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On the applicability of the linear discrete-time model
and system identification by the least squares method

S. KAPUCU, S. BAYSEC

Although system identification is a widely used method in obtaining a
simple and empirical model for system response, material published on its tech-
nological aspects is scarce. This paper intends to compile practical aspects
which could be useful in application of identification by looking at the time-
step response of the system. An analogue computer model of a second order,
linear underdamped system is excited by a pseudo-random binary signal gener-
ated by a digital computer and the response of the system is recorded digitally
in discrete time. The coefficients of a discrete-time model are calculated as to
minimize the cammulative error between the position data recorded experimen-
tally and that calculated by the model. Dependence of the model coefficients
on the amplitude and discrete-time step of the excitation is clarified on an ana-
lytical basis and verified by experiments. Finally, the sensitivity of the model to
variations in excitation frequency is searched in amplitude and phase lag, and
sample frequency-response curves are presented.
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1. Introduction

Mathematical model or equation of motion of a mechanical system describes
the relationship between the actuation forces applied and the resulting motion and
uniquely defines the position and effect of each system variable in this relationship.
Mathematical model, therefore, contains all the information on how to control the
system to follow a required motion pattern, and hence, it is an indispensible tool in
designing control strategies. It can also be used to simulate a real test rig on which
ideas on control and motion design can be tested. Change of system parameters
like masses, mass moments of inertia, locations of mass centers, etc. can easily be
done in a simulation program whereas on a real rig, this comes up to be costly and
time consuming. Exact mathematical models of mechanical systems are derivable
by energy methods like Lagrange, Hamilton, and Newton-Euler formulations. Ex-
act equations of motion are in form of simultaneous linear or non-linear differential
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equations of order at least 2. Minimum number of equations to define the system
dynamics is equal to the degrees of freedom and can be obtained by Lagrange’s
formulation without multipliers [1, 2]. Simulation works modelling the dynamics
of mechanical systems like mechanisms, robot manipulators, etc. are numerous
[3]. One great difficulty in using equations of motion is in their solution. Realistic
equations covering all the related non-linearities like that due to the mechanism
kinematics, backlash, Coulomb friction, and magnetic hysteresis have no closed
form solutions. Numerical solutions yielding the profile of the motion take too
much time and are generally not suitable for real time solution requirements like
model referencing in control strategies or real time simulators. Analogue computer
implementations of the equations are capable of producing real time solutions but
they are not too much accurate. Further, analogue computer patching is a tedious
task and number of arithmetic making modules on such a computer is always lim-
ited [4]. Another difficulty in the utilisation of exact equations of motion is that
all the system parameters like masses, mass moments of inertia, stiffnesses, damp-
ing coefficients, and physical dimensions are to be explicitly known beforehand.
For measurement, generally, system needs be dismantled into its main components
where each parameter of the system is lumped. In applications where the diffi-
culties mentioned can not be overcome, system identification becomes very useful,
generating an empirical mathematical model for the response of the system. The
mathematics of the empirical models are so simple that they can be implemented
digitally in or near real time for most applications.

In system identification, a mathematical model which may represent the sys-
tem is defined and an appropriately chosen command signal is applied to the actual
system. Response of the system is recorded and a parameter identification of the
model that best fits the obtained experimental data is made. If the system is under
continuous functional operation, the. normal operating data can also be used. A
validation test is generally necessary to see the degree of compatibility between the
model and the system. Proposed model can be in frequency or time domain, in
continuous or discrete time. In time domain modeling, weighing function, differ-
ence equation, and state variable equation are the choices, among which selection
is done due to the identification objective and the types of input-output data [5,
6]. These models are mathematically simpler than the exact equations of motion
of the system though presumably not as so accurate. Results of extensive experi-
mentation on system identification have been presented in the work of Kapucu [10]
which have been the basis for this paper. This paper aims to bring a clarification
to one such model, the Linear Difference Model with both mathematical and ex-
perimental approaches towards understanding “how dynamic” the model is, and
hence, “how safely” it can be used, by means of frequency response.
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2. Representation of a dynamic system by a linear difference equation

A linear, time invariant discrete system with one input u(k) and one output
y(k) can be characterized by a general n-th order difference equation {7, 8] as:

y(k) + ary(k — 1) + - - - + any(k — n) = bou(k) + byu(k — 1)+ - - - + bpu(k —n) (1)

or

n n

y(k) + Y agy(k —3) =D _byulk - 5), )
j=1 j=0

where k is an integer index counting the discrete-time steps and a; and b; are real,

constant coefficients.

Independent variable for Eqs. (1) and (2) is k, standing for discrete time.
Real time difference between two successive commands and similarly two response
recordings is 7. Order n of the*equation is arbitrary. Normally, accuracy and hence
the reliability of the equation increases with n, but this increases the computation
time of model coefficients and y(k). In the work reported here n is taken as 2 in
the modeling of second-order linear mechanical systems where input is a force and
output a displacement. Eq. (1) for this problem simply indicates that the position y
of the lumped mass at the end of k-th discrete-time interval of duration T is in direct
proportion with the two previous positions that have occurred 1 and 2 discrete-time
intervals ago and with the force values that have been applied 1 and 2 discrete-
time intervals ago and the current value of the applied force. Coefficients of Eq. (1)
are the proportionality or influence coefficients which certainly are related to the
lumped parameters of the mechanical system modelled. Generation of magnitudes
of these coeflicients is called the model identification.

3. Model identification by least squares

Equation (1) contains (2n + 1) unknown coefficients and hence they can be
calculated by the simultaneous solution of this many equations. Results of such
an operation will generally be not so accurate. The usual practice therefore is
to collect greater numbers of input and output data and apply the least squares
technique to minimize the error between the actual discrete data output collected
and what the proposed model generates. Real system can be actuated by a variety
of inputs. Step input is one type which is widely preferred and hence in this work,
the system is actuated by a pseudo-random binary signal, abbreviated as PRBS.
The input-output vector x(i) containing (2n + 1) elements is defined as follows:

{t(l) = [_y(k - 1)7 L] —y(k - ’I‘L),U(k), v "u(k_ - n)]T’ (3)
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where i is a counter enumerating the equations in form of equation (3), i.e. starting
from 1 and reaching to the value (2n + 1) at minimum. The parameter vector 6
containing (2n + 1) elements is defined as follows:

0=[al,az,...an,bo,bl,...bn]T. @)

Then, the least squares equation becomes
y(i) = 27 ()0 + e(3), (5)
where e(4) is the error which is required to be as small as possible. For improving
accuracy, a large number N of data for input and output are collected. Substitution

of them generates a system of equations, as many as the number of combinations

of (2n + 1) in N which can be written as follows:
L.

Y =X6@+ E, (6)
where
Y =[y(n+1),y(n+2),...,y(n+ N)]", (7)
E=le(n+1),e(n+2),...,e(n+N)]T, (8)
and
—y(n) ce. —y(1) uwn+1) ... wu(l)
—y(n+1) oo =y(2) u(n+2) ... u(2)
X = —y(n+2) oo =y(3) um+3) ... u(3) )
—y(n+.N—1) —y&N) u(n:i-N) u(N)

From Eq. (6), 6 can be estimated by means of least squares that minimize the error

function J,
N+n
J= Y E*k)=ETE=(Y -X8)"(Y - X0) (10)
k=n+1

i.e. the parameter vector @ composed of the coefficients of Eq. (1) is determined

from
oJ
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This yields the vector of the optimized values for the unknown model coefficients
0= (XTX)"1XTy. (12)

In the experimental work presented here, N is arbitrarily selected as 42.
T in Egs. (3, 4, 5, 7, 8, 10), and (12) stands for ‘transpose’ and not for the
incremental time T'. :

4. The second-order system

Simplest mechanical system, as seen in Fig. 1(a), can have an inertia element
m movable in a single coordinate y(t) under the effect of position and velocity
dependent forces and an externally applied arbitrary actuation force u(t). Position
dependent forces can be represented by the force of a spring with stiffness k& and
the velocity dependent forces by the force of a dashpot of damping coefficient c.
A great many realistic mechanical systems can effectively be assumed to have this
format. Position dependent forces may include the proportional components of the
actuation forces generated by PD controllers. Similarly, the velocity dependent
forces may include the Coriolis and centrifugal forces if any, forces due to viscous
damping, and the derivative components of the actuation forces of PD controllers.
System may contain more than one inertia element each moving in a non-linear
relationship with the input like a 4-bar mechanism, but may still be considered
linear if it is functional within a small part of its operation range. Therefore even
though the system of Fig. 1(a) is quite simple, it is fundamental and didactic in
understanding and appreciation of system identification.

Differential equation of motion of the system shown in Fig. 1(a) is

my + cy + ky = u(t). (13)

u(t) .
y.3.50) (im) D 50 my«)
1
DEL <|

@ ®)

Fig. 1. (a) A simple, single-degree-of-freedom second-order linear mechanical system,
(b) analogue simulation circuit of the same system. Time constants of the integrators are
1 s with zero initial conditions.
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This equation in time domain can be very complicated for a multi-body system like
a mechanism and will probably have no closed-form solution. Representation of
the same input/output relationship in frequency domain has been regarded easier
to solve and also to understand. Transfer function G(s), derivable from Eq. (13),
defined as a ratio of system response to input in frequency domain is

Y(s) _ 1/m

Gle) = U(s) ~ 82+ (c/m)s+k/m’

(14)

s is an indication for a function or signal to have different values at different
frequencies. Equations (13) and (14) are continuous functions.

The dynamic behaviour of a system can be predicted through its frequency
response. For example, the Bode plot shown in Fig. 2 indicates that the system
is damped, second-order system with resonant frequency of 0.138 Hz. Its damping
ratio is 0.5, and it will follow the command signals without too much distortion
up to 0.159 Hz where phase lag becomes 90 degrees. Bode plot shown in Fig. 2 is
obtained by direct measurement of the response of the analogue simulation given
by Fig. 1, scaled to the following magnitudes: m = 1kg, k=1 N/m,c¢=1Ns/m.
Amplitude of response, X, is in direct proportion to the amplitude of the actuation
force U:

X 1

Uk~ = [wR)? + (26wfan)

where w is the frequency of the forcing function, wy, is the system undamped natural
frequency, and £ is the damping ratio. Therefore, the amplitude of the excitation
signal used in the determination of frequency response is not important unless the
displacements are within the physical limits of the system.

(15)

5. Description and purpose of the experimental work

Although system identification is a well known subject, number of publications
presenting its know-how is relatively scarce. Purpose of the experimental work
presented in this paper has been to display and experimentally verify some practical
aspects on the following items:

i) to present an analytical solution for the discrete-time model of an under-
damped system using transformations, which yields a mathematical solution for
model coefficients;

i1) to do the identification of the system handled in (i) experimentally by using
the method presented in Section 2;

i11) to repeat the experimentation of step (i1) by applying actuation forces of
different frequencies and amplitudes to display their effect on model coefficients;
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Fig. 2. Experimentally obtained frequency-response characteristics of an analogue sim-

ulation representing a second-order system having a 1 kg mass, 1 N/m spring stiffness,

and 1 N s/m damping coeflicient. Amplitude of excitation is immaterial provided that
the amplifiers of the simulation circuit do not saturate.

iv) to indicate whether the discrete-time model represents definitive system
dynamics at frequencies around and beyond resonance via frequency response tests
to verify the correctness of the system identification. System tested is an analogue
simulation as shown in Fig. 1(b). For control, it is connected to a Macintosh FX
IT computer via a 12 bit MacADIOS (Macintosh Analog-Digital Input-Output Sys-
tem) interface card. Analog circuit is actuated by PRBS (Pseudo-Random Binary
Signal) of various amplitudes. Unit scaling is such that the voltage of 1.0 V cor-
responds to a force of 1.0 N on the mass. Mass, spring constant, and damping
coefficient are unity hence the coefficient potentiometers on the position and veloc-
ity feedback and actuation force lines are set to unity. PRBS is a continuous set
of step commands produced at T second intervals. Polarity of the steps is random
and the amplitudes arbitrary, but constant. In experiments, amplitudes are set to
moderate values which do not cause the amplifiers of the analogue simulation to
saturate. The discrete-time interval T is also arbitrary. However, to get reasonable
results, the applicable range for 7' can have some limits.

6. Analytical solution for model coefficients

A damped mechanical system contains inertia, stifiness, and damping elements
and its transfer function is given by Eq. (14). Roots of its denominator are:
¢ c? k

2= E Ve T (16)
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In underdamped systems, restoring forces are more dominant than damping forces,
that is ¢?/4m? is less than k/m and the roots given by Eq. (16) are complex. Free
vibration of such a system displays the amplitude reducing in time. The resonant
frequency of the system is

k c?
wqg = —77—2 - W (17)

Substituting the frequency of damped oscillations into the expression for the roots,
81,2 = b+t iwg, (18)

where b = —c/2m is also a system parameter. Discrete-time representation of
the system response is the transfer function in z-domain and is obtained by z
transforming the transfer function in s-domain, operated on by the zero order hold
as follows:

_x. =T m
6(2) = 2lGo(s) - 60 = 5[ . (19)

The term to be z-transformed in Eq. (19) can be converted into the forms available
in tables [7, 8] by separating into partial fractions

A _a A Bs+C
G(z)—az[l—e ] z[s+(s+b)2+w3]’ (20)
where A = 1/(b% + w?), B = —A and C = 2bB. With further algebra,
Alz-1 1 s+b b Wy
=2 ) L. S A AN, . 21
G2) m[ z ] z[s (s +b)2+uwi wd(s+b)2+w3] 1)
Completion of the transformation gives
_Y(z) Afz-1
Glz) = U(2) _m[ z ]
z 22 — 26T coswyT b ze~ 9T gin w T
z2—1 22—2ze T coswyT +e 2T  wy 22 —2ze~ T coswyT + e~ 2T |
(22)
Cross multiplication of Eq. (22) yields
22Y (2) + [-2e 7T coswyT)2'Y (2) + e 2TV (2) =
_ A4 —bT b . 1
=— [1 —e " (coswaT + oa sin wdT)] 2 U(z)+ 23)

+ 4 [e_"T(l —coswgT + b sinwdT)] 22U (2).
m wq
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This equation is of the Same structure as Eq. 1, which, for n = 2, takes the following
form:

y(k) + ary(k - 1) +asy(k —2) = bou(k) + byu(k — 1) + bou(k - 2). (24)

Equating the coefficients of their corresponding terms, the coefficients of the discrete-
time model of the underdamped system come up as:

a) = —2e‘choswdT, Qs = e‘2bT, by = 0,
_1 —bT b .
b .= i [1 — e " (coswaT + ‘Td sin wdT)J, (25)

by = -i[e“”T(l —coswyT + s sin wdT)] .
k wa

Powers of 2 imply the relative positions of the associated terms on the time qgzis.
For the discrete-time model of n = 2, 22 termg correspond to the current time, 2!
and z° terms correspond to the time of T' and 2T seconds before the current time,
respectively. For the system under consideration, m = 1 kg,e=1N s/m, k=1

Coefficient Values

L] M ¥ v L] 1) L) v T

0 1 2 3 4 5 6 7
Discrete Time (Seconds)

Fig. 3. Coefficients of a second-order discrete-time model for a second-order linear un-

derdamped system as a function of discrete time T, resulting from a theoretical analysis.

Mass of the system is 1 kg, spring stiffness is 1 N /m, and damping coefficient of a dashpot
- parallel to the spring is 1 N s/m.
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solution for T = 0 is physically trivial. Eq. (25) indicates that profile of a; starts
from the value of —2, displays an oscillation with frequency wg, and approaches to
zero in T'. as starts from 1 and exponentially reduces to zero in T'. b; and bz both
start from zero and display oscillations with frequency wq and decay to 1/k and
zero, respectively. A lightly damped system will respond to a command swiftly
and attain the commanded position after a few transient oscillations. Therefore,
as the incremental time gets longer, the effect of previous commands and position
recordings become negligible on the current position. At the end of a long T', the
mass displacement simply becomes equal to the static deflection of the spring and
it comes to rest.

7. Dependence of model coefficients on the amplitude and discrete
time of the PRBS excitation signal

Analytical solution for model coefficients given by Eq. (25) indicate that they
are dependent on the discrete time of the PRBS excitation but not on its ampli-
tude. They are functions of the lumped parameters of the system. Once these
parameters are known, coefficients can be calculated for any excitation frequency.
But generally, the problem emerges in the opposite sense, system parameters are
not known and model coefficients are required to be experimentally determined. At
this point, assuming that PRBS will be used to excite the system, the problem of
deciding on the discrete time and the amplitude of the excitation signal comes up.
To see the picture, the model coefficients of the analogue computer simulation are
experimentally determined with various discrete-time durations at three different
amplitudes of the exciting PRBS. Results are shown in Fig. 4. PRBS is nothing
than a series of step signals with random polarity. The steady-state response of
a second-order system to a step input is a step displacement equal to the static
deflection of the spring. Similarly to frequency response, one intuitively expects
that the amplitude of the PRBS should not effect the coefficient values. Fig. 4
(a), (b) and (c) show the coefficient values obtained with 0.25, 0.5, and 1 volt am-
plitudes, respectively. They all show the same profile up to about T' = 3 seconds
and further, these profiles show a good fit to the analytically obtained profiles of
Fig. 3. However, experimental and analytical coefficient values differ from each
other at higher discrete-time values, corresponding to lower excitation frequencies.
Experimental curves show a fall in the profiles of a;,a2 and b, at T' = 7 fwg and
then try to recover towards the analytical profiles. It is clearly seen that the re-
covery is faster if the system is driven by a higher amplitude excitation. Using
excitation signals as high as possible may appear a rule of thumb unless any part
of the system, mechanical or electrical, does not saturate and induce extra non-
-linearities. This value, i.e. T = m/wg, is equal to a half of the natural vibration
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Fig. 4. Profiles of the experimentally obtained model coefficients for the system referred
to by Fig. 3. PRBS amplitudes used are 0.25 V in (a), 0.5 V in (b) and 1 V in (c).
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period of the damped system. An alternating actuation with the period twice this
value brings the system to resonance. This point is where aliasing problems dom-
inate. Normally, a mechanical system should not be driven at frequencies near or
beyond resonance. Shannon indicates that sampling must be done at a rate five to
ten times the highest frequency, thought to be present if aliasing problems are to
be avoided [9]. Minimum allowable sampling frequency is defined in [8] as follows:

Ws = 2wq (26)

for an underdamped second-order system. For excitation by PRBS, sampling
should be done at 7/(2wq) s intervals. According to Eq. (26), the parts of the
curves in Fig. 4 after T = 1.814 s are not reliable. The drop in the coefficient
profiles is within this unreliable region. Experiments show that drop in the pro-
files is due to the damping and no such a drop is observed in the identification
of undamped systems. This point needs further study and explanation. In the
characteristic system identification problem, system parameters and hence wqy are
unknown. The procedure should be to keep the discrete time as low as the in-
strumentation allows, and to check whether the discrete time used is within the
7/(2wq) limit, use Eq. (25) to get an estimation for system parameters and hence
wq. Repeating the identification test at various discrete-time values to get a profile
similar to that shown in Fig. 4 would be the best.

An instant problem is to know whether the discrete-time model and the ex-
perimentally obtained coefficients are fully definitive of the dynamics of the sys-
tem or not. The uncertainty here can be clarified by looking at the frequency
response of the discrete-time model. The model is acted upon by a sinusoidal
force and the amplitude of the output motion and its phase lag from the ex-
citation are directly measured from the plot of the output motion. To see the
influence of the discrete-time values, three different sets of coefficients are used,
taken at 0.083, 0.5 and 1 s, all of which are within the reliable region. Coeffi-
cients are experimentally identified as: a; = —1.914204, az = 0.920750, bo =
= —0.000410, b; = 0.002587, by = 0.003890 for T' = 0.083 s, a; = —1.427500, a2 =
= 0.612530, by = —0.000080, b, = 0.096777, by = 0.087309, for T = 0.5 s, and
a; = —0.813160, as = 0.375270, by = —0.000300, b, = 0.322237, by, = 0.237742
for T = 1 s with PRBS amplitude of 0.5 V. Fig. 4 implies that same results would
be obtained with any other amplitude. Frequency response of the models are given .
by the Bode plot shown in Fig. 5. The frequency response of the models behave
independently of the amplitude of the excitation sinusoid, as expected. The am-
plitude used in the tests that produced Fig. 5 is 0.5 V. Repetition of the same
test with a 1 V amplitude sinusoid produced exactly the same gain and phase lag
profiles. Plot of gain in Fig. 5 shows a-good fit to that of Fig. 2. Further, mod-
els with coefficients identified at different time steps show the same trend in gain.
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Fig. 5. Bode plot showing the frequency response of the discrete-time model for the

second-order underdamped system referred to in Fig. 2, with experimentally obtained

coefficients. To show the effect of the discrete time, coefficients obtained with 3 different

discrete-time values are subjected to frequency response tests. Amplitude of the sinusoidal
excitation is 0.5 N.

However, it must be noted that due to aliasing problems, higher frequency excita-
tions have been impossible for longer time step models. Fig. 5 implies that models
obtained by different time steps show a variation in phase shift. It must be noted
that discrepancies start to dominate at higher frequency ranges where neither a
mechanical system nor its model should be operating. The reason for the apparent
phase-shift discrepancies is that the position and forcing on the system 1 and 2
time steps before the initiation of the solution are not known and so assumed equal
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to zero. This error can be compensated by assigning better initial values. Con-
tribution of this error on the phase shift becomes more effective as the frequency
of the excitation increases. The lower frequency region of this plot is presumably
more accurate and displays a good fit to that of Fig. 2. One conclusion that can
be extracted from Fig. 5 is that the time step used in system identification should
be as small as possible for the model to cover a larger frequency range.

8. Conclusion

In this paper it is put forth that most second-order mechanical systems can
be assumed equivalent to a simple linear spring-mass-damper system. Response
of such systems can be represented in form of a discrete-time model, whose coeffi-
cients can be extracted from experimentally obtained position data. A procedure
for experimental identification of the system is presented with the necessary for-
mulations. Then, it is shown that the discrete-time model can be obtained by
z-transforming the continuous model, operated on by the zero-order hold. This
analysis yielded an analytical definition of model coefficients in terms of system
parameters and discrete time. Experimental work and theoretical analyses have
brought the following conclusions:

i) A second-order linear mechanical system can be represented by a second-
-order discrete-time model. If higher-order models are used, experimentation will
yield that the influence of the terms of the order greater than 2 are negligible.

i1) System identification is generally used when the parameters of the sys-
tem are unknown. Knowing the analytical expressions for the coefficients, system
parameters can be extracted from the experimentally obtained coefficient values.

i1i) Second-order discrete-time models provide an estimation for the dynamic
behaviour of a system very proximate to that of the real system in terms of gain
and time lag in response.

iv) Mathematics involved in the calculation of a position using the discrete-
-time model is so little that such a model can effectively be used to provide near-real
time solutions in simulation or control applications to replace analogue models.

v) In identification, discrete-time values up to m/wq yield a good model. Nor-
mally, discrete-time steps should be as small as possible. Amplitude of the excita-
tion PRBS can be of any suitable value that does not cause saturation.
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Pickrel, C.R. Examples of variation in mzasured modal
parameters of a single test specimen. Proceedings of the
NVH (Noise and Vibration Harshness): Source, Path and
Receiver Modeling Symposium, Novi, MI: 108-113, Oct.
26-27, 1998 (sem@seml.com).

KEYWORDS: aircraft, frequency response function,
multi-degree-of-freedom systems, noise, parameter identi-
fication techniques, random excitation

Some examples of estimating variance in measured modal
parameters are discussed. The effect of random noise on
the variance of mode frequency and damping of a synthe-
sized ten-degree-of-freedom system is assessed using a
“jackknife” approach. Multiple, redundant pole estimates
from different solution sets are used to assess variance in
the modal parameter estimation process. Examples of vari-
ance in mode frequency and damping are shown from
ground and flight tests of a transport airplane. Variation is
shown to be dominated by nonlinearity.

Reliability Analysis
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Red-Horse, J.R., and T.L. Paez. Uncertainty evaluation in
dynamic system response. Proceedings of the 16th Interna-
tional Modal Analysis Conference, Santa Barbara, CA:
1206-1212, Feb. 2-5, 1998.

KEYWORDS: computer programs, dynamic response,
Monte Carlo method, probabilistic methods

The advanced mean value (AMV) method for probabilistic
system analysis is a technique for the estimation of the cu-
mulative distribution function of a random variable. The
random variable is a deterministic, often implicitly defined
function of a vector of random variables. The technique
uses a number of simplifying approximations in an itera-
tive scheme. The approximations in AMV allow the proce-
dure to be used with only a limited knowledge of the
physics of the underlying problem and to enhance the com-
putational feasibility through an associated reduction in re-
quired results. This article presents an AMV code and an
advanced AMV code for the probabilistic analysis of sys-
tem behavior.

Sensitivity Analysis

99-1769

Balmes, E. Efficient sensitivity analysis based on finite ele-
ment model reduction. Proceedings of the 16th Interna-
tional Modal Analysis Conference, Santa Barbara, CA:
1118-1124, Feb. 2-5, 1998 (balmes@mss.ecp.fr).

KEYWORDS: algorithms, design, engines, mode shapes,
multi-degree-of-freedom systems, sensitivity analysis

Iterative methods are used widely for finite element model
updating and structural optimization. Most of these ap-
proaches use partial derivatives, called sensitivities, of
properties with respect to physical parameters of the full-
order model. Accurate and inexpensive evaluations of sen-
sitivities are thus important. This study presents a general
categorization of approximation methods, along with sug-
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gestions for new approaches to obtain low-cost predictions
of both mode shapes and their sensitivities.

Stability Analysis
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Kondou, T., A. Sueoka, and T. Inoue. Forced vibration
analysis of a nonlinear structure connected in series (stabil-
ity analysis based on the argument principle). JSME Inter-
national Journal, Mechanical Systems, Machine Elements
and Manufacturing (Japan) 41(3):583-591, Sept. 1998.

KEYWORDS: forced vibration, multi-degree-of-freedom
systems, stability analysis, vibration analysis

It is very difficult to determine the stability of the periodic
steady-state vibrations generated in a large-sized nonlinear
system with multiple degrees of freedom. To overcome
this, a new practical method is presented. The method,
called the vector locus method, is based on the argument
principle. It is applicable to the stability analysis of general
multi-degree-of-freedom systems with parametric excitation.

System ldentification Techniques

99-1771

Kapucuy, S., and S. Baysec. On the applicability of the lin-
ear discrete-time mode! and system identification by the
least squares method. Strojnicky Casopis (Slovakia)
50(2):104-118, 1999 (in Slovak).

KEYWORDS: least squares method, mathematical models,
system identification techniques

Although system identification is used widely to obtain a
simple and empirical model for system response, material
on its technological aspects is limited. This article, there-
fore, compiles practical aspects that can be used in identifi-
cation by considering the time-step response of the system.
An analogue computer mode! of a second-order, linear un-
derdamped system is excited by a pseudo-random binary
signal generated by a digital computer, and the response is
recorded digitally in discrete time. The coefficients of the -
model arc calculated to minimize the cumulative error be-
tween the position data recorded experimentally and that
calculated by the model.

99-1772

Van der Auweraer, H., and L. Hermans. Applications of
structural model identification during normal operating
conditions: an overview of the Eureka project SINOPSYS.
Proceedings of the 17th International Modal Analysis Con-
ference, Kissimmee, FL: 27-34, Feb. 8-11, 1999.

KEYWORDS: automobiles, case histories, damping,
design, modal tests, natural frequencies, rockets

Experimental techniques such as modal testing and modal
analysis are used widely. However, these techniques are
limited to dedicated, controlled laboratory tests where a
low-level excitation is applied, and the corresponding sys-
tem response is measured. During actual operation, how-
ever, the loading conditions may be substantially different
from the ones used in the modal tests. This article presents
an in-operation modal analysis technique, which is shown



