EP220 First Midterm Exam (Duration: $\frac{5}{3}$ hour, 12.04.2013)

1 (60). If the potential φ of a particle is given as $\varphi = x^2y + y^2z + z^2x$ at the point P(1, -1, 2). Find

- a) the directional derivative of φ in the direction of the vector $\mathbf{A} = 4\mathbf{i} + 2\mathbf{j} 5\mathbf{k}$ at P(1,3,2),
- **b**) the unit normal to the surface φ at that point. c) div (grad φ) and d) curl (grad φ).

Ans: $a(\sqrt{5}/15, b) (2i-3j+5k)/\sqrt{38}, c)4, d)0$

2 (50). A particle moves in 3 dimensions under the force $F = x^2y^2 i + y^3 z j + z^2 k$. Evaluate <u>the work done</u> on this particle along the curve $x = 2u^2$, y = 3u and $z = u^3$ between A(2, -3, -1) and B(2, 3, 1). Ans: 23.8 Joule

3 (50). A vector field of $\mathbf{F} = x \, \mathbf{i} + 2 \, \mathbf{j} + z^2 \, \mathbf{k}$ taken over the region bounded the planes z = 0, z = 4, x = 0, y = 0 and the surface $x^2 + y^2 = 4$ in the first octant. Evaluate the <u>volume integral</u> of <u>div F</u>. Ans: 20π

4 (70). Solve the following problems.

- a) (20) Show that $A = \{1, 0, 2, -2\}$ and $B = \{-2, 1, 1, 0\}$ vectors are <u>orthogonal</u>. Then, find an <u>orthonormal</u> set of vectors forming from these vectors.
- **b)** (20) Find the rank of matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

c) (20) Determine two numbers s and t such that the following matrix is <u>symmetric</u>.

$$A = \begin{bmatrix} 2 & s & t \\ 2s & 0 & s+t \\ 3 & 3 & t \end{bmatrix}$$

d) (10) Find 5 $Tr(A^T)$ of the matrix forming from vectors $A = \{1, 2, 3\}, B = \{2, 4, 3\}$ and $C = \{1, -5, 11\}$.

Ans: a) $\{1/3 X, 1/\sqrt{6} Y\}$, b) 2, c) t=3, s=0, d) 80.

5 (60). Find *the inverse of* matrix with any methods.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}, Ans: \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

6 (60). Solve the system of current equations of an electric circuit by using <u>Cramer's rule</u>.

$$-2i_1 + 3i_2 - i_3 = 1;$$
 $i_1 + 2i_2 - i_3 = 4;$ $-2i_1 - 6i_2 + i_3 = -3.$
Ans: $i_1 = 11/13$, $i_2 = -6/13$, $i_3 = -53/13$.

Hint: Cylindrical Polar coordinates: $x = \rho \cos\varphi$, $y = \rho \sin\varphi$, z = z, $dV = \rho d\rho d\varphi dz$, $ds = \rho d\varphi dz$. Spherical coordinates: $x = r \sin\theta \cos\varphi$, $y = r \sin\theta \sin\varphi$, $z = r \cos\theta$, $dV = r^2 \sin\theta dr d\theta d\varphi$, $ds = r^2 \sin\theta d\theta d\varphi$.