32. The accounting firm in Exercise 31 raises its charge for an audit to $\$ 2500$. What number of audits and tax returns will bring in a maximum revenue?

In the simplex method, it may happen that in selecting the departing variable all the calculated ratios are negative. This indicates an unbounded solution. Demonstrate this in Exercises 33 and 34.
33. (Maximize)

Objective function:
$z=x_{1}+2 x_{2}$
Constraints:

$$
\begin{array}{r}
x_{1}-3 x_{2} \leq 1 \\
-x_{1}+2 x_{2} \leq 4 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

34. (Maximize)

Objective function:
$z=x_{1}+3 x_{2}$
Constraints:

$$
\begin{aligned}
-x_{1}+x_{2} & \leq 20 \\
-2 x_{1}+x_{2} & \leq 50 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

If the simplex method terminates and one or more variables not in the final basis have bottom-row entries of zero, bringing these variables into the basis will determine other optimal solutions. Demonstrate this in Exercises 35 and 36.
35. (Maximize)

Objective function:
$z=2.5 x_{1}+x_{2}$
Constraints:
$3 x_{1}+5 x_{2} \leq 15$
$5 x_{1}+2 x_{2} \leq 10$
$x_{1}, x_{2} \geq 0$
36. (Maximize)

Objective function:
$z=x_{1}+\frac{1}{2} x_{2}$
Constraints:
$2 x_{1}+x_{2} \leq 20$
$x_{1}+3 x_{2} \leq 35$
$x_{1}, x_{2} \geq 0$
37. Use a computer to maximize the objective function $z=2 x_{1}+7 x_{2}+6 x_{3}+4 x_{4}$
subject to the constraints

$$
\begin{array}{r}
x_{1}+x_{2}+0.83 x_{3}+0.5 x_{4} \leq 65 \\
1.2 x_{1}+x_{2}+x_{3}+1.2 x_{4} \leq 96 \\
0.5 x_{1}+0.7 x_{2}+1.2 x_{3}+0.4 x_{4} \leq 80
\end{array}
$$

where $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$.
38. Use a computer to maximize the objective function $z=1.2 x_{1}+x_{2}+x_{3}+x_{4}$
subject to the same set of constraints given in Exercise 37.

9.4 THE SIMPLEX METHOD: MINIMIZATION

In Section 9.3, we applied the simplex method only to linear programming problems in standard form where the objective function was to be maximized. In this section, we extend this procedure to linear programming problems in which the objective function is to be minimized.

A minimization problem is in standard form if the objective function $w=c_{1} x_{1}+c_{2} x_{2}$ $+\cdots+c_{n} x_{n}$ is to be minimized, subject to the constraints

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \geq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & \geq b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \geq b_{m}
\end{aligned}
$$

where $x_{i} \geq 0$ and $b_{i} \geq 0$. The basic procedure used to solve such a problem is to convert it to a maximization problem in standard form, and then apply the simplex method as discussed in Section 9.3.

In Example 5 in Section 9.2, we used geometric methods to solve the following minimization problem.

Minimization Problem: Find the minimum value of

$$
w=0.12 x_{1}+0.15 x_{2} \quad \text { Objective function }
$$

subject to the following constraints

$$
\left.\begin{array}{l}
60 x_{1}+60 x_{2} \geq 300 \\
12 x_{1}+6 x_{2} \geq 36 \\
10 x_{1}+30 x_{2} \geq 90
\end{array}\right\} \quad \text { Constraints }
$$

where $x_{1} \geq 0$ and $x_{2} \geq 0$. The first step in converting this problem to a maximization problem is to form the augmented matrix for this system of inequalities. To this augmented matrix we add a last row that represents the coefficients of the objective function, as follows.
$\left[\begin{array}{rrcr}60 & 60 & \vdots & 300 \\ 12 & 6 & \vdots & 36 \\ 10 & 30 & \vdots & 90 \\ \cdots & \cdots & \cdots & \cdots \\ 0.12 & 0.15 & \vdots & 0\end{array}\right]$

Next, we form the transpose of this matrix by interchanging its rows and columns.

$$
\left[\begin{array}{rrrrr}
60 & 12 & 10 & \vdots & 0.12 \\
60 & 6 & 30 & \vdots & 0.15 \\
\ldots & \cdots & \cdots & \cdots & \cdots \\
300 & 36 & 90 & \vdots & 0
\end{array}\right]
$$

Note that the rows of this matrix are the columns of the first matrix, and vice versa. Finally, we interpret the new matrix as a maximization problem as follows. (To do this, we introduce new variables, y_{1}, y_{2}, and y_{3}.) We call this corresponding maximization problem the dual of the original minimization problem.

Dual Maximization Problem: Find the maximum value of

$$
z=300 y_{1}+36 y_{2}+90 y_{3} \quad \text { Dual objective function }
$$

subject to the constraints

$$
\left.\begin{array}{l}
60 y_{1}+12 y_{2}+10 y_{3} \leq 0.12 \\
60 y_{1}+6 y_{2}+30 y_{3} \leq 0.15
\end{array}\right\} \quad \text { Dual constraints }
$$

where $y_{1} \geq 0, y_{2} \geq 0$, and $y_{3} \geq 0$.
As it turns out, the solution of the original minimization problem can be found by applying the simplex method to the new dual problem, as follows.

Thus, the solution of the dual maximization problem is $z=\frac{33}{50}=0.66$. This is the same value we obtained in the minimization problem given in Example 5, in Section 9.2. The x-values corresponding to this optimal solution are obtained from the entries in the bottom row corresponding to slack variable columns. In other words, the optimal solution occurs when $x_{1}=3$ and $x_{2}=2$.

The fact that a dual maximization problem has the same solution as its original minimization problem is stated formally in a result called the von Neumann Duality Principle, after the American mathematician John von Neumann (1903-1957).

Theorem 9.2
The von Neumann
Duality Principle

The objective value w of a minimization problem in standard form has a minimum value if and only if the objective value z of the dual maximization problem has a maximum value. Moreover, the minimum value of w is equal to the maximum value of z.

Solving a Minimization Problem

We summarize the steps used to solve a minimization problem as follows.

Solving a Minimization Problem

A minimization problem is in standard form if the objective function $w=c_{1} x_{1}+c_{2} x_{2}$ $+\cdots+c_{n} x_{n}$ is to be minimized, subject to the constraints

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \geq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \geq b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \geq b_{m}
\end{aligned}
$$

where $x_{i} \geq 0$ and $b_{i} \geq 0$. To solve this problem we use the following steps.

1. Form the augmented matrix for the given system of inequalities, and add a bottom row consisting of the coefficients of the objective function.

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & \vdots & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & \vdots & b_{2} \\
& & & & \vdots & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & \vdots & b_{m} \\
\ldots & \ldots & \ldots & \ldots & \vdots & \ldots \\
c_{1} & c_{2} & \ldots & c_{n} & \vdots & 0
\end{array}\right]
$$

2. Form the transpose of this matrix.

$$
\left[\begin{array}{cccccc}
a_{11} & a_{21} & \ldots & a_{m 1} & \vdots & c_{1} \\
a_{12} & a_{22} & \ldots & a_{m 2} & \vdots & c_{2} \\
& & & & \vdots & \\
a_{1 n} & a_{2 n} & \ldots & a_{m n} & \vdots & c_{n} \\
\ldots & \ldots & \ldots & \ldots & \vdots & \ldots \\
b_{1} & b_{2} & \ldots & b_{m} & \vdots & 0
\end{array}\right]
$$

3. Form the dual maximization problem corresponding to this transposed matrix. That is, find the maximum of the objective function given by $z=b_{1} y_{1}+b_{2} y_{2}+\cdots$ $+b_{m} y_{m}$ subject to the constraints

$$
\begin{array}{r}
a_{11} y_{1}+a_{21} y_{2}+\cdots+a_{m 1} y_{m} \leq c_{1} \\
a_{12} y_{1}+a_{22} y_{2}+\cdots+a_{m 2} y_{m} \leq c_{2} \\
\vdots \\
a_{1 n} y_{1}+a_{2 n} y_{2}+\cdots+a_{m n} y_{m} \leq c_{n}
\end{array}
$$

where $y_{1} \geq 0, y_{2} \geq 0, \ldots$, and $y_{m} \geq 0$.
4. Apply the simplex method to the dual maximization problem. The maximum value of z will be the minimum value of w. Moreover, the values of x_{1}, x_{2}, \ldots, and x_{n} will occur in the bottom row of the final simplex tableau, in the columns corresponding to the slack variables.

We illustrate the steps used to solve a minimization problem in Examples 1 and 2.

EXAMPLE 1 Solving a Minimization Problem

Find the minimum value of

$$
w=3 x_{1}+2 x_{2} \quad \text { Objective function }
$$

subject to the constraints

$$
\left.\begin{array}{r}
2 x_{1}+x_{2} \geq 6 \\
x_{1}+x_{2} \geq 4
\end{array}\right\} \quad \text { Constraints }
$$

where $x_{1} \geq 0$ and $x_{2} \geq 0$.
Solution The augmented matrix corresponding to this minimization problem is

$$
\left[\begin{array}{cccc}
2 & 1 & \vdots & 6 \\
1 & 1 & \vdots & 4 \\
\cdots & \cdots & \vdots & \cdots \\
3 & 2 & \vdots & 0
\end{array}\right]
$$

Thus, the matrix corresponding to the dual maximization problem is given by the following transpose.

$$
\left[\begin{array}{cccc}
2 & 1 & \vdots & 3 \\
1 & 1 & \vdots & 2 \\
\cdots & \cdots & \vdots & \cdots \\
6 & 4 & \vdots & 0
\end{array}\right]
$$

This implies that the dual maximization problem is as follows.
Dual Maximization Problem: Find the maximum value of

$$
z=6 y_{1}+4 y_{2} \quad \text { Dual objective function }
$$

subject to the constraints

$$
\left.\begin{array}{r}
2 y_{1}+y_{2} \leq 3 \\
y_{1}+y_{2} \leq 2
\end{array}\right\} \quad \text { Dual constraints }
$$

where $y_{1} \geq 0$ and $y_{2} \geq 0$. We now apply the simplex method to the dual problem as follows.

y_{1}	y_{2}	s_{I}	s_{2}	b	Basic Variables	
($\overline{2}$)	1	1	0	3	s_{1}	\leftarrow Departing
1	1	0	1	2	s_{2}	
-6	-4	0	0	0		
Enteri						

Basic
Variables

y_{1}	y_{2}	s_{1}	s_{2}	b
1	0	1	-1	1
0	1	-1	2	1
0	0	2	2	10
		\uparrow	\uparrow	
		x_{1}	x_{2}	

From this final simplex tableau, we see that the maximum value of z is 10 . Therefore, the solution of the original minimization problem is

$$
w=10
$$

Minimum Value
and this occurs when

$$
x_{1}=2 \text { and } x_{2}=2
$$

Both the minimization and the maximization linear programming problems in Example 1 could have been solved with a graphical method, as indicated in Figure 9.19. Note in Figure 9.19 (a) that the maximum value of $z=6 y_{1}-4 y_{2}$ is the same as the minimum value of $w=3 x_{1}+2 x_{2}$, as shown in Figure 9.19 (b). (See page 515.)

EXAMPLE 2 Solving a Minimization Problem

Find the minimum value of

$$
w=2 x_{1}+10 x_{2}+8 x_{3} \quad \text { Objective function }
$$

subject to the constraints

$$
\left.\begin{array}{r}
x_{1}+x_{2}+x_{3} \geq 6 \\
x_{2}+2 x_{3} \geq 8 \\
-x_{1}+2 x_{2}+2 x_{3} \geq 4
\end{array}\right\} \quad \text { Constraints }
$$

where $x_{1} \geq 0, x_{2} \geq 0$, and $x_{3} \geq 0$.

Solution The augmented matrix corresponding to this minimization problem is

$$
\left[\begin{array}{rcccc}
1 & 1 & 1 & \vdots & 6 \\
0 & 1 & 2 & \vdots & 8 \\
-1 & 2 & 2 & \vdots & 4 \\
\cdots & \cdots & \cdots & \vdots & \cdots \\
2 & 10 & 8 & \vdots & 0
\end{array}\right] .
$$

Thus, the matrix corresponding to the dual maximization problem is given by the following transpose.

$$
\left[\begin{array}{rrrrr}
1 & 0 & -1 & \vdots & 2 \\
1 & 1 & 2 & \vdots & 10 \\
1 & 2 & 2 & \vdots & 8 \\
\cdots & \cdots & \cdots & \vdots & \cdots \\
6 & 8 & 4 & \vdots & 0
\end{array}\right]
$$

Figure 9.19

This implies that the dual maximization problem is as follows.
Dual Maximization Problem: Find the maximum value of

$$
z=6 y_{1}+8 y_{2}+4 y_{3} \quad \text { Dual objective function }
$$

subject to the constraints

$$
\left.\begin{array}{l}
y_{1} \quad y_{3} \leq 2 \\
y_{1}+y_{2}+2 y_{3} \leq 10 \\
y_{1}+2 y_{2}+2 y_{3} \leq 8
\end{array}\right\} \quad \text { Dual constraints }
$$

where $y_{1} \geq 0, y_{2} \geq 0$, and $y_{3} \geq 0$. We now apply the simplex method to the dual problem as follows.

Basic
Variables

$$
\begin{array}{ll}
s_{1} & \leftarrow \text { Departing } \\
s_{2} & \\
y_{2} &
\end{array}
$$

y_{1}	y_{2}	y_{3}	s_{1}	s_{2}	s_{3}	b	Basic Variables
1	0	-1	1	0	0	2	y_{1}
0	0	$\frac{3}{2}$	$-\frac{1}{2}$	1	$-\frac{1}{2}$	5	s_{2}
0	1	$\frac{3}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	3	y_{2}
0	0	2	2	0	4	36	
			\uparrow	\uparrow	\uparrow		
			x_{1}	x_{2}	x_{3}		

From this final simplex tableau, we see that the maximum value of z is 36 . Therefore, the solution of the original minimization problem is

$$
w=36 \quad \text { Minimum Value }
$$

and this occurs when

$$
x_{1}=2, x_{2}=0, \text { and } x_{3}=4
$$

Applications

EXAMPLE 3 A Business Application: Minimum Cost

A small petroleum company owns two refineries. Refinery 1 costs $\$ 20,000$ per day to operate, and it can produce 400 barrels of high-grade oil, 300 barrels of medium-grade oil, and 200 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs $\$ 25,000$ per day to operate, and it can produce 300 barrels of high-grade oil, 400 barrels of medium-grade oil, and 500 barrels of low-grade oil each day.

The company has orders totaling 25,000 barrels of high-grade oil, 27,000 barrels of medium-grade oil, and 30,000 barrels of low-grade oil. How many days should it run each refinery to minimize its costs and still refine enough oil to meet its orders?

Solution To begin, we let x_{1} and x_{2} represent the number of days the two refineries are operated. Then the total cost is given by

$$
C=20,000 x_{1}+25,000 x_{2} . \quad \text { Objective function }
$$

The constraints are given by
$\left.\begin{array}{rl}\text { (High-grade) } & 400 x_{1}+300 x_{2} \geq 25,000 \\ \text { (Medium-grade) } & 300 x_{1}+400 x_{2} \geq 27,000 \\ \text { (Low-grade) } & 200 x_{1}+500 x_{2} \geq 30,000\end{array}\right\} \quad$ Constraints
where $x_{1} \geq 0$ and $x_{2} \geq 0$. The augmented matrix corresponding to this minimization problem is

$$
\left[\begin{array}{rrcr}
400 & 300 & \vdots & 25,000 \\
300 & 400 & \vdots & 27,000 \\
200 & 500 & \vdots & 30,000 \\
\cdots & \cdots & \vdots & \cdots \\
20,000 & 25,000 & \vdots & 0
\end{array}\right] .
$$

The matrix corresponding to the dual maximization problem is

$$
\left[\begin{array}{rrrcr}
400 & 300 & 200 & \vdots & 20,000 \\
300 & 400 & 500 & \vdots & 25,000 \\
\ldots & \ldots & \ldots & \vdots & \ldots \\
25,000 & 27,000 & 30,000 & \vdots & 0
\end{array}\right] .
$$

We now apply the simplex method to the dual problem as follows.

y_{1}	y_{2}	y_{3}	s_{1}	s_{2}	b	Basi Variab	
(280)	140	0	1	$-\frac{2}{5}$	10,000	s_{1}	\leftarrow Departing
$\frac{3}{5}$	$\frac{4}{5}$	1	0	$\frac{1}{500}$	50	y_{3}	
-7,000	$-3,000$	0	0	60	1,500,000		

y_{1}	y_{2}	y_{3}	s_{1}	s_{2}	b	Basic Variables
1	$\frac{1}{2}$	0	$\frac{1}{280}$	$-\frac{1}{700}$	$\frac{250}{7}$	 y_{1} 0
1	1	$-\frac{3}{1400}$	$\frac{1}{350}$	$\frac{200}{7}$	y_{3}	
	500	0	25	50	$1,750,000$	
			\uparrow	\uparrow		
			x_{1}	x_{2}		

From the third simplex tableau, we see that the solution to the original minimization problem is

$$
C=\$ 1,750,000
$$

and this occurs when $x_{1}=25$ and $x_{2}=50$. Thus, the two refineries should be operated for the following number of days.

Refinery 1: 25 days

Refinery 2: 50 days

Note that by operating the two refineries for this number of days, the company will have produced the following amounts of oil.

High-grade oil: $\quad 25(400)+50(300)=25,000$ barrels
Medium-grade oil: $\quad 25(300)+50(400)=27,500$ barrels
Low-grade oil: $\quad 25(200)+50(500)=30,000$ barrels
Thus, the original production level has been met (with a surplus of 500 barrels of mediumgrade oil).

SECTION $9.4 \quad$ EXERCISES

In Exercises 1-6, determine the dual of the given minimization problem.

1. Objective function:
$w=3 x_{1}+3 x_{2}$
Constraints:
$2 x_{1}+x_{2} \geq 4$
$x_{1}+2 x_{2} \geq 4$

$$
x_{1}, x_{2} \geq 0
$$

3. Objective function:
$w=4 x_{1}+x_{2}+x_{3}$
Constraints:
$3 x_{1}+2 x_{2}+x_{3} \geq 23$
$x_{1}+x_{3} \geq 10$
$8 x_{1}+x_{2}+2 x_{3} \geq 40$
$x_{1}, x_{2}, x_{3} \geq 0$
4. Objective function:
$w=14 x_{1}+20 x_{2}+24 x_{3}$
Constraints:

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & \geq 7 \\
x_{1}+2 x_{2}+x_{3} & \geq 4 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

2. Objective function:
$w=2 x_{1}+x_{2}$
Constraints:
$5 x_{1}+x_{2} \geq 9$
$2 x_{1}+2 x_{2} \geq 10$

$$
x_{1}, x_{2} \geq 0
$$

4. Objective function:
$w=9 x_{1}+6 x_{2}$
Constraints:
$x_{1}+2 x_{2} \geq 5$
$2 x_{1}+2 x_{2} \geq 8$
$2 x_{1}+x_{2} \geq 6$
$x_{1}, x_{2} \geq 0$
5. Objective function:
$w=9 x_{1}+4 x_{2}+10 x_{3}$
Constraints:
$2 x_{1}+x_{2}+3 x_{3} \geq 6$
$6 x_{1}+x_{2}+x_{3} \geq 9$
$x_{1}, x_{2}, x_{3} \geq 0$

In Exercises 7-12, (a) solve the given minimization problem by the graphical method, (b) formulate the dual problem, and (c) solve the dual problem by the graphical method.
7. Objective function:
$w=2 x_{1}+2 x_{2}$
Constraints:
$x_{1}+2 x_{2} \geq 3$
$3 x_{1}+2 x_{2} \geq 5$
$x_{1}, x_{2} \geq 0$

8. Objective function:
$w=14 x_{1}+20 x_{2}$
Constraints:
$x_{1}+2 x_{2} \geq 4$
$7 x_{1}+6 x_{2} \geq 20$
$x_{1}, x_{2} \geq 0$

9. Objective function:
$w=x_{1}+4 x_{2}$
Constraints:
$x_{1}+x_{2} \geq 3$
$-x_{1}+2 x_{2} \geq 2$
$x_{1}, x_{2} \geq 0$

11. Objective function:

$$
w=6 x_{1}+3 x_{2}
$$

Constraints:
$4 x_{1}+x_{2} \geq 4$
$x_{2} \geq 2$
$x_{1}, x_{2} \geq 0$

10. Objective function:
$w=2 x_{1}+6 x_{2}$
Constraints:
$-2 x_{1}+3 x_{2} \geq 0$
$x_{1}+3 x_{2} \geq 9$ $x_{1}, x_{2} \geq 0$

12. Objective function:
$w=x_{1}+6 x_{2}$
Constraints:
$2 x_{1}+3 x_{2} \geq 15$
$-x_{1}+2 x_{2} \geq 3$

$$
x_{1}, x_{2} \geq 0
$$

In Exercises 13-20, solve the given minimization problem by solving the dual maximization problem with the simplex method.
13. Objective function:

$$
w=x_{2}
$$

Constraints:

$$
\begin{aligned}
x_{1}+5 x_{2} & \geq 10 \\
-6 x_{1}+5 x_{2} & \geq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

14. Objective function:
$w=3 x_{1}+8 x_{2}$
Constraints:

$$
\begin{aligned}
2 x_{1}+7 x_{2} & \geq 9 \\
x_{1}+2 x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

15. Objective function:
$w=2 x_{1}+x_{2}$
Constraints:
$5 x_{1}+x_{2} \geq 9$
$2 x_{1}+2 x_{2} \geq 10$

$$
x_{1}, x_{2} \geq 0
$$

17. Objective function:
$w=8 x_{1}+4 x_{2}+6 x_{3}$
Constraints:
$3 x_{1}+2 x_{2}+x_{3} \geq 6$
$4 x_{1}+x_{2}+3 x_{3} \geq 7$
$2 x_{1}+x_{2}+4 x_{3} \geq 8$
$x_{1}, x_{2}, x_{3} \geq 0$
18. Objective function:
$w=6 x_{1}+2 x_{2}+3 x_{3}$
Constraints:

$$
\begin{aligned}
3 x_{1}+2 x_{2}+x_{3} & \geq 28 \\
6 x_{1}+x_{3} & \geq 24 \\
3 x_{1}+x_{2}+2 x_{3} & \geq 40 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

16. Objective function:
$w=2 x_{1}+2 x_{2}$
Constraints:

$$
\begin{aligned}
3 x_{1}+x_{2} & \geq 6 \\
-4 x_{1}+2 x_{2} & \geq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

18. Objective function:
$w=8 x_{1}+16 x_{2}+18 x_{3}$
Constraints:

$$
\begin{aligned}
2 x_{1}+2 x_{2}-2 x_{3} & \geq 4 \\
-4 x_{1}+3 x_{2}-x_{3} & \geq 1 \\
x_{1}-x_{2}+3 x_{3} & \geq 8 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

20. Objective function:
$w=42 x_{1}+5 x_{2}+17 x_{3}$
Constraints:

$$
\begin{aligned}
3 x_{1}-x_{2}+7 x_{3} & \geq 5 \\
-3 x_{1}-x_{2}+3 x_{3} & \geq 8 \\
6 x_{1}+x_{2}+x_{3} & \geq 16 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

In Exercises 21-24, two dietary drinks are used to supply protein and carbohydrates. The first drink provides 1 unit of protein and 3 units of carbohydrates in each liter. The second drink supplies 2 units of protein and 2 units of carbohydrates in each liter. An athlete requires 3 units of protein and 5 units of carbohydrates. Find the amount of each drink the athlete should consume to minimize the cost and still meet the minimum dietary requirements.
21. The first drink costs $\$ 2$ per liter and the second costs $\$ 3$ per liter.
22. The first drink costs $\$ 4$ per liter and the second costs $\$ 2$ per liter.
23. The first drink costs $\$ 1$ per liter and the second costs $\$ 3$ per liter.
24. The first drink costs $\$ 1$ per liter and the second costs $\$ 2$ per liter.
In Exercises 25-28, an athlete uses two dietary drinks that provide the nutritional elements listed in the following table.

Drink	Protein	Carbohydrates	Vitamin D
I	4	2	1
II	1	5	1

Find the combination of drinks of minimum cost that will meet the minimum requirements of 4 units of protein, 10 units of carbohydrates, and 3 units of vitamin D.
25. Drink I costs $\$ 5$ per liter and drink II costs $\$ 8$ per liter.
26. Drink I costs $\$ 7$ per liter and drink II costs $\$ 4$ per liter.
27. Drink I costs $\$ 1$ per liter and drink II costs $\$ 5$ per liter.
28. Drink I costs $\$ 8$ per liter and drink II costs $\$ 1$ per liter.
29. A company has three production plants, each of which produces three different models of a particular product. The daily capacities (in thousands of units) of the three plants are as follows.

	Model 1	Model 2	Model 3
Plant 1	8	4	8
Plant 2	6	6	3
Plant 3	12	4	8

The total demand for Model 1 is 300,000 units, for Model 2 is 172,000 units, and for Model 3 is 249,500 units. Moreover, the daily operating cost for Plant 1 is $\$ 55,000$, for Plant 2 is $\$ 60,000$, and for Plant 3 is $\$ 60,000$. How many days should each plant be operated in order to fill the total demand, and keep the operating cost at a minimum?
30. The company in Exercise 29 has lowered the daily operating cost for Plant 3 to $\$ 50,000$. How many days should each plant be operated in order to fill the total demand, and keep the operating cost at a minimum?
31. A small petroleum company owns two refineries. Refinery 1 costs $\$ 25,000$ per day to operate, and it can produce 300 barrels of high-grade oil, 200 barrels of medium-grade oil, and 150 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs $\$ 30,000$ per day to operate, and it can produce 300 barrels of high-grade oil, 250 barrels of medium-grade oil, and 400 barrels of low-grade oil each day. The company has orders totaling 35,000 barrels of high-grade oil, 30,000 barrels of medium-grade oil, and 40,000 barrels of low-grade oil. How many days should the company run each refinery to minimize its costs and still meet its orders?
32. A steel company has two mills. Mill 1 costs $\$ 70,000$ per day to operate, and it can produce 400 tons of high-grade steel, 500 tons of medium-grade steel, and 450 tons of low-grade steel each day. Mill 2 costs $\$ 60,000$ per day to operate, and it can produce 350 tons of high-grade steel, 600 tons of medium-grade steel, and 400 tons of low-grade steel each day. The company has orders totaling 100,000 tons of high-grade steel, 150,000 tons of medium-grade steel, and 124,500 tons of low-grade steel. How many days should the company run each mill to minimize its costs and still fill the orders?
C 33. Use a computer to minimize the objective function
$w=x_{1}+0.5 x_{2}+2.5 x_{3}+3 x_{4}$
subject to the constraints

$$
\begin{array}{rlr}
1.5 x_{1}+x_{2}+2 x_{4} & \geq 35 \\
2 x_{2}+6 x_{3}+4 x_{4} & \geq 120 \\
x_{1}+x_{2}+x_{3}+x_{4} & \geq 50 \\
0.5 x_{1}+2.5 x_{3}+1.5 x_{4} & \geq 75 \\
\text { where } x_{1}, x_{2}, x_{3}, x_{4} & \geq 0 .
\end{array}
$$

34. Use a computer to minimize the objective function $w=1.5 x_{1}+x_{2}+0.5 x_{3}+2 x_{4}$ subject to the same set of constraints given in Exercise 33.
