1-(20p) You are given a system with impulse response \(h(t) = e^t u(t) \).

a)(5p) Is the system denoted by \(h(t) \) bounded-input bounded-output (BIBO) stable?

b)(10p) You now hook the system up into a feedback system, as shown in figure below. Find the new transfer function, \(H_{\text{new}}(s) \), from the input \(x(t) \) to the output \(y(t) \).

c) (5p) Find the range of parameter \(A \) such that the new feedback system is bounded-input bounded-output (BIBO) stable?

\[x(t) \xrightarrow{\Sigma} w(t) \xrightarrow{h(t)} y(t) \]

2-(20p) You are given a transfer function:

\[H(s) = \frac{1}{(s + a)(s + b)} \]

where \(H(s) \) is the Laplace transform of \(h(t) \), an impulse response of a system, and "\(a \)" and "\(b \)" are real constants and \(a > b \).

a)(10p) If \(h(t) \) were **causal**, over what range of values of "\(a \)" and "\(b \)" would the system be BIBO stable?

Determine also the Region of Convergence (ROC) for both causal and BIBO stable system.

b)(10p) If \(h(t) \) were **noncausal**, over what range of values of "\(a \)" and "\(b \)" would the system be BIBO stable?

Determine also the Region of Convergence (ROC) for both noncausal and BIBO stable system.

3-(20p) For the system given below and assuming \(f(t) \) as the input and \(y(t) \) as the output;

a)(6p) Find the system transition matrix.

b)(8p) Find the system state variables.

c)(6p) Find the system output response \((y(t)) \) due to the system input \(f(t) = u(t) \).

\[
\begin{bmatrix}
\frac{dx_1(t)}{dt} \\
\frac{dx_2(t)}{dt}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
-2 & -3
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} +
\begin{bmatrix}
0 \\
1
\end{bmatrix} f(t)
\]

\[x_1(0^-) = [0] \quad x_2(0^-) = [1] \quad y(t) = [4 \quad 5] x_1(t) x_2(t) \]

4-(20p) Find the following inverse z-transforms and z-transforms (with corresponding ROCs):

a)(5p) \(X(z) = 4z^2 + 2 + 3z^{-1} \), \(0 < |z| < \infty \).

b)(5p) \(H(z) = \frac{2z^2 - 5z}{z^2 - \frac{5}{2}z + 1} \), \(|z| > 2 \).

c)(5p) \(x(n) = u(n) - u(n - 10) \).

d)(5p) \(h(n) = (\frac{1}{3})^n u(-n) \).

5-(20p) Consider an LTI system for which the input \(x(n) \) and the output \(y(n) \) satisfy the linear constant-coefficient difference equation

\[y(n) - \frac{1}{2} y(n - 1) = x(n) + \frac{1}{3} x(n - 1) \]

a)(10p) Determine the transfer function \(H(z) \).

b)(10p) Find the impulse response \(h(n) \) of the system assuming that the system is **causal**.
Laplace Transform:

<table>
<thead>
<tr>
<th>$X(s)$</th>
<th>$x(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\delta(t)$</td>
</tr>
<tr>
<td>$\frac{1}{s}$</td>
<td>$u(t)$</td>
</tr>
<tr>
<td>$\frac{1}{s^2}$</td>
<td>$tu(t)$</td>
</tr>
<tr>
<td>$\frac{k!}{s^{k+1}}$</td>
<td>$t^ku(t)$</td>
</tr>
<tr>
<td>$\frac{1}{s + a}$</td>
<td>$e^{-at}u(t)$</td>
</tr>
<tr>
<td>$\frac{1}{(s + a)^2}$</td>
<td>$te^{-at}u(t)$</td>
</tr>
<tr>
<td>$\frac{s}{s^2 + \omega^2}$</td>
<td>$\cos(\omega t)u(t)$</td>
</tr>
<tr>
<td>$\frac{\omega}{s^2 + \omega^2}$</td>
<td>$\sin(\omega t)u(t)$</td>
</tr>
</tbody>
</table>

Z-Transform:

<table>
<thead>
<tr>
<th>$X(z)$</th>
<th>$x(n)$</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\delta(n)$</td>
<td>All z</td>
</tr>
<tr>
<td>$\frac{z}{z - 1}$</td>
<td>$u(n)$</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{z}{z - 1}$</td>
<td>$-u(-n - 1)$</td>
<td>$</td>
</tr>
<tr>
<td>z^{-m}</td>
<td>$\delta(n - m)$</td>
<td>All z except zero if $m > 0$ or ∞ if $m < 0$</td>
</tr>
<tr>
<td>$\frac{z}{z - a}$</td>
<td>$a^n u(n)$</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{z}{z - a}$</td>
<td>$-a^n u(-n - 1)$</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{az}{(z - a)^2}$</td>
<td>$na^n u(n)$</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{az}{(z - a)^2}$</td>
<td>$-na^n u(-n - 1)$</td>
<td>$</td>
</tr>
</tbody>
</table>

Laplace Transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} \, dt$$

Z-Transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

For a given state equations and output equations (x is state vector, u is the input and y is the output vector):

$$\frac{dx}{dt} = Ax + Bu$$

$$y = Cx + Du$$

$$x(t_0) = x_0$$

$$x = \phi(t - t_0)x_0 + \int_{t_0}^{t} \phi(t - \tau)Bu(\tau)\,d\tau$$

$$y = C\phi(t - t_0)x_0 + \int_{t_0}^{t} C\phi(t - \tau)Bu(\tau)\,d\tau + Du$$

NOTE: YOU SHOULD SHOW/EXPLAIN YOUR WORK TO RECEIVE FULL CREDIT.

THE CORRECT ANSWER WITH NO SUPPORTING WORK MAY RESULT IN NO CREDIT.