32. The accounting firm in Exercise 31 raises its charge for an audit to \$2500. What number of audits and tax returns will bring in a maximum revenue?

In the simplex method, it may happen that in selecting the departing variable all the calculated ratios are negative. This indicates an *unbounded solution*. Demonstrate this in Exercises 33 and 34.

33.	(Maximize)	34.	(Maximize)
	Objective function:		Objective function:
	$z = x_1 + 2x_2$		$z = x_1 + 3x_2$
	Constraints:		Constraints:
	$x_1 - 3x_2 \le 1$		$-x_1 + x_2 \le 20$
	$-x_1 + 2x_2 \le 4$		$-2x_1 + x_2 \le 50$
	$x_1, x_2 \ge 0$		$x_1, x_2 \ge 0$

If the simplex method terminates and one or more variables *not in the final basis* have bottom-row entries of zero, bringing these variables into the basis will determine other optimal solutions. Demonstrate this in Exercises 35 and 36.

35. (Maximize)	36. (Maximize)
Objective function:	Objective function:
$z = 2.5x_1 + x_2$	$z = x_1 + \frac{1}{2}x_2$
Constraints:	Constraints:
$3x_1 + 5x_2 \le 15$	$2x_1 + x_2 \le 20$
$5x_1 + 2x_2 \le 10$	$x_1 + 3x_2 \le 35$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$

C 37. Use a computer to maximize the objective function

 $z = 2x_1 + 7x_2 + 6x_3 + 4x_4$

subject to the constraints

1 2 5

where $x_1, x_2, x_3, x_4 \ge 0$.

C 38. Use a computer to maximize the objective function

 $z = 1.2x_1 + x_2 + x_3 + x_4$

subject to the same set of constraints given in Exercise 37.

9.4 THE SIMPLEX METHOD: MINIMIZATION

In Section 9.3, we applied the simplex method only to linear programming problems in standard form where the objective function was to be *maximized*. In this section, we extend this procedure to linear programming problems in which the objective function is to be *minimized*.

A minimization problem is in **standard form** if the objective function $w = c_1x_1 + c_2x_2 + \cdots + c_nx_n$ is to be minimized, subject to the constraints

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \ge b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \ge b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \ge b_{m}$$

where $x_i \ge 0$ and $b_i \ge 0$. The basic procedure used to solve such a problem is to convert it to a *maximization problem* in standard form, and then apply the simplex method as discussed in Section 9.3.

In Example 5 in Section 9.2, we used geometric methods to solve the following minimization problem.

Minimization Problem: Find the minimum value of

 $w = 0.12x_1 + 0.15x_2$

subject to the following constraints

 $\begin{array}{c}
60x_1 + 60x_2 \ge 300 \\
12x_1 + 6x_2 \ge 36 \\
10x_1 + 30x_2 \ge 90
\end{array}$ Constraints

where $x_1 \ge 0$ and $x_2 \ge 0$. The first step in converting this problem to a maximization problem is to form the augmented matrix for this system of inequalities. To this augmented matrix we add a last row that represents the coefficients of the objective function, as follows.

60	60	÷	300
12	6	÷	36
10	30	÷	90
0.12	0.15	÷	0

Next, we form the transpose of this matrix by interchanging its rows and columns.

60	12	10	÷	0.12
60	6	30	÷	0.12 0.15
				 0
300	36	90		0

Note that the rows of this matrix are the columns of the first matrix, and vice versa. Finally, we interpret the new matrix as a *maximization* problem as follows. (To do this, we introduce new variables, y_1 , y_2 , and y_3 .) We call this corresponding maximization problem the **dual** of the original minimization problem.

Dual Maximization Problem: Find the maximum value of

 $z = 300y_1 + 36y_2 + 90y_3$ Dual objective function

subject to the constraints

 $\begin{array}{c} 60y_1 + 12y_2 + 10y_3 \le 0.12 \\ 60y_1 + 6y_2 + 30y_3 \le 0.15 \end{array} \right\} \qquad \text{Dual constraints} \\ \end{array}$

where $y_1 \ge 0$, $y_2 \ge 0$, and $y_3 \ge 0$.

As it turns out, the solution of the original minimization problem can be found by applying the simplex method to the new dual problem, as follows.

<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	s ₁	<i>s</i> ₂	b	Basic Variables	
60)	12	10	1	0	0.12	<i>s</i> ₁	\leftarrow Departing
60	6	30	0	1	0.15	<i>s</i> ₂	
-300	-36	-90	0	0	0		
<u>↑</u>							
Enterin	ıg						
						Basic	
<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	s ₁	<i>s</i> ₂	b	Variables	
1	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{60}$	0	$\frac{1}{500}$	<i>y</i> ₁	
0	-6	(20)	- 1	1	$\frac{3}{100}$	<i>s</i> ₂	\leftarrow Departing
0	24	-40	5	0	$\frac{3}{5}$		
		1					
		Enterin	g				
						Basic	
<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	s ₁	<i>s</i> ₂	b	Variables	
1	$\frac{1}{4}$	0	$\frac{1}{40}$	$-\frac{1}{120}$	$\frac{7}{4000}$	<i>y</i> ₁	
0	$-\frac{3}{10}$	1 ·	$-\frac{1}{20}$	$\frac{1}{20}$	$\frac{3}{2000}$	<i>y</i> ₃	
0	12	0	3	2	$\frac{33}{50}$		
			1	↑			
			x_I	<i>x</i> ₂			

Thus, the solution of the dual maximization problem is $z = \frac{33}{50} = 0.66$. This is the same value we obtained in the minimization problem given in Example 5, in Section 9.2. The *x*-values corresponding to this optimal solution are obtained from the entries in the bottom row corresponding to slack variable columns. In other words, the optimal solution occurs when $x_1 = 3$ and $x_2 = 2$.

The fact that a dual maximization problem has the same solution as its original minimization problem is stated formally in a result called the **von Neumann Duality Principle,** after the American mathematician John von Neumann (1903–1957).

The objective value w of a minimization problem in standard form has a minimum value if and only if the objective value z of the dual maximization problem has a maximum value. Moreover, the minimum value of w is equal to the maximum value of z.

Solving a Minimization Problem

We summarize the steps used to solve a minimization problem as follows.

Theorem 9.2

The von Neumann Duality Principle

Solving a Minimization	A minimization problem is in standard form if the objective function $w = c_1 x_1 + c_2 x_2$
Problem	$+ \cdots + c_n x_n$ is to be minimized, subject to the constraints

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \ge b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \ge b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \ge b_{m}$$

where $x_i \ge 0$ and $b_i \ge 0$. To solve this problem we use the following steps.

1. Form the augmented matrix for the given system of inequalities, and add a bottom row consisting of the coefficients of the objective function.

a_{11}	<i>a</i> ₁₂		a_{1n}	b_1
<i>a</i> ₂₁	<i>a</i> ₂₂		a_{2n}	<i>b</i> ₂
a_{m1}	a_{m2}	• • •	a_{mn}	b_m
c_1	c_2		C_n	0

2. Form the **transpose** of this matrix.

$\begin{bmatrix} a_{11} \\ a_{12} \end{bmatrix}$	$a_{21} \\ a_{22}$	a_{m1} a_{m2}	c_1 c_2
	a_{2n}		c_n
	b_2	 	0

3. Form the **dual maximization problem** corresponding to this transposed matrix. That is, find the maximum of the objective function given by $z = b_1y_1 + b_2y_2 + \cdots$ $+ b_m y_m$ subject to the constraints

$$a_{11}y_1 + a_{21}y_2 + \dots + a_{m1}y_m \le c_1$$

$$a_{12}y_1 + a_{22}y_2 + \dots + a_{m2}y_m \le c_2$$

$$\vdots$$

$$a_{1n}y_1 + a_{2n}y_2 + \dots + a_{mn}y_m \le c_n$$

where $y_1 \ge 0, y_2 \ge 0, ..., and y_m \ge 0$.

4. Apply the simplex method to the dual maximization problem. The maximum value of z will be the minimum value of w. Moreover, the values of x_1, x_2, \ldots , and x_n will occur in the bottom row of the final simplex tableau, in the columns corresponding to the slack variables.

We illustrate the steps used to solve a minimization problem in Examples 1 and 2.

EXAMPLE 1 Solving a Minimization Problem

Find the minimum value of $w = 3x_1 + 2x_2$

Objective function

subject to the constraints

$2x_1 + x_2 \ge 6$	Constraints
$x_1 + x_2 \ge 4$	

where $x_1 \ge 0$ and $x_2 \ge 0$.

Solution The augmented matrix corresponding to this minimization problem is

2	1	÷	6	1
1	1	÷	6 4	
		÷		
3	2	÷	0	

Thus, the matrix corresponding to the dual maximization problem is given by the following transpose.

[2	1	1	3]
1	1	-	2
		1	
6	4	÷	0

This implies that the dual maximization problem is as follows. *Dual Maximization Problem:* Find the maximum value of

 $z = 6y_1 + 4y_2$

Dual objective function

subject to the constraints

 $2y_1 + y_2 \le 3$ $y_1 + y_2 \le 2$ Dual constraints

where $y_1 \ge 0$ and $y_2 \ge 0$. We now apply the simplex method to the dual problem as follows.

	<i>y</i> ₁	<i>y</i> ₂	s ₁	<i>s</i> ₂	b	Basic Variables	
	(<u>2</u>)	1	1 0	0	3	-	Departing
l	-6	-4	0	0	2	<i>s</i> ₂	
	↑ Enterin	g					

					Basic
<i>y</i> ₁	<i>y</i> ₂	s ₁	<i>s</i> ₂	b	Variables
1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{3}{2}$	<i>y</i> ₁
0	$\left(\frac{1}{2}\right)$	$-\frac{1}{2}$	1	$\frac{1}{2}$	$s_2 \leftarrow Departing$
0	-1	3	0	9	
	↑				
	Enterin	g			
					Basic
<i>y</i> ₁	<i>y</i> ₂	s ₁	<i>s</i> ₂	b	Variables
1	0	1	-1	1	<i>y</i> ₁
0	1	-1	2	1	<i>y</i> ₂
0	0	2	2	10	
		↑	↑		
		<i>x</i> ₁	<i>x</i> ₂		

From this final simplex tableau, we see that the maximum value of z is 10. Therefore, the solution of the original minimization problem is

Minimum Value

and this occurs when

w = 10

 $x_1 = 2$ and $x_2 = 2$.

Both the minimization and the maximization linear programming problems in Example 1 could have been solved with a graphical method, as indicated in Figure 9.19. Note in Figure 9.19 (a) that the maximum value of $z = 6y_1 - 4y_2$ is the same as the minimum value of $w = 3x_1 + 2x_2$, as shown in Figure 9.19 (b). (See page 515.)

EXAMPLE 2 Solving a Minimization Problem

Find the minimum value of

 $w = 2x_1 + 10x_2 + 8x_3$ Objective function

subject to the constraints

 $\begin{array}{c} x_1 + x_2 + x_3 \ge 6 \\ x_2 + 2x_3 \ge 8 \\ -x_1 + 2x_2 + 2x_3 \ge 4 \end{array} \right\} \quad \text{Constraints} \\$

where $x_1 \ge 0$, $x_2 \ge 0$, and $x_3 \ge 0$.

Solution The augmented matrix corresponding to this minimization problem is

Thus, the matrix corresponding to the dual maximization problem is given by the following transpose.

1	0	-1	÷	2
1	1	2	÷	10
1	2	2	÷	8
6	8	4	÷	0

This implies that the dual maximization problem is as follows. *Dual Maximization Problem:* Find the maximum value of

 $z = 6y_1 + 8y_2 + 4y_3$

Dual objective function

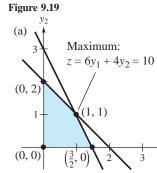
subject to the constraints

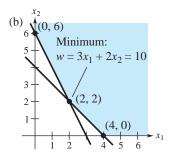
$$\begin{array}{cccc} y_1 & - & y_3 \leq & 2 \\ y_1 + & y_2 + & 2y_3 \leq & 10 \\ y_1 + & 2y_2 + & 2y_3 \leq & 8 \end{array}$$

Dual constraints

where $y_1 \ge 0, y_2 \ge 0$, and $y_3 \ge 0$. We now apply the simplex method to the dual problem as follows.

y ₁	<i>y</i> ₂	<i>y</i> ₃	s ₁	<i>s</i> ₂	<i>s</i> ₃	b	Basic Variables	
1	0	-1	1	0	0	2	<i>s</i> ₁	
1	1	2	0	1	0	10	<i>s</i> ₂	
$\langle \widehat{1} \rangle$	2	2	0	0	1	8	s ₃	\leftarrow Departing
-6	-8 ↑	-4	0	0	0	0		
i i	Enterin	8						
							Basic	
<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	s ₁	<i>s</i> ₂	<i>s</i> ₃	b	Basic Variables	
y_1 $\langle \widehat{1} \rangle$	y ₂ 0	<i>y</i> ₃ −1	<i>s</i> ₁	s ₂ 0	s ₃ 0	b 2		\leftarrow Departing
$(\widehat{\underline{1}})$ $\frac{1}{2}$		-			-		Variables	\leftarrow Departing
$\langle \widehat{1} \rangle$	0	-1	1	0	0	2	Variables s ₁	\leftarrow Departing
$(\widehat{\underline{1}})$ $\frac{1}{2}$	0 0	-1 1	1 0	0 1	$0 \\ -\frac{1}{2}$	2 6	Variables s ₁ s ₂	\leftarrow Departing
$(\widehat{\underline{1}})$ $\frac{1}{2}$ $\underline{1}{2}$	0 0 1 0	-1 1 1	1 0 0	0 1 0	$\begin{array}{c} 0\\ -\frac{1}{2}\\ \frac{1}{2} \end{array}$	2 6 4	Variables s ₁ s ₂	← Departing





<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	b	Basic Variables
1	0	-1	1	0	0	2	<i>y</i> ₁
0	0	$\frac{3}{2}$	$-\frac{1}{2}$	1	$-\frac{1}{2}$	5	<i>s</i> ₂
0	1	$\frac{3}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	3	<i>y</i> ₂
0	0	2	2	0	4	36	
			↑	↑	↑		
			x_1	<i>x</i> ₂	<i>x</i> ₃		

From this final simplex tableau, we see that the maximum value of z is 36. Therefore, the solution of the original minimization problem is

w = 36 Minimum Value

and this occurs when

 $x_1 = 2$, $x_2 = 0$, and $x_3 = 4$.

Applications

EXAMPLE 3 A Business Application: Minimum Cost

A small petroleum company owns two refineries. Refinery 1 costs \$20,000 per day to operate, and it can produce 400 barrels of high-grade oil, 300 barrels of medium-grade oil, and 200 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs \$25,000 per day to operate, and it can produce 300 barrels of high-grade oil, 400 barrels of medium-grade oil, and 500 barrels of low-grade oil each day.

The company has orders totaling 25,000 barrels of high-grade oil, 27,000 barrels of medium-grade oil, and 30,000 barrels of low-grade oil. How many days should it run each refinery to minimize its costs and still refine enough oil to meet its orders?

Solution To begin, we let x_1 and x_2 represent the number of days the two refineries are operated. Then the total cost is given by

$$C = 20,000x_1 + 25,000x_2.$$

Objective function

The constraints are given by

(High-grade)	$400x_1 + 300x_2 \ge 25,000$	
(Medium-grade)	$300x_1 + 400x_2 \ge 27,000$	Constraints
(Low-grade)	$200x_1 + 500x_2 \ge 30,000$	

where $x_1 \ge 0$ and $x_2 \ge 0$. The augmented matrix corresponding to this minimization problem is

400	300	25,000	
300	400	27,000	
200	500	30,000 .	
		÷	
20,000	25,000	0	

The matrix corresponding to the dual maximization problem is

400	300	200	20,000]
300	400	500	25,000
			·
25,000	27,000	30,000	0

We now apply the simplex method to the dual problem as follows.

							,	Basic
	<i>y</i> ₁	<i>y</i> ₂	y ₃		<i>s</i> ₁	<i>s</i> ₂	b	Variables
	400	300	20	0	1	0	20,000	<i>s</i> ₁
	300	400	(50	$\hat{0}$	0	1	25,000	$s_2 \leftarrow Departing$
-2	25,000	-27,000	-30,00	↑	0	0	0	
_	<i>y</i> ₁	<i>y</i> ₂	y ₃	<i>s</i> ₁	8	2	b	Basic Variables
	(280)	140	0	1	_	$\frac{2}{5}$	10,000	$s_1 \leftarrow Departing$
	$\frac{3}{5}$	$\frac{4}{5}$	1	0	$\frac{1}{50}$	00	50	<i>y</i> ₃
_	-7,000	-3,000	0	0	6	0	1,500,000	
E	↑ Entering							
								Basic
	<i>y</i> ₁	<i>y</i> ₂	y ₃	<i>s</i> ₁	S	2	b	Variables
	1	$\frac{1}{2}$	0	$\frac{1}{280}$	-7	1700	$\frac{250}{7}$	<i>y</i> ₁
	0	$\frac{1}{2}$	1 ·	$-\frac{3}{1400}$	$\frac{1}{35}$	0	$\frac{200}{7}$	<i>y</i> ₃
	0	500	0	25	5		1,750,000	
				↑		↑		
				x_1		<i>x</i> ₂		

From the third simplex tableau, we see that the solution to the original minimization problem is

C = \$1,750,000 Minimum cost

and this occurs when $x_1 = 25$ and $x_2 = 50$. Thus, the two refineries should be operated for the following number of days.

Refinery 1: 25 days Refinery 2: 50 days

Note that by operating the two refineries for this number of days, the company will have produced the following amounts of oil.

High-grade oil:	25(400) + 50(300) = 25,000 barrels
Medium-grade oil:	25(300) + 50(400) = 27,500 barrels
Low-grade oil:	25(200) + 50(500) = 30,000 barrels

Thus, the original production level has been met (with a surplus of 500 barrels of mediumgrade oil).

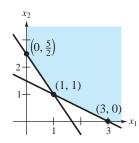
SECTION 9.4 C EXERCISES

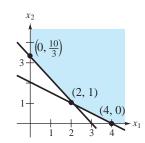
In Exercises 1–6, determine the dual of the given minimization problem.

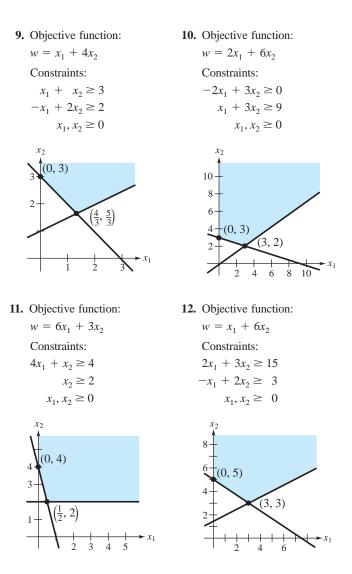
1. Objective function:	2. Objective function:
$w = 3x_1 + 3x_2$	$w = 2x_1 + x_2$
Constraints:	Constraints:
$2x_1 + x_2 \ge 4$	$5x_1 + x_2 \ge 9$
$x_1 + 2x_2 \ge 4$	$2x_1 + 2x_2 \ge 10$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$
3. Objective function:	4. Objective function:
$w = 4x_1 + x_2 + x_3$	$w = 9x_1 + 6x_2$
Constraints:	Constraints:
$3x_1 + 2x_2 + x_3 \ge 23$	$x_1 + 2x_2 \ge 5$
$x_1 + x_3 \ge 10$	$2x_1 + 2x_2 \ge 8$
$8x_1 + x_2 + 2x_3 \ge 40$	$2x_1 + x_2 \ge 6$
$x_1, x_2, x_3 \ge 0$	$x_1, x_2 \ge 0$
5. Objective function:	6. Objective function:
$w = 14x_1 + 20x_2 + 24x_3$	$w = 9x_1 + 4x_2 + 10x_3$
Constraints:	Constraints:
$x_1 + x_2 + 2x_3 \ge 7$	$2x_1 + x_2 + 3x_3 \ge 6$
$x_1 + 2x_2 + x_3 \ge 4$	$6x_1 + x_2 + x_3 \ge 9$
$x_1, x_2, x_3 \ge 0$	$x_1, x_2, x_3 \ge 0$

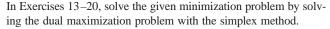
In Exercises 7–12, (a) solve the given minimization problem by the graphical method, (b) formulate the dual problem, and (c) solve the dual problem by the graphical method.

7. Objective function: $w = 2x_1 + 2x_2$ Constraints: $x_1 + 2x_2 \ge 3$ $3x_1 + 2x_2 \ge 5$ $x_1, x_2 \ge 0$ 8. Objective function: $w = 14x_1 + 20x_2$ Constraints: $x_1 + 2x_2 \ge 4$ $7x_1 + 6x_2 \ge 20$ $x_1, x_2 \ge 0$









13. Objective function:	14. Objective function:
$w = x_2$	$w = 3x_1 + 8x_2$
Constraints:	Constraints:
$x_1 + 5x_2 \ge 10$	$2x_1 + 7x_2 \ge 9$
$-6x_1 + 5x_2 \ge 3$	$x_1 + 2x_2 \ge 4$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$

15. Objective function:	16. Objective function:
$w = 2x_1 + x_2$	$w = 2x_1 + 2x_2$
Constraints:	Constraints:
$5x_1 + x_2 \ge 9$	$3x_1 + x_2 \ge 6$
$2x_1 + 2x_2 \ge 10$	$-4x_1 + 2x_2 \ge 2$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$
17. Objective function:	18. Objective function:
$w = 8x_1 + 4x_2 + 6x_3$	$w = 8x_1 + 16x_2 + 18x_3$
Constraints:	Constraints:
$3x_1 + 2x_2 + x_3 \ge 6$	$2x_1 + 2x_2 - 2x_3 \ge 4$
$4x_1 + x_2 + 3x_3 \ge 7$	$-4x_1 + 3x_2 - x_3 \ge 1$
$2x_1 + x_2 + 4x_3 \ge 8$	$x_1 - x_2 + 3x_3 \ge 8$
$x_1, x_2, x_3 \ge 0$	$x_1, x_2, x_3 \ge 0$
19. Objective function:	20. Objective function:
$w = 6x_1 + 2x_2 + 3x_3$	$w = 42x_1 + 5x_2 + 17x_3$
Constraints:	Constraints:
$3x_1 + 2x_2 + x_3 \ge 28$	$3x_1 - x_2 + 7x_3 \ge 5$
$6x_1 + x_3 \ge 24$	$-3x_1 - x_2 + 3x_3 \ge 8$
$3x_1 + x_2 + 2x_3 \ge 40$	$6x_1 + x_2 + x_3 \ge 16$
$x_1, x_2, x_3 \ge 0$	$x_1, x_2, x_3 \ge 0$

In Exercises 21–24, two dietary drinks are used to supply protein and carbohydrates. The first drink provides 1 unit of protein and 3 units of carbohydrates in each liter. The second drink supplies 2 units of protein and 2 units of carbohydrates in each liter. An athlete requires 3 units of protein and 5 units of carbohydrates. Find the amount of each drink the athlete should consume to minimize the cost and still meet the minimum dietary requirements.

- 21. The first drink costs \$2 per liter and the second costs \$3 per liter.
- 22. The first drink costs \$4 per liter and the second costs \$2 per liter.
- 23. The first drink costs \$1 per liter and the second costs \$3 per liter.
- 24. The first drink costs \$1 per liter and the second costs \$2 per liter.

In Exercises 25–28, an athlete uses two dietary drinks that provide the nutritional elements listed in the following table.

Drink	Protein	Carbohydrates	Vitamin D
Ι	4	2	1
II	1	5	1

Find the combination of drinks of minimum cost that will meet the minimum requirements of 4 units of protein, 10 units of carbohydrates, and 3 units of vitamin D.

- 25. Drink I costs \$5 per liter and drink II costs \$8 per liter.
- 26. Drink I costs \$7 per liter and drink II costs \$4 per liter.
- 27. Drink I costs \$1 per liter and drink II costs \$5 per liter.
- 28. Drink I costs \$8 per liter and drink II costs \$1 per liter.
- **29.** A company has three production plants, each of which produces three different models of a particular product. The daily capacities (in thousands of units) of the three plants are as follows.

	Model 1	Model 2	Model 3	
Plant 1	8	4	8	
Plant 2	6	6	3	
Plant 3	12	4	8	

The total demand for Model 1 is 300,000 units, for Model 2 is 172,000 units, and for Model 3 is 249,500 units. Moreover, the daily operating cost for Plant 1 is \$55,000, for Plant 2 is \$60,000, and for Plant 3 is \$60,000. How many days should each plant be operated in order to fill the total demand, and keep the operating cost at a minimum?

- **30.** The company in Exercise 29 has lowered the daily operating cost for Plant 3 to \$50,000. How many days should each plant be operated in order to fill the total demand, and keep the operating cost at a minimum?
- **31.** A small petroleum company owns two refineries. Refinery 1 costs \$25,000 per day to operate, and it can produce 300 barrels of high-grade oil, 200 barrels of medium-grade oil, and 150 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs \$30,000 per day to operate, and it can produce 300 barrels of high-grade oil, 250 barrels of medium-grade oil, and 400 barrels of low-grade oil each day. The company has orders totaling 35,000 barrels of high-grade oil, 30,000 barrels of medium-grade oil, and 40,000 barrels of low-grade oil. How many days should the company run each refinery to minimize its costs and still meet its orders?

- **32.** A steel company has two mills. Mill 1 costs \$70,000 per day to operate, and it can produce 400 tons of high-grade steel, 500 tons of medium-grade steel, and 450 tons of low-grade steel each day. Mill 2 costs \$60,000 per day to operate, and it can produce 350 tons of high-grade steel, 600 tons of medium-grade steel, and 400 tons of low-grade steel each day. The company has orders totaling 100,000 tons of high-grade steel, 150,000 tons of medium-grade steel. How many days should the company run each mill to minimize its costs and still fill the orders?
- **C** 33. Use a computer to minimize the objective function

 $w = x_1 + 0.5x_2 + 2.5x_3 + 3x_4$ subject to the constraints

C 34. Use a computer to minimize the objective function

$$w = 1.5x_1 + x_2 + 0.5x_3 + 2x_4$$

subject to the same set of constraints given in Exercise 33.