$\mathbf{1}$ (60). If the potential φ of a particle is given as $\varphi=x^{2} y+y^{2} z+z^{2} x$ at the point $P(1,-1,2)$. Find
a) the directional derivative of φ in the direction of the vector $\boldsymbol{A}=4 \boldsymbol{i}+2 \boldsymbol{j}-5 \boldsymbol{k}$ at $\mathrm{P}(1,3,2)$,
b) the unit normal to the surface φ at that point. c) div $(\operatorname{grad} \varphi)$ and $d) \operatorname{curl}(\operatorname{grad} \varphi)$.

Ans: a) $\sqrt{5} / 15, b)(2 i-3 j+5 k) / \sqrt{38}, c) 4, d) 0$
2 (50). A particle moves in 3 dimensions under the force $\boldsymbol{F}=x^{2} y^{2} \boldsymbol{i}+y^{3} z \boldsymbol{j}+z^{2} \boldsymbol{k}$. Evaluate the work done on this particle along the curve $x=2 u^{2}, y=3 u$ and $z=u^{3}$ between $A(2,-3,-1)$ and $B(2,3,1)$. Ans:23.8 Joule 3 (50). A vector field of $\boldsymbol{F}=x \boldsymbol{i}+2 \boldsymbol{j}+z^{2} \boldsymbol{k}$ taken over the region bounded the planes $z=0, z=4, x=0, y=0$ and the surface $\mathrm{x}^{2}+y^{2}=4$ in the first octant. Evaluate the volume integral of div \mathbf{F}. Ans: 20π

4 (70). Solve the following problems.
a) (20) Show that $A=\{1,0,2,-2\}$ and $B=\{-2,1,1,0\}$ vectors are orthogonal. Then, find an orthonormal set of vectors forming from these vectors.
b) (20) Find the rank of matrix

$$
A=\left[\begin{array}{lll}
3 & 4 & 5 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

c) (20) Determine two numbers s and t such that the following matrix is symmetric.

$$
A=\left[\begin{array}{ccc}
2 & s & t \\
2 s & 0 & s+t \\
3 & 3 & t
\end{array}\right]
$$

d) (10) Find $5 \operatorname{Tr}\left(A^{T}\right)$ of the matrix forming from vectors $A=\{1,2,3\}, B=\{2,4,3\}$ and $C=\{1,-5,11\}$.

Ans: a) $\{1 / 3 X, 1 / \sqrt{6} Y\}, b) 2, c) t=3, s=0, d) 80$.
5 (60). Find the inverse of matrix with any methods.
$\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right], \quad$ Ans: $\left[\begin{array}{ccc}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{array}\right]$
6 (60). Solve the system of current equations of an electric circuit by using Cramer's rule.

$$
-2 i_{1}+3 i_{2}-i_{3}=1 ; \quad i_{1}+2 i_{2}-i_{3}=4 ; \quad-2 i_{1}-6 i_{2}+i_{3}=-3 .
$$

Ans: $i_{1}=11 / 13, i_{2}=-6 / 13, i_{3}=-53 / 13$.
Hint: Cylindrical Polar coordinates: $x=\rho \cos \varphi, y=\rho \sin \varphi, z=z, d V=\rho d \rho d \varphi d z, d s=\rho d \varphi d z$. Spherical coordinates: $\mathrm{x}=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi, z=r \cos \theta, d V=r^{2} \sin \theta d r d \theta d \varphi, d s=r^{2} \sin \theta d \theta d \varphi$.

