations to be
solved with the differential equations of motion simul-
taneously. This difficulty can be overcome by deriving
the motion equations using the generalised coordi-
nates, resulting in fewer but more complicated equa-
tions. Secondly, the force and motion constraints at
the joints appear in the form of non-holonomic con-
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straints which can not be integrated alone, and thus,
must be solved with the rest of the motion equations
simultaneously. This process yields the forces interact-
ing at the joints, which may or may not be required.

Starting with these fundamental laws, alternative
techniques were developed to eliminate the necessity
of obtaining explicit expressions for the constraint
forces, such as Lagrange's and Hamiiton's equations.

Lagrange's Equation
Lagrange's equation for Holonomic systems:

Equations of motion for dynamic systems can be
specified in the form of Lagrange's equation as:

g d_q
dt 9q; 9q; (5)

j=1,..n

where L is the Lagrangian, q are the generalised coor-
dinates and Qj is the generalised force acting on- the
j'th generalised coordinate. By definition the Lagran-
gian of the system is:

L=T-V (6)

where T is the total kinetic energy and V is the total
potential energy of the system. Lagrange equation de-
scribes the dynamics of the associated coordinate only.
Therefore for a system of n degrees of freedom, n
equations are derived which simultaneously define the

dynamics of the whole system.

There is complete freedom in the choice of gener-
alised coordinates as long as they are independent of
each other, so that the kinematics of the system are
uniquely defined. :

The Lagrangian of the system is the difference be-
tween the kinetic and potential energies, both of
which are scalar quantities. Therefore the Lagrangian
of a system will have the same value for a given con-
dition as long as the same definition is used in . each
case, because the lagrangian of a system is not
unique. If L (q. g, t) is an appropriate Lagrangian and
F (q. t) is any differentiable function of the general-
ised coordinates and time, then

L(q.0.8) = L(@.q.t) + dF/dt (7)

is also a Lagrangian of the system. For example the
gravitational potential energy is defined with respect
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to a reference datum. If the datum is changed for the
same system, both the analytical form and the numeri-
cal value of the Lagrangian changes.

The generalised force Q is the net effect of all the
external forces on the j'th géneralised coordinate, thus,

OXk )
=% F Lk
Q % % | @)
where x are coordinates defining the position of the
system in real and virtual displacements and F,_is the
net external force applied on coordinate x. General-
ised forces are composed of all the forces external to
the system. These external forces can be arbitrary
functions of the generalised coordinates and time.
Physically, they may be forces involving an energy in-
jection into the system such as actuator forces, or in-
volving energy dissipation from the system such as the
velocity dependent damping forces of viscous dampers
and position,velocity and acceleration dependent forces
due to Coulomb friction. They can further include
forces exerted by potential fields not included in the
Lagrangian such a3 weights and forces coming from
energy storage devices like mechanical springs, air cyl-

inders etc.
The concept of Kinematic compatibility of mechani-

cal networks is. included in the Lagrangian and-in the

generalised forces. As Newton's equations, Lagrange's
equations can be derived for any number of coordi-
nates resulting in that many differential equations of
motion. ‘In conjunction with the constraint equations
which are equal to the number of equations less the
number of degrees of freedom of the system, the dy-
namics of the system is fully defined. '

Lagrange's equation for non-holonomic

systems:

Non-holonomic systems have constraints described
by differential equations which can not be integrated
-independent of the system dynamics. Non-holonomic
constraints apply constraint forces on the system to
make it obey the constraints. With the inclusion of the
constraint forces, Lagrange's equation becomes:

(m-n)
PNt
dt dg dq H o oG ©)

where f are constraint equations, m is the number
of coordinates and A are Lagrange’s undetermined
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multipliers. The constraint equations can be explicit
functions of time, that is, rheonomous or may not be
explicitly dependent on time, that is, scleronomous.

Hamilton's Equations

Equations of motion for dynamic systems can be
specified in the form of the canonical equations of

Hamilton as: f

g =H

9 (10)

5o 0=- 90
p-Q 3

oL _oH ,
ot (12).

(1)

where Q are the generalised forces, H is the Hamil-
tonian, ﬂ is the Lagrangian and p are the conjugate
momenta, functions of generalised coordinates q. gen-
eralised velocities g , and time t as:

a _ - v

Hamiltonian H is defined as:

H(q.p.t) = 2 G p; - L@.q.b) (14)
J )

If Lagrangian is independent of time and.the po-
tential energy independent of velocities, the Hamiltoni-

an becomes:

H=T+YV (15)
To apply the canonical equations of Hamilton to
mechanical networks, first a set of generalised coordi-
nates are defined and the lLagrangian is formulated.
Then conjugate momenta are derived using equation
13. Once momenta and Lagrangian are known, the
Hamiltonian is formulated and substituted into the ca-

nonical equations.

Hamilton's method produces 2n first order diffe-
rential equations, n being the degrees of freedom. The
first canonical equation is used to obtain velocities
from momenta. The second equation incorporates the
principles of dynamics. Hamiltonian formulations in the
form of equations 10-12 can describe the conservative
and holonomic systems. For non-conservative and non-



holonomic systems, the constraint equations must also
be included in the set of equations.of motion.

Approximate Dynamics

The method of dynamic analysis developed Dy Roo-
ney and Rai, presented in their paper published in
1976 brings a different approach to the analytical def-
inition of system dynamics. This work is based on the
method developed by Jones on the simultaneous solu-
tion of multiple non-linear algebraic equations which
- was reported in his paper published in 1973. This ap-
. proach is based on the generation of a set of solu-
tions which obey Newton's second law,

G=h (16)

LN

where F is the net force active in direction  of the co-
ordinate q and m are the relevant mass or moment of
inertia. The numf)er, m, of coordinates q used in de-
fining the system dynamics may exceed the number of

- degrees of freedom n that the system possesses. This
implies that a set of (m-n) kinematic constraints  f
exist between the coordinates, described in the form:

' fi(Qeq-qm) =0

i=1.2,..(m-n)

(17

. The solution is also forced to follow the constraint

equations. Various methods of this type, known as .

gradient methods exist. The one presented here drives
the system accelerations in a direction as to satisfy
equation 17 with a force proportional in magnitude
and opposite in direction to the errors in the con-
straint conditions. Constraint function f are zero in
exact equations, but are normally non-zero, but of
small magnitude in approximate equations. The force
component F in equation 16 therefore is composed of
two terms, one the generalised force active on a spe-
cific coordinate due to externally applied actuation and
dissipative forces Q and the other a constraint force PJ
which is producing’a corrective action in a direction s0
as to modify the relevant acceleration so that equation
17 is satisfied. Equation 16 can be rewritten as:

g = —n%(Qﬁ P) | (18)

Q are of the same definition as in equation 8. F’J
are the resultant of all constraint force components in
direction q, that is:
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Pi=Z P

i=1,2.. (m-N)

(19)

where P is the i'th component of P_acting on the
i'th Kinematic constraint defined by equation 17. It is’
proportional to the instantaneous magnitude of the rele-
vant error function and in the opposite direction to it as:

o =-B gaqu—‘fa (20)

The proportionality constant B is a high number.
In the limiting case, when B thends to infinity the
error in f, will tend to zero and the product Bf will
become equal to the undetermined multipliers in the
Lagrange's equation in form of equation 9. The final
form of equation 16 becomes:

s~ 10.-8% i
QJ“‘n‘]J‘(QJ B};'a-aj-‘fl) @1)

is equivalent to equation 9. Equation 21 in matrix
form is:

G=m'[Q-8J"fF : (22)

where § is the acceleration vector, J' is the transpose
of the jacobian matrix of f, m™ is the inverse of the
mass or inertia matrix, Q is the vector of generalised
forces acting or dissipative, and f is the vector of
component errors in f, space.

This method is easy to apply and equations gener-
ated are simpler than the exact equations in any form.
There is a steady state error on constraints, that is
equation 17 is never zero, but the appropriate selec-
tion of B reduces the errors to magnitudes practically
negligible.

Comparison of Methods

Dynamics of a realistic system of inert bodies hav-
ing n degrees of freedom can be formulated by n sec-
ond order differential equations. The state of such a
system can be described by any nurnber of coordinates
greater than or equal to the total degrees of freedom.
If the number of coordinates defined, m, is greater
than the degrees of freedom n, a set of (m-n) alge-
braic or differential constraint equations exist, defining
the relation between the dependent coordinates. m is
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arbitrary. For example, in the free body approach, for
a systam having N moving bodies, each moving body
is assumed to have 3 degrees of freedom in plane,
leading to 3N second order differential equations and
(3N-n) constraint equations. Constraint equations can
be algebraic or differential. Solution of differential and
algebraic equations simultaneously develops great diffi-
culty in self-formulating simulator programs. J.5.Rai
indicated this problem in his Ph.D. thesis dated 1977,
aimed at creating a general purpose program to simu-
late the dynamics of planar linkages. His solution ap-
proach was further developed by L.Chonggao in his
Ph.D. work dated 1981 on the dynamic analysis of
planar linkages, where he presented a software called
DIFALG which can solve and integrate a mixed set of
differential and algebraic equatiens.lt is also possible
to differentiate the algebraic constraint equations once
or twice with respect to time to convert them into a
form similar to the motion equations to provide uni-
formity in the format of the resulting equations, but
automatic differentiation by computer is also a difficult
task.

The number of unknowns and hence the arithmetic
required in the solution of an algebraic equation can
‘be reduced by the method of approximate dynamics
developed by J.R.Jones. In his paper published - in
1973, a dynamic solution for the kinematic constraint
equations is assumed and the solution point is given
as a high velocity proportional to and opposite in di-
rection to its instantaneous error in reference to the
constraints. Jones and Backhouse used the same ap-
proach in the solution of motion equations for a robot
manipulator in their paper published in 1981.

Among the four methods briefly described, New-
ton's laws are direct and easy to apply. Generally ap-
plied to the free body description of the system, the
numerical values for each variable during the computa-
tion can be easily interpretted and related to the in-
stantaneous state of the system modelled. In addition
to the difficulties of handling the constraint equations,
application of Newton's laws on free bodies generate
too many equations to solve. Forward dynamics, that
is the calculation of the forces to provide a given set
of kinematic conditions for a linkage of N links and
J joints involves the simultaneous solution of (3N+2J)
algebraic equations. Inverse dynamics requires the nu-
merical integration of 3N second order differential
equations, inverting a 3Nx3N matrix at each iteration
to calculate the kinematics as a response to a given
forcing system. 3N second order differential equations
are broken into 6N first order equations in numerical
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integration. Though equations of motion are easy to
derive, their solution js difficult and costly on a digital
computer. On the other hand, the solution generates
joint reaction forces which may or may not be a re-
quirement. Reduction of the total number of differen-
tial equations of motion by eliminating some of the
3N coordinates through the use of generalised coordi-
nates can be achieved by the application of Hamilton's
or Lagrange's equations. s

In Hamilton’s approach the formulation of the
equations of motion requires the differentiation of the
Hamiltonian function with respect to the generalised
momenta and generalised coordinates. The resutting
equations are more complex than the ones obtained by
Newton's laws, but since it produces fewer equations,
numerical integration becomes easier. Integration of
Hamilton's canonical equations "give generalised dis-
placements and momenta. Generalised momenta are of
no use in simulation or control problems and are not
as meaningful as the generalised coordinates or veloci-
ties. To extract velocities from momenta requires addi-
tional algebraic manipulations. In setting up the Hamii-
tonian, first the Lagrangian has to be formulated,
therefore at this stage using Lagrange's method may
be more convenient.

In Lagrange’s formulation without multipliers, the
number of motion equations is reduced to @ minimum,
which is equal to the number of free generalised coor-
dinates or degrees of freedom. The derivation involves
the differentiation of the derivatives of the Lagrangian
with respect to generalised velocities with respect to
time. Equations become large but their number be-
coming minimum is favorable in numerical integration.
Forward dynamics requires the simultaneous solution
of n algebraic equations for an n degrees of freedom
system, Inverse dynamics needs the inversion of an
nxn mass matrix and the numerical integration of 2n
first . order differential equations simultaneously. la-
grange's formulation with multipliers generates m sec- .
ond order differential equations together with (m-n)
constraint equations for an n degree of freedom sys-
tem. m can be anything greater than n. In_this meth-
od, derivation of the equations becomes easier as
more coordinates are defined but this increases the
difficulty of solving them. Forward dynamics involves
the solution of (2m-n) algebraic equations. Inverse dy-
namics requires the inversion of a (2m-n)x(2m-n) ma-
trix and the integration of (3m-n) first order differen-
tial equations simultaneously. Lagrang. multipliers are
by-products of the solution and are measures of the
constraint forces.



Approximate formulation of system dynamics ‘dif-
fers from the exact formulations mentioned above. It
can be utilised whenever least mathematics is required,

to obtain faster solutions.
Formulation considerations

Unlike the closed loop structure of mechanisms,
robot manipulators are made up of open chains and
the formulation of their motion equations differs from
that of mechanisms. The dynamic principies lying un-
derneath are the same and motion equations can be
derived using equations 1-22. Derivation of motion
equations of open chain articulated linkages are sim-
pler than that of mechanisms as their degrees of free-
dom in respect to the number of moving links is
greater than mechanisms. For example, a 4 link all-
revolute articulation contains 3 moving links and has 3
degrees of freedom. If the tip of the uppmost link is
connected to the ground by a fourth revolute joint,
the system becomes a 4-bar mechanism which has
again 3 moving links but only 1 degree of movability.
Rule of thumb is that, for the same system, if the
number of differential equations increases, equations
become simpler. In,this respect, one should tend to-
wards using Newton-Euler formulation. The easiest
way of incorporating the system constraints is to dif-
ferentiate the Kinematic constraint equations with re-
spect to-time once or twice and put them into the
same format as the motion equations. The most
straightforward technique on the other hand is to use
the Lagrange equation without muitipliers.

Equations of motion can be generated to solve a
forward or an inverse dynamics problem. In the in-
verse dynamics problem, the kinematic state of the
system, that is, linear and angular positions, velocities
and accelerations of each link are given and the re-
quirement is to calculate the forces of actuation which
will keep this given kinematic state. As all the deriva-
tive terms are given, differential motion equations be-
come algebraic, where simultaneous solution gives the
actuation forces. Solution of a forward dynamics prob-
lem involves the solution of algebraic equations and is
therefore easy. In the forward dynamics problem, ar-
bitrarily definable magnitudes of actuation forces are
given and the resulting kinematics are sought. In this
problem the linear and angular positions, velocities and
accelerations of the links are all unknown. Initial val-
ues of positions and velocities should be given and
hence the initial values of the accelerations are calcula-
ble. Motion must be developed in. time in such a way
that velocities are always equal to the time rates of
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change of positions and accelerations equal to the time
rates of change of velocities. The solution of an in-
verse dynamics problem first requires the inversion of
a mass or inertia matrix and then a numerical integra-
tion and therefore is more difficult. The same set of

equations are used for both types of problems.

The derivation of motion equations are generally
laborious and the possibility of making mistakes in the
mathematics and computation is great. Once the com-
puter implementation whether digital or analog is
done, results should be checked for correctness and
accuracy. Checking should never be done by using the
same arithmetic approach used in the derivation of the
motion equations, to prevent any possible repetition of
mistakes. A kineto-static solution based on the D'alam-
bert's principle with graphical solution of position, ve-
locity, acceleration and force equations is probably the
best means of checking. This method is easy to under-
stand and apply, and as in the well illustrated books
by J.Shigley, first published in 1961 and by R.Norton,
published in 1992 are textbook materials now. A
scaled stick-diagram of the mechanism comprises the
position analysis. Velocity and acceleration polygons en-
able to grasp and get an insight into how the coordi-
nated motion of each link is developing at that in-
stant. As mathematics involved is minimum, the possi-
bility of making human mistakes is negligible. Sample
solutions must be carried out as many times as possi-
ble, enough to proove that the outputs of the comput-
er simulation are correct.

Another way of checking for correctness is giving
the conditions which will produce a known and expect-
ed motion profile. Examples to this are numerous.
Motion along a vertical slideway for example is a free
fall. Free motion of a link about a revolute joint is
harmonic, with the natural frequency of the link. To
hinder a dynamic link from moving in a multi degree
of freedom system, it can be brought Lo its tinirmurn
potential energy state and assigned a very large fass
which is initially at rest. This converts that particular
link to a virtual ground. A conservative system keeps
the level of its total energy, that is its -Hamiltonian,
constant. Kinetic and potential energy of individual
links come up with complicated profiles, but the total
kinetic and potential energies will vary in equal
amounts but of opposite polarity, such that the total
energy is conserved. If there are not any prismatic
movements to infinite displacements, variation in total
kinetic and potential energies will be periodic at a fre-
quency equal to the system. fundamental frequency.
Energy injection or dissipation complicates the problem
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and therefore should be avoided:in the first stages of
the tests for correctness. ‘

Formulation Examples

After a brief description of some well known for-
mulations used in the derivation of motion equations
in the previous sections, formulation examples for a
three degrees of freedom all-revolute system are given
here to display the flow of derivations and also facili-
tate a comparison between the resulting equations,
which all define the same linkage. The example system
is a triple pendulum composed of 3 bobs with masses
m1, m2, m3 and centroidal inertias 11, 12, 13 located
at the tip of all revolute binary links of lengths 11, 12,
I3 enumerated increasingly as outward from the fixed
link. The angular positions of the links are measured
as positive counterclockwise from the positive x axis
of a right handed cartesian frame, origin at the fixed
pivot and y axis in opposite direction to the gravita-
tional acceleration g. Example motion is free of exter-
nal forces or torques of actuation, hence system is

conservative. The system is initially at rest at a posi-
tion where all links are horizontal. System parameters

are given in Figure 1. Motion develops as shown in
this Figure. The profile of the angular positions in
time is shown in Figure 2 for the first 5 seconds of

the motion. _
Formulation by Newton-Euler Equation

The triple pendulum under consideration and the
free body diagrams of its 3 moving links are shown in
Figure 3. Motion of each of these free bodies can be
defined by applying equations 3 and 4 to each link.
Masses and mass moments of inertia of the links are
constant, hence the rate of change of linear momen-
tum becomes equal to the product of mass and the

0.5+
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o
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Figure 1.

coordinate velocities are shown aside.
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Figure 2.
figure 1 for the first 5 seconds of its motion.

linear acceleration of the mass. center. Linear accelera-
tions of mass centers and the active forces can be
separated into two components in x and y directions.
Similarly the rate of change of angular momentum in
equation 4 becomes equal to the product of the cen-
troidal mass moment of inertia and the angular accel-
eration of the link. With the forces shown in Figure

3, the application of equations 3 and 4 yields motion
equations for link 3 as:

m35('3 =F X (23)
m393 = Fcy - m3g (24)
1303 = T3+Fxl35in 63-Fol3Cos03 (25)

LINKAGE PARAMETERS:

L1=1.0m. m1=1.0 Kg. 11=0.0 kg-m»2
L2=1.0m. m2=1.0 kg. 12=0.0 kg-m*2
L3=1.0 m. m3=1.0 kg. 13=0.0 kg-m"2
INITIAL CONDITIONS: GEN. TORQUES:
. THETA 1=0.0 deg. T1=0.0 N-m.
THETA 2=0.0 deg. T2=0.0 N-rrg.
THETA 3=0.0 deg. T3=0.0 N-m.

THETA 1 DOT=0.0 rad/sec.
THETA 2 DOT=0.0 rad/sec.
THETA 3 DOT=0.0 rad/sec.

Chrono-cydggraph gf a triple pendulurn for the first 1.7 seconds of its motion, in 0.1 second intervals. System is released from rest
from an initial position where all the links are horizontal. System parameters and initial values of generalised -coordinates and



and for link 2 as:

mzXz = Fox-Fex - (26)
mayz = Foy - Formag ' @7)
kb2 = T2-t3 + Fuxl2Sin 62-Fiyl2Cos 62 (28)

and for link 1 as:

miX1 = Fax-Fox (29)
m1S/1 = Fay‘ Fey-mig -~ (30)
iy = Ti-T2+Fad 150 0)-Fyl1COSO; (31)

The relationship between the locations of mass cen-
ters can be defined by using the following constraint

equations:

13Cos 63 (32)
= X2+ S

X3=Xz2+ I3 @3)
y3 = yz + I35in 63

X2 = X1 + 12Cos62 ' (34)
y2 = y1 + 12Sin 62 (35)
X1 = 11Cos0, 7 (36)
y1 = 1;Sin 64 (37

Equations 23-37 together describe the motion of

. the whole system. These 15 equations must be simul-
taneously solved for accelerations and accelerations
must be integrated to get velocities and positions, To
convert the algebraic format of the constraint equa-
tions into a differential form like that of motion equa-
tions, they are differentiated with respect to time
twice to take the following form: .

X2-X3- 6335in O3=| 3é§C0563 (38)

Y-y 63l3Cos e3=l3é§sm 03 (39)
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. .2

X1-X2- 02125in 62=1202C0502 (40)
.“ 2 \

V1-V/2+821 2C05 82=12025in 62 (41)

. .2 f‘
X1+6111Sin 81=-1101Cos 6 (42)
. .2
¥1-6111Cos 8y=-101Sin 81 (43)

Figure 3.  Triple pendulum and its links in free-body representation.

Substitution of the components of the joint forces
defined by equations 23.24,26,27,29 and 30 into
equations 25,28 and 31 eliminates them from equa-
tions describing link rotations to yield:

%3(-mal 3Sin 83)+§3(M3l3C0s 63)+65(1 3)=
13-magl3Cos B3 (44)

X2(-m2l 2Sin 82)+y2(m2l 2C0s 82)+X3(-mal 25in 62)+

¥3(m3l2Cos 62)+62(1 2)=12-T3-(Mz+m3)glzCoso,  (49)
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%1(-m1Sin 81)+1(Mi11Cos 81)+X2(-mzl 15in 81 )+

V2(mal 1Cos B1)+X3(-mal15in 81)+ya(mal 1Cos61)+ 46) :

61(! 1)=T1~t2-(M1+mz+ma)gl1Cos 81

X coordinates (m.)

E
g -
>
-4 . 1 . )
0 1 2 3 4 5
Time-(sec.) - . - :
Figure 4.  Profiles of x and y coordinates of the mass centers of the

links of the triple pendulum shown in figure 1

Therefore, the resulting equations which describe
the motion of the system uniquely, are equations 38-
46. These equations can be solved for the accelera-
tions in X,, Y, X, ¥, X,. ¥,. 6, 6, and’8,, respective-
ly, requiring the inversion of a 9x9 matrix. Numerical
integration gives the profile shown. in Figure 2 for
link angles and the profiles shown in Figure 4 for the
locations of the pendulum bobs. . Linear accelerations
described by equations 38-43 are definitive of joint
force components. Figure 5 shows the x and y compo-
nents of the linear accelerations of the mass centres
produced by the integrating routine. Generation of
Joint forces is perhaps one advantage of the applica-
tion of Newton-Euler equations. Another advantage is
the simplicity in generating the motion equations.
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Y direction accelerations (m/sec”2)

Profiles of x and y components of linear accelerations of
the mass centers of the triple pendulum shown in figure
1. These acceleration components are definitive of the
joint forces.

Figure S.

Formulation by Lagrange's Equation

The system under consideration is of 3 degrees of
freedom hence derivation will end with 3 second order
coupled equations each describing the motion of one
degree of freedom or a generalised coordinate. Gener-
alised coordinates are selected as 6,0, and 6,, the an-
gles of links. Formulation starts with the derivation of
the Lagrangian according to equation 6. All 3 moving
links have masses and inertias, therefore the kinetic
energy term T has 6 components as translational and
rotational kinetic energy of each link summed up. V is
the total potential energy term. Potential energy in a
mechanical system can be due to elastic elements like
balance springs or due to the gravitational potential
field. These can either be included in the V of the La-
grangian or in the generalised forces Q of the La-
grange equation in the form specified by equation 8.
In the system under consideration there are no elastic
elements. 3 gravitational potential energy terms one



for each moving body are summed up to comprise the
V term of the Lagrangian. Positions of m , m,, m, aré
defined in cartesian coordinates as:

x1 = 1Cos01 -

(47)
yi = 115in 61
X2= IICOSGI"'I_ZCOSBZ
y2 = [1Sin 0;+125in 62 (48)
Xs = |1Cos 0y +12C0s62+13C05 03

(49)

- y3 = 1;1Sin 6+125in 62+135in 63

£

The derivatives of equations 47-49 with respect to.

time give the cartesian components of the linear veloc-
ity of each mass. Velocities of mass centers therefore

become:

vi=1 6 (80)
.2 2 .
vi =3 6 + I8 62 + 211126102C0(01-62) (51)
v§*12é2ﬁ+lzéz 2 65 ¥
=170 +15602+1503 + 211129192005(61-92)
‘ (52)

+ 21136183C0s(8:1-83) + 21230205C0s(B2-63)

The y component of each mass is definitive of its po-
tential energy with respect to the x axis passing through
the fixed pivot. Lagrangian can be formulated as:

2 .
L = 0.5(my-+mz-+mz)l0.+0.5(mz+ms)| 36+
2 . e
0.5mal303+(mz+m3)l 1128102C05(81-62)+msl 1l3
8162C05(61-83)+mal Ja020:Cos(02- 831405118, (53)
.2 .2

+0.5 1202+0.5 1383-(m1+mz+m3z)gl1Sin 61-(M2
+m3)gl2Sin 6z-maglsSin 63 '

Lagrangian given by equation 53 is processed
* through the differentiations of equation 5 to form the

left pand side of that equation. Generalised forcing
functions shown on the right hand side of equation 5
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are torques t,.1, and T, directly acting on the general-
ised coordinates. As generalised coordinates are de-
fined with respect to the ground, the reactions of the
torques act on the ground. In reality, the reaction
torque of a rotating actuator put to a joint acts on
the preceding link. Therefore in this manner, torque
on link 3 is 7, while net torques on moving links 1
and 2 become 1T, and 1,1, respectively. The mo-
tion equations are put into a form where only' the
terms directly related to coordinate accelerations on
one side of the equality sign and the remaining terms
on the other side as:

[M]. [4] = [Q+¢] | (54)

where M is a symmetric, square matrix called the
mass or inertia matrix. The concept of symmetry Is

given by:
M(iJ) = M(.) (55)

This equation is a very important means of check-
ing for correctness. § is the acceleration vector and
Q+¢ is the force vector where Q is externally defined
actuation and ¢ is the velocity dependent forces,
namely coriolis and centrifugal. The equations of mo-
tion generated by Lagrange's formulation are therefore

as follows:
For coordinate 6‘.

81[13(m;+mz+mz)+1 1]+82[(Mmz+ma)l 112C05(81-62)]

+63[m31 113C0s(81-63)] = -(mz+msz)l 1lzé§

. 2 (56)
Sin( 01-82)-mal 11363Sin( 81-83)-(M1+mz+m3)
ghiCos01+1i-12 '

For coordinate 0,
81[(mz+ms)l 112Cos(61 02)}+ell3(mz+ma)+l2)
+63[m3|a!3Cos(02-63)] = (mz+m3)! 1126?

(57)

o .
Sin( 81-62)-mal 2363Sin( 62-83)-(Mz+m3)

gl2CosOz+12-13
and for coordinate 6,
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61[mal 113C0s(61-63)]+62[mal 3 3Cos(82-63) ]+
Ball3ma+la] = mel138:Sin( 81-6a)+mal a6z (58)
- Sin{ 62-63)-m3gi3Cos 03+13 !

kinetic energy (N-m.)

To solve ‘these equations, both sides of equation
54 are pre-multiplied by the inverse of the mass ma-
trix to yield the acceleration vector on the left and
its numerical values on the right side of the equation.
Numerical integration of equations 56,57 and 58 give
the motion profile shown in Figure 2. Profiles for ki-
netic and potential energies and the total energy pro- 10-
files are shown in Figure 6.

Formulation by Hamilton's Equation

As the system under consideration has 3 degrees
of freedom, Hamilton's formulation will give 6 first
order differential equations to define its dynamics.
Generalised coordinates are 6.8, and 6, the same as
in Lagrange formulation. The first set of 3 equations
describes the generalised or conjugate momenta p . p,,
p, relating to the coordinates 0,.6,.6,, respectively, as .
functions of the generalised velocities. The second set .
of 3 equations describes system dynamics as defined time (sec.)
by equation 11. The Lagrangian of the system as

(=]

Potential energy (N-m.)
8 &

8

A
(=]

given by equation 53 is not an explicit function of 70~
time t and the potential energy terms incorporate only 50
" the terms due to gravity, and independent of veloci- r
ties. The Hamiltonian of the system is equal to the z 30
sum of total kinetic and potential energies as indicated 8 104
by equation 15. ' g.w. N
| .2 .2 -301
H = 0.5(my+mz+m3)1781+0.5(mz+m3)| 562+ g 50
.2 « »
0.5ml365+(mz+ma)l 11281 62Cos(81-6z)+ml 113 T3 3 4 3
(59) time (sec.)

. .. * .2
0163C05(61-03)+m3al 226203C0s(02-83)+0.51 16
. Figure 6.  Kinetic and potential energy profiles of the links

.2 .2 ) . . .
+0.5p62+0.5 583+ (m;+mz+msz)gl1Sin 81+(mz otom s o e e g;";:’y‘; n foure 1. As

+mz)gl2Sin 62+mzglsSin 63

Variation of the Lagranglan of equation 53 with pé=é1[(ma+m3)l 112Co5(61-62)]+

respect to the generalised velocities give generalised . )

momenta s: o Gell (> ma)1 5+ o[l 3Cos B2-63)] 1)
pr=billiH(mi+mzma) Hede(meemalita p3=61[mal 113Cos(61-83)]+

Cos(81-82)]+63[msl 113Cos(61-63)] (60)  6z[msl3 3Cas(éa-63) J+63l13+m3t3) (62)
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Variation of the Hamiltonian with respect to the
generalised coordinates, when subtracted from the
generalised forces, gives the time derivatives of the
generalised momenta as:
p1=t 1-12-(mz+m3)étéa| 112Sin( 61 "92)"m3é163 (63)

I413Sin( 81-83)-(M1+mz+m3)gl 1C0s 61

pz=t2-13+ (m2+m3)é1ézl 1125in( 91-92)~m3é2é3 64)

’ }3Sin( 82-63)-(mz+ma)gl 2Cos 02

pa=t3+m30; 6l 113Sin( 81 -03)+m3203

1 aSin( 82-63)-MaglaCoses (65)

Equations 60-65 are uniquely definitive of the sys-
tem dynamics. In numerical integration, upon a given

101
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Figure 7.  Profile of the generalised velocities and momenta for the

system shqwn in figure 1.
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set of generalised momenta, equations 53-55 yield
generalised velocities. Substitution of these calculated
velocities and a given set of coordinates into equations
63-65 yields the time derivatives of the generalised
momenta. Numerical integration produces the profile
of the generalised coordinates as shown in Figure 2.
The profile of the generalised velocities and momenta

developes as shown in Figure 7.
Formulation of approximate dynamic equations

The kinematics of the triple ‘pendulum under con-
sideration can be represented by 7 coordinates as:

q =[61,62.63.x2.¥2, x3.y3]' (66)

where 0 are the absolute angles of the links as meas-
ured positively counterclockwise from the positive X
axis, X, and y, are the coordinates of the mass cen-
ter of Tink 2 and x, and y, are the coordinates of
mass center of link 3. The system is of 3 degrees of
freedom and hence there are 4 constraining equations:

£y = Xzl 1Co861-12C08 62

fz = yzA1Sin 61-25in 62
: (67)
fa= x311C0561-42C0562-13C05 63 ‘

fa = y311Sin 61-125in 62-435in 63

Magnitudes of the error functions in equation 67
are never zero in approximate dynamics, but can be
reduced to magnitudes of fractions of a millimeter,
which are negligible. The transpose of the jacobian
matrix becomes:

11Sin 81 41Cos 01 14Sin 9y 41Cos0,

I12Sin 8z 42C0s62 125in 8z 42C0s62
. (68)
0 0 1sSin 83 43C0s63
JT=

= 1 0 0 0

0 1 0 0
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The vector of generalised external forces is

T1-T2-M1gl1Cos 6
| 12-13
13
Q= 0 ; (69)
-mzg
0
-m3g

Substitution of equations 68 and 69 into equation
21 gives the following 7 second order equations to

describe the system dynamics:

By=(t1-12-m1gCoS 81y - laf hSin 81 0)
(f 1+F 3y 1Cos 01 (f 2+f 4)}

O2=(12-13) |-/ 2Sin Bz(f 1+f 3)- (71)
12Cos 02(f 2+£ )}

By=13/la-3/ lof laf 3Sin &rlsfaéosea) (72)
¥ = -Bf1/mz l - (73)
y2=-g-Bfmz : (74)
%3 = -Bf3/ms o (75)
y3=-g-Bfdms | (76)
where |, is the mass moment of inertia of link 1

about the ground pivot. Equations 70-76 and the
error functions of equation 67 form an equation set
- simpler than any form of exact equations. Integration
of these equations are computationally not so difficult,
but due to the existance of undetermined errors, it
may take longer than necessary to integrate a set of
exact equations. B should be assigned a large value. In
the extreme, when 3 tends to infinity, the error func-
tions of equation 67 tend to zero and the solution ap-
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proaches to that of exact equations of ‘motion. One
difficulty likely to occur is that the solution under the
control of infinitely large corrective constraint forces
tends to go out of control, displaying high frequency
and high amplitude oscillations on error functions. To
prevent any such oscillations 8 must in practise be kept
at moderate values, analogous to the proportional gain in
a closed loop control system. This, however, increases
the magnitude of errors which may go beyond tolerabie
limits. To keep B high and eliminate oscillations, a
damping component can be included in the constraint
force equations to transform equation 20 into:

Pj=-8 3 (fi+fi) (77)

where y is an appropriate constant damping coeffi-
cient, This damping term does not affect the dynamics
of the system, but only, dampens the constraint forces
which is analogous to the derivative gain in a closed
loop control system.

Profiles of coordinates obtained from the integra-
tion of equations 70-76 in the presence of the con-
straints of equation 67 are the same as that shown in
Figures 2 and 4, without any visible or functional er-
rors.

One important aspect in the selection of the tech-
nique to use is the time of computation required. As
the number of equations increases, their numerical in-
tegration takes more time. Among the abovementioned
techniques, the Newton formulation has produced 18
first order equations to-integrate. Approximate dynam-
ic formulation generated 14, Hamilton and Lagrange
formulations -generated 6 first order equations each.
To integrate the equations defining the same physical

* system, with the same time duration and incrementa-

tion and with the same accuracy requirements, Hamil-
ton and Lagrange formulations require almost the
same amount of computation time. Approximate dy-
namic equations require about 1.3 times more and
Newton formulation requires about 25 times more
computation time. When the number of equations are
tripled, one should expect a considerable amount of in-
crease in computation time. The reason approximate
dynamics requires such a short time is because it con-
tains. the least amount of mathematics. This makes it
an efficient technique and with the least amount of
mathematics involved, it becomes most suitable for an-
alog computation or for use in preparing analog mod-
els for model referenced adaptive controllers.



Application Softwares

The first self-formulating program for the dynam-
ics of mechanical systems was probably DYANA (Dy-
namic Alyser Programmer) produced by the: Gt ol
Motors Company. It was developed in 1958 to simu-
late one dimensional systems. Later, it was developed
to include user-defined holonomic constraint equations.

From 1968, a general purpose program called
DAMN (Dynamic Analysis of Mechanical Networks) was
developed to simulate planar linkages by D.A. Smith
and M.A. Chace at the University of Michigan. This
program can handle dynamic or Kinematic, constrained
or unconstrained systems undergoing finite or infinites-
imal displacements. Systems up to 30 links connected
to each other by lower kinematic pairs can be mod-
elled. Chonggao indicates a similarity between the way
DAMN defines the linkage topology and Branin's tech-
nique for the automatic modelling of electrical net-
works in his 1981 study. Equations of motion are de-
rived using Lagrange's formulation with muitipliers.
-'The number of equations developed:is equal to the
number ‘of joints in the system. The constraint forces
are calculated by an iterative determination of La-
grange multipliers. The program has a facility to ac-
commodate user-defined forcing functions. Results of
‘integration can be printed out or presented in form of
graphs or simple mechanism stick diagrams drawn at
a certain position.

DRAM (Dynamical Response of Articulated Machin-
ery) is the second generation of DAMN. it uses
D'alambert's  principle to define the equations of mo-
tion. DAMN and DRAM are powerful dynamic pro-
grams which are commercially available. At the Central
Electricity  Generating Board of Britain, DRAM has
been further modified and divided into 2 sections
called AMP2D and AMP3D which can simulate planar
and spatial mechanisms. respectively. These programs
“can accomodate user-defined forcing functions and im-
pact type forces, which are very difficult to integrate
“digitally. They both can solve forward and inverse dy-
namics problems. '

~Another commercially available program originating
-from. the University of  Michigan is ADAMS, Almost
" during the same period, between 1968 and 1971 an-
~other general purpose program to simulate mechanical
networks named IMP (integrated Mechanisms Pro-
gram) was developed by J.J. Uicker Jr., D.F. Liver-
more and P.N. Sheth at the University of Wisconsin.
IMP is based on the earlier work of Livermore, con-
cisely described in his paper published in 1967. It was
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further developed by Sheth as a Pheb hesis sl Tinal

fy pul intw ¢ connuerctally avadable Wbl pupuone ga s
gram as reported by Snheth and Uicker i et paper
Pl e DU M can Disdio planar o sptial,
multi-degroes of freedotn, ot loop: chains, Hhe pro:

gram uses the concepts of Graph Theory to define the
mechanical network and formulates the constraint
equations from the network topology. Constraint equa-
tions are used to generate a stiffness matrix which is
substituted into the Hamilton's equations. The pro-
gram can work in kinematic, static and dynamic
modes, and hence can do static force analysis of struc-
tures as well, It can calculate joint forces using virtual
work. Springs and dampers can easily be included into
the simulation. Any other forcing functions can be de-
fined externally. IMP has a powerful graphics package
which can draw graphs or pictures of the network
simulated and is commercially available.

Many other general purpose computer programs
exist such as MEDUSA prepared by T.J. Lehman at the
lllinois Institute of Technology, VECNET developed by
G.C. Andrews and H.K. Kesavan at the University of
Waterloo, SKINAL developed by Paul and Hud at the
University of Pennsylvania, KIDYAN developed by Brat
at the ‘Czech,Technical University, DAPL developed by
G.T. Rooney and J.S. Rai at Liverpool Polytechnic and
CADOM developed by H. Rankers at Delft University
of Technology.

CATIA ‘is an intricate and voluminous general pur-
pose mechanisms simulation software prepared by a
team of researchers in 1983, at Dassault Systems,
France. It can handle both open and closed loop link-
ages. It has a graphics package which can present
mechanisms in wire frame or detailed polyhedra repre-
sentation and is graphically interactive. Basic robot
tasks and related operations can also be implemented
onto the simulation.- While in motion, continuous
checking of geometric incornpatibilities and collisions
are carried out and avoided. !t can accomodate revo-
lute and prismatic pairs. Any other joint types required
are represented by a combination of these. Robot sim-
ulations allow up to 20 joints and robot systems up
to 20 robots.

Another general purpose dynamic software pre-
pared by Gérir as an M.Sc. dissertation in 1989, ini-
tially aiming the simulation of internationally accepted
comissioning tests of electric towers, can simulate the
small and large scale displacements of structures due
to external loads and material failure. In this software,
the topology is described by the initial positions of the
Joints and stiffnesses between them. Systein equations
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are automatically generated using Newton's laws, Mo-
ment equations for links are eliminaled by convar'ting
the system into egivalent masses concentrated at the
joints. This layout enables the simulation of mecha-
nisms and open chain linkages composed of all-

revolute binary links also.

All of these programs are prepared to analyse
mechanisms in general. Therefore, they are complex,
slow and costly to use. Although many of them can
analyse robotic manipulators, simpler programs were
also made for only open-chains fontaining lower kine-
matic pairs. The versions used ‘for control purposes
like model referencing adaptive control aim towards
real time solutions. A program prepared at the Univer-
sity of Florida by M.M. Thomas, in 1981 defines a 6
degrees of freedom spatial open chain linkage with re-
volute joints only, with influence coefficients. Linkage
dynamics are formulated by direct application of La-
grange's equation to do a forward dynamic analysis.
Driving torques are assumed to be produced by rotary
actuators placed at the joints. This program has limited
applications as It can handle only all-revolute systems.

A robot simulator program developed by R. Feath-
erstone of the University of Edinburgh does the in-
verse dynamics of n degrees of freedom articulated
spatial open chains with revolute or prismatic pairs. As
reported in- 1982, the equations of motion are derived
by Newton's laws applied for each link. The forcing
functions at the joint axes are defined by the user in
terms of coordinates, coordinate velocities and time.
The program contains two control modules as coordi-
nated and uncoordinated joint position control systems.
It has a powerful graphics package for data output.
B.K.P. Horn has described and formulated kinematics,
statics and dynamics of a 2 degrees of freedom, all-
revolute planar open chain in a well-explained paper
published in" 1979, where, kinematics is defined by
vector chains. A static force analysis using Newton's
first law is facilitated. Dynamic motion equations are
derived by Lagrange's formulation.

The efficiency of digital simulation has been exam-
ined by Walker and Orin in their paper published in
1982 on the basis of the total number of mathemati-
cal operations required. The.equations of motion for
an n degrees of freedom spatial articulated open chain
with prismatic and revolute joints are derived using
Newton-Euler formulation. The constraint forces and
moments occurring at joints are eliminated to simplify
the solution. They also have presented techniques for
solving joint accelerations, '

116

Programs developed to simulate a variety af chain
conligurations  oitaln conslialnl - equations volving
the types of movability of the individual joints. These
equations are made to change and adapt to the condi-
tion to cater for the required constraints. They can be
algebraic or differentjal, and can be solved either si-
multaneously with the differential equations of motion
or kept in a correct state by iterative techniques.

Conclusion

Manipulator dynamics and control has become an
important field of research. Formulation of motion
equations is the first step in developing skills in con-
trol and sense of magnitude and understanding of the
dynamic behaviour. Motion equations all stand on
Newton's laws. Llagrange and Hamilton equations,
which are derivable from Newton's laws, aim simpler
to understand methods by dealing with energies. Gra-
dient methods aim approximate solutions at which the
solution is decending in the field of error functions
along the steepest path, requiring the least amount of
arithmetic for modelling, perhaps most suitable for an-
alog modelling.

The theory underlying mathematical modelling is
very old and related literature is extensive. All the the-
oretical work is now textbook material. What is exist-
ing less is application examples on open chain articulat-
ed linkages or more specifically, robot manipulators.
Application of basic knowledge to open chains is not
difficult, but needs know-how of its kind. This paper is
aiming to be didactic, briefly presenting the basic knowl-
edge covering 4 different kinds of formulations and
application examples on the same mechanical system.

Triple pendulum is a planar system and has 3 de-
grees of freedom. When actuated by joint torques, it
can be converted into, a plane positioning manipulator.
Normally a robot manipulator should be spatial with
more degrees of freedom, but a triple pendulum was
selected to display the application of the techniques as
it is simpler and hence more instructive. Using the

~ presented techniques ‘and following the same proce-

dure of formulation and with a bit more of labour,
spatial systems can also be modelled.

No effort has been put into the simulation or
mathematical  modelling of drive systems as they are
big problems in their own. Controlied torques calculat-
ed are normally substituted in place of the torque ex-
pressions in motion equations. This in turn completes
the system into a more robot-like appearance,
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